subroutine turbdiff(ngrid,nlay,nq, & ptimestep,pcapcal,lecrit, & pplay,pplev,pzlay,pzlev,pz0, & pu,pv,pt,ppopsk,pq,ptsrf,pemis,pqsurf, & pdtfi,pdqfi,pfluxsrf, & Pdudif,pdvdif,pdtdif,pdtsrf,sensibFlux,pq2, & pdqdif,pdqsdif,flux_u,flux_v,lastcall) use radcommon_h, only : sigma, gzlat use comcstfi_mod, only: rcp, g, r, cpp use callkeys_mod, only: tracer,nosurf implicit none !================================================================== ! ! Purpose ! ------- ! Turbulent diffusion (mixing) for pot. T, U, V and tracers ! ! Implicit scheme ! We start by adding to variables x the physical tendencies ! already computed. We resolve the equation: ! ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) ! ! Authors ! ------- ! F. Hourdin, F. Forget, R. Fournier (199X) ! R. Wordsworth, B. Charnay (2010) ! J. Leconte (2012): To f90 ! - Rewritten the diffusion scheme to conserve total enthalpy ! by accounting for dissipation of turbulent kinetic energy. ! - Accounting for lost mean flow kinetic energy should come soon. ! !================================================================== !----------------------------------------------------------------------- ! declarations ! ------------ ! arguments ! --------- INTEGER,INTENT(IN) :: ngrid INTEGER,INTENT(IN) :: nlay REAL,INTENT(IN) :: ptimestep REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) REAL,INTENT(IN) :: pt(ngrid,nlay),ppopsk(ngrid,nlay) REAL,INTENT(IN) :: ptsrf(ngrid) ! surface temperature (K) REAL,INTENT(IN) :: pemis(ngrid) REAL,INTENT(IN) :: pdtfi(ngrid,nlay) REAL,INTENT(IN) :: pfluxsrf(ngrid) REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) REAL,INTENT(OUT) :: pdtdif(ngrid,nlay) REAL,INTENT(OUT) :: pdtsrf(ngrid) ! tendency (K/s) on surface temperature REAL,INTENT(OUT) :: sensibFlux(ngrid) REAL,INTENT(IN) :: pcapcal(ngrid) REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) REAL,INTENT(OUT) :: flux_u(ngrid),flux_v(ngrid) LOGICAL,INTENT(IN) :: lastcall ! not used ! Arguments added for condensation logical,intent(in) :: lecrit ! not used. REAL,INTENT(IN) :: pz0 ! Tracers ! -------- integer,intent(in) :: nq real,intent(in) :: pqsurf(ngrid,nq) real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) real,intent(out) :: pdqdif(ngrid,nlay,nq) real,intent(out) :: pdqsdif(ngrid,nq) ! local ! ----- integer ilev,ig,ilay,nlev REAL z4st,zdplanck(ngrid) REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) REAL zcdv(ngrid),zcdh(ngrid) REAL zcdv_true(ngrid),zcdh_true(ngrid) REAL zu(ngrid,nlay),zv(ngrid,nlay) REAL zh(ngrid,nlay),zt(ngrid,nlay) REAL ztsrf(ngrid) REAL z1(ngrid),z2(ngrid) REAL zmass(ngrid,nlay) REAL zfluxv(ngrid,nlay),zfluxt(ngrid,nlay),zfluxq(ngrid,nlay) REAL zb0(ngrid,nlay) REAL zExner(ngrid,nlay),zovExner(ngrid,nlay) REAL zcv(ngrid,nlay),zdv(ngrid,nlay) !inversion coefficient for winds REAL zct(ngrid,nlay),zdt(ngrid,nlay) !inversion coefficient for temperature REAL zcq(ngrid,nlay),zdq(ngrid,nlay) !inversion coefficient for tracers REAL zcst1 REAL zu2!, a REAL zcq0(ngrid),zdq0(ngrid) REAL zx_alf1(ngrid),zx_alf2(ngrid) LOGICAL,SAVE :: firstcall=.true. !$OMP THREADPRIVATE(firstcall) ! Tracers ! ------- INTEGER iq REAL zq(ngrid,nlay,nq) REAL zdmassevap(ngrid) REAL rho(ngrid) ! near-surface air density REAL kmixmin real, parameter :: karman=0.4 real cd0, roughratio real dqsdif_total(ngrid) real zq0(ngrid) ! Coherence test ! -------------- IF (firstcall) THEN sensibFlux(:)=0. firstcall=.false. ENDIF !----------------------------------------------------------------------- ! 1. Initialisation ! ----------------- nlev=nlay+1 ! Calculate rho*dz, (P/Ps)**(R/cp) and dt*rho/dz=dt*rho**2 g/dp ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa ! --------------------------------------------- DO ilay=1,nlay DO ig=1,ngrid zmass(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/gzlat(ig,ilay) zExner(ig,ilay)=(pplev(ig,ilay)/pplev(ig,1))**rcp zovExner(ig,ilay)=1./ppopsk(ig,ilay) ENDDO ENDDO zcst1=4.*g*ptimestep/(R*R) DO ilev=2,nlev-1 DO ig=1,ngrid zb0(ig,ilev)=pplev(ig,ilev)/(pt(ig,ilev-1)+pt(ig,ilev)) zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/(pplay(ig,ilev-1)-pplay(ig,ilev)) ENDDO ENDDO DO ig=1,ngrid zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) ENDDO dqsdif_total(:)=0.0 !----------------------------------------------------------------------- ! 2. Add the physical tendencies computed so far ! ---------------------------------------------- DO ilev=1,nlay DO ig=1,ngrid zu(ig,ilev)=pu(ig,ilev) zv(ig,ilev)=pv(ig,ilev) zt(ig,ilev)=pt(ig,ilev)+pdtfi(ig,ilev)*ptimestep zh(ig,ilev)=pt(ig,ilev)*zovExner(ig,ilev) !for call vdif_kc, but could be moved and computed there ENDDO ENDDO if(tracer) then DO iq =1, nq DO ilev=1,nlay DO ig=1,ngrid zq(ig,ilev,iq)=pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep ENDDO ENDDO ENDDO end if !----------------------------------------------------------------------- ! 3. Turbulence scheme ! -------------------- ! ! Source of turbulent kinetic energy at the surface ! ------------------------------------------------- ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 DO ig=1,ngrid roughratio = 1. + pzlay(ig,1)/pz0 cd0 = karman/log(roughratio) cd0 = cd0*cd0 zcdv_true(ig) = cd0 zcdh_true(ig) = cd0 if(nosurf)then zcdv_true(ig)=0.D+0 !JL12 disable atm/surface momentum flux zcdh_true(ig)=0.D+0 !JL12 disable sensible heat flux endif ENDDO DO ig=1,ngrid zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) zcdv(ig)=zcdv_true(ig)*sqrt(zu2) zcdh(ig)=zcdh_true(ig)*sqrt(zu2) ENDDO ! Turbulent diffusion coefficients in the boundary layer ! ------------------------------------------------------ call vdif_kc(ngrid,nlay,ptimestep,g,pzlev,pzlay,pu,pv,zh,zcdv_true,pq2,zkv,zkh) !JL12 why not call vdif_kc with updated winds and temperature ! Adding eddy mixing to mimic 3D general circulation in 1D ! R. Wordsworth & F. Forget (2010) if ((ngrid.eq.1)) then kmixmin = 1.0e-2 ! minimum eddy mix coeff in 1D do ilev=1,nlay do ig=1,ngrid zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) end do end do end if !JL12 change zkv at the surface by zcdv to calculate the surface momentum flux properly DO ig=1,ngrid zkv(ig,1)=zcdv(ig) ENDDO !we treat only winds, energy and tracers coefficients will be computed with upadted winds !JL12 calculate the flux coefficients (tables multiplied elements by elements) zfluxv(1:ngrid,1:nlay)=zkv(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) !----------------------------------------------------------------------- ! 4. Implicit inversion of u ! -------------------------- ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) ! avec ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) ! et ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) ! donc les entrees sont /zcdv/ pour la condition a la limite sol ! et /zkv/ = Ku DO ig=1,ngrid z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) zcv(ig,nlay)=zmass(ig,nlay)*zu(ig,nlay)*z1(ig) zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) ENDDO DO ilay=nlay-1,1,-1 DO ig=1,ngrid z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay) + zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) zcv(ig,ilay)=(zmass(ig,ilay)*zu(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) ENDDO ENDDO DO ig=1,ngrid zu(ig,1)=zcv(ig,1) ENDDO DO ilay=2,nlay DO ig=1,ngrid zu(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zu(ig,ilay-1) ENDDO ENDDO !----------------------------------------------------------------------- ! 5. Implicit inversion of v ! -------------------------- ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) ! avec ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) ! et ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) ! donc les entrees sont /zcdv/ pour la condition a la limite sol ! et /zkv/ = Kv DO ig=1,ngrid z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) zcv(ig,nlay)=zmass(ig,nlay)*zv(ig,nlay)*z1(ig) zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) ENDDO DO ilay=nlay-1,1,-1 DO ig=1,ngrid z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay)+zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) zcv(ig,ilay)=(zmass(ig,ilay)*zv(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) ENDDO ENDDO DO ig=1,ngrid zv(ig,1)=zcv(ig,1) ENDDO DO ilay=2,nlay DO ig=1,ngrid zv(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zv(ig,ilay-1) ENDDO ENDDO ! Calcul of wind stress DO ig=1,ngrid flux_u(ig) = zfluxv(ig,1)/ptimestep*zu(ig,1) flux_v(ig) = zfluxv(ig,1)/ptimestep*zv(ig,1) ENDDO !---------------------------------------------------------------------------- ! 6. Implicit inversion of h, not forgetting the coupling with the ground ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) ! avec ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) ! et ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) ! donc les entrees sont /zcdh/ pour la condition de raccord au sol ! et /zkh/ = Kh ! Using the wind modified by friction for lifting and sublimation ! --------------------------------------------------------------- DO ig=1,ngrid zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) zcdv(ig) = zcdv_true(ig)*sqrt(zu2) zcdh(ig) = zcdh_true(ig)*sqrt(zu2) zkh(ig,1)= zcdh(ig) ENDDO ! JL12 calculate the flux coefficients (tables multiplied elements by elements) ! --------------------------------------------------------------- zfluxq(1:ngrid,1:nlay)=zkh(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) !JL12 we save zfluxq which doesn't need the Exner factor zfluxt(1:ngrid,1:nlay)=zfluxq(1:ngrid,1:nlay)*zExner(1:ngrid,1:nlay) DO ig=1,ngrid z1(ig)=1./(zmass(ig,nlay)+zfluxt(ig,nlay)*zovExner(ig,nlay)) zct(ig,nlay)=zmass(ig,nlay)*zt(ig,nlay)*z1(ig) zdt(ig,nlay)=zfluxt(ig,nlay)*zovExner(ig,nlay-1)*z1(ig) ENDDO DO ilay=nlay-1,2,-1 DO ig=1,ngrid z1(ig)=1./(zmass(ig,ilay)+zfluxt(ig,ilay)*zovExner(ig,ilay)+ & zfluxt(ig,ilay+1)*(zovExner(ig,ilay)-zdt(ig,ilay+1)*zovExner(ig,ilay+1))) zct(ig,ilay)=(zmass(ig,ilay)*zt(ig,ilay)+zfluxt(ig,ilay+1)*zct(ig,ilay+1)*zovExner(ig,ilay+1))*z1(ig) zdt(ig,ilay)=zfluxt(ig,ilay)*z1(ig)*zovExner(ig,ilay-1) ENDDO ENDDO !JL12 we treat last point afterward because zovExner(ig,ilay-1) does not exist there DO ig=1,ngrid z1(ig)=1./(zmass(ig,1)+zfluxt(ig,1)*zovExner(ig,1)+ & zfluxt(ig,2)*(zovExner(ig,1)-zdt(ig,2)*zovExner(ig,2))) zct(ig,1)=(zmass(ig,1)*zt(ig,1)+zfluxt(ig,2)*zct(ig,2)*zovExner(ig,2))*z1(ig) zdt(ig,1)=zfluxt(ig,1)*z1(ig) ENDDO ! Calculate (d Planck / dT) at the interface temperature ! ------------------------------------------------------ z4st=4.0*sigma*ptimestep DO ig=1,ngrid zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) ENDDO ! Calculate temperature tendency at the interface (dry case) ! ---------------------------------------------------------- ! Sum of fluxes at interface at time t + \delta t gives change in T: ! radiative fluxes ! turbulent convective (sensible) heat flux ! flux (if any) from subsurface DO ig=1,ngrid z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zfluxt(ig,1)*zct(ig,1)*zovExner(ig,1) & + pfluxsrf(ig)*ptimestep + zdplanck(ig)*ptsrf(ig) z2(ig) = pcapcal(ig)+zdplanck(ig)+cpp*zfluxt(ig,1)*(1.-zovExner(ig,1)*zdt(ig,1)) ztsrf(ig) = z1(ig) / z2(ig) pdtsrf(ig) = (ztsrf(ig) - ptsrf(ig))/ptimestep zt(ig,1) = zct(ig,1) + zdt(ig,1)*ztsrf(ig) ENDDO ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme ! Recalculate temperature to top of atmosphere, starting from ground ! ------------------------------------------------------------------ DO ilay=2,nlay DO ig=1,ngrid zt(ig,ilay)=zct(ig,ilay)+zdt(ig,ilay)*zt(ig,ilay-1) ENDDO ENDDO !----------------------------------------------------------------------- ! TRACERS (no vapour) ! ------- if(tracer) then ! Calculate vertical flux from the bottom to the first layer (dust) ! ----------------------------------------------------------------- do ig=1,ngrid rho(ig) = zb0(ig,1) /ptimestep end do pdqsdif(:,:)=0. ! Implicit inversion of q ! ----------------------- do iq=1,nq DO ig=1,ngrid z1(ig)=1./(zmass(ig,nlay)+zfluxq(ig,nlay)) zcq(ig,nlay)=zmass(ig,nlay)*zq(ig,nlay,iq)*z1(ig) zdq(ig,nlay)=zfluxq(ig,nlay)*z1(ig) ENDDO DO ilay=nlay-1,2,-1 DO ig=1,ngrid z1(ig)=1./(zmass(ig,ilay)+zfluxq(ig,ilay)+zfluxq(ig,ilay+1)*(1.-zdq(ig,ilay+1))) zcq(ig,ilay)=(zmass(ig,ilay)*zq(ig,ilay,iq)+zfluxq(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) zdq(ig,ilay)=zfluxq(ig,ilay)*z1(ig) ENDDO ENDDO do ig=1,ngrid z1(ig)=1./(zmass(ig,1)+zfluxq(ig,2)*(1.-zdq(ig,2))) zcq(ig,1)=(zmass(ig,1)*zq(ig,1,iq)+zfluxq(ig,2)*zcq(ig,2)+(-pdqsdif(ig,iq))*ptimestep)*z1(ig) ! tracer flux from surface ! currently pdqsdif always zero here, ! so last line is superfluous enddo ! Starting upward calculations for simple tracer mixing (e.g., dust) do ig=1,ngrid zq(ig,1,iq)=zcq(ig,1) end do do ilay=2,nlay do ig=1,ngrid zq(ig,ilay,iq)=zcq(ig,ilay)+zdq(ig,ilay)*zq(ig,ilay-1,iq) end do end do end do ! of do iq=1,nq endif ! tracer !----------------------------------------------------------------------- ! 8. Final calculation of the vertical diffusion tendencies ! ----------------------------------------------------------------- do ilev = 1, nlay do ig=1,ngrid pdudif(ig,ilev)=(zu(ig,ilev)-(pu(ig,ilev)))/ptimestep pdvdif(ig,ilev)=(zv(ig,ilev)-(pv(ig,ilev)))/ptimestep pdtdif(ig,ilev)=( zt(ig,ilev)- pt(ig,ilev))/ptimestep-pdtfi(ig,ilev) enddo enddo DO ig=1,ngrid ! computing sensible heat flux (atm => surface) sensibFlux(ig)=cpp*zfluxt(ig,1)/ptimestep*(zt(ig,1)*zovExner(ig,1)-ztsrf(ig)) ENDDO if (tracer) then do iq = 1, nq do ilev = 1, nlay do ig=1,ngrid pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)-(pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ptimestep enddo enddo enddo endif ! if(lastcall)then ! if(ngrid.eq.1)then ! print*,'Saving k.out...' ! OPEN(12,file='k.out',form='formatted') ! DO ilay=1,nlay ! write(12,*) zkh(1,ilay), pplay(1,ilay) ! ENDDO ! CLOSE(12) ! endif ! endif end