module physiq_mod implicit none contains subroutine physiq(ngrid,nlayer,nq, & nametrac, & firstcall,lastcall, & pday,ptime,ptimestep, & pplev,pplay,pphi, & pu,pv,pt,pq, & flxw, & pdu,pdv,pdt,pdq,pdpsrf) use radinc_h, only : L_NSPECTI,L_NSPECTV use radcommon_h, only: sigma, gzlat, gzlat_ig, Cmk, grav, BWNV use surfdat_h, only: phisfi, zmea, zstd, zsig, zgam, zthe use comchem_h, only: nkim, cnames, nlaykim_up, ykim_up, ykim_tot, botCH4 use comdiurn_h, only: coslat, sinlat, coslon, sinlon use comsaison_h, only: mu0, fract, dist_star, declin, right_ascen use comsoil_h, only: nsoilmx, layer, mlayer, inertiedat use datafile_mod, only: datadir, corrkdir, banddir use geometry_mod, only: latitude, longitude, cell_area USE comgeomfi_h, only: totarea, totarea_planet USE tracer_h use time_phylmdz_mod, only: ecritphy, iphysiq, nday use phyetat0_mod, only: phyetat0 use phyredem, only: physdem0, physdem1 use planetwide_mod, only: planetwide_minval,planetwide_maxval,planetwide_sumval use mod_phys_lmdz_para, only : is_master use planete_mod, only: apoastr, periastr, year_day, peri_day, & obliquit, nres, z0 use comcstfi_mod, only: pi, g, rcp, r, rad, mugaz, cpp use time_phylmdz_mod, only: daysec use logic_mod, only: moyzon_ch use moyzon_mod, only: zphibar, zphisbar, zplevbar, zplaybar, & zzlevbar, zzlaybar, ztfibar, zqfibar use callkeys_mod use vertical_layers_mod, only: presnivs, pseudoalt use ioipsl_getin_p_mod, only: getin_p use mod_phys_lmdz_omp_data, ONLY: is_omp_master #ifdef CPP_XIOS use xios_output_mod, only: initialize_xios_output, & update_xios_timestep, & send_xios_field use wxios, only: wxios_context_init, xios_context_finalize #endif use MMP_OPTICS use muphy_diag implicit none !================================================================== ! ! Purpose ! ------- ! Central subroutine for all the physics parameterisations in the ! universal model. Originally adapted from the Mars LMDZ model. ! ! The model can be run without or with tracer transport ! depending on the value of "tracer" in file "callphys.def". ! ! ! It includes: ! ! I. Initialization : ! I.1 Firstcall initializations. ! I.2 Initialization for every call to physiq. ! ! II. Compute radiative transfer tendencies (longwave and shortwave) : ! II.a Option 1 : Call correlated-k radiative transfer scheme. ! II.b Option 2 : Call Newtonian cooling scheme. ! II.c Option 3 : Atmosphere has no radiative effect. ! ! III. Vertical diffusion (turbulent mixing) : ! ! IV. Dry Convective adjustment : ! ! V. Tracers ! V.1. Microphysics ! V.2. Chemistry ! V.3. Updates (pressure variations, surface budget). ! V.4. Surface Tracer Update. ! ! VI. Surface and sub-surface soil temperature. ! ! VII. Perform diagnostics and write output files. ! ! ! arguments ! --------- ! ! INPUT ! ----- ! ! ngrid Size of the horizontal grid. ! nlayer Number of vertical layers. ! nq Number of advected fields. ! nametrac Name of corresponding advected fields. ! ! firstcall True at the first call. ! lastcall True at the last call. ! ! pday Number of days counted from the North. Spring equinoxe. ! ptime Universal time (00 WHEN DOWNWARDS !!) integer l,ig,ierr,iq,nw,isoil ! FOR DIAGNOSTIC : real,dimension(:),allocatable,save :: fluxsurf_lw ! Incident Long Wave (IR) surface flux (W.m-2). real,dimension(:),allocatable,save :: fluxsurf_sw ! Incident Short Wave (stellar) surface flux (W.m-2). real,dimension(:),allocatable,save :: fluxsurfabs_sw ! Absorbed Short Wave (stellar) flux by the surface (W.m-2). real,dimension(:),allocatable,save :: fluxtop_lw ! Outgoing LW (IR) flux to space (W.m-2). real,dimension(:),allocatable,save :: fluxabs_sw ! Absorbed SW (stellar) flux (W.m-2). real,dimension(:),allocatable,save :: fluxtop_dn ! Incoming SW (stellar) radiation at the top of the atmosphere (W.m-2). real,dimension(:),allocatable,save :: fluxdyn ! Horizontal heat transport by dynamics (W.m-2). real,dimension(:,:),allocatable,save :: OLR_nu ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1)). real,dimension(:,:),allocatable,save :: OSR_nu ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1)). real,dimension(:,:),allocatable,save :: zdtlw ! LW heating tendencies (K/s). real,dimension(:,:),allocatable,save :: zdtsw ! SW heating tendencies (K/s). real,dimension(:),allocatable,save :: sensibFlux ! Turbulent flux given by the atmosphere to the surface (W.m-2). real,dimension(:,:,:),allocatable,save :: int_dtauv ! VI optical thickness of layers within narrowbands for diags (). real,dimension(:,:,:),allocatable,save :: int_dtaui ! IR optical thickness of layers within narrowbands for diags (). !$OMP THREADPRIVATE(fluxsurf_lw,fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw,fluxabs_sw,fluxtop_dn,fluxdyn,OLR_nu,OSR_nu,& !$OMP zdtlw,zdtsw,sensibFlux,int_dtauv,int_dtaui)) real zls ! Solar longitude (radians). real zlss ! Sub solar point longitude (radians). real zday ! Date (time since Ls=0, calculated in sols). real zzlay(ngrid,nlayer) ! Altitude at the middle of the atmospheric layers (ref : local surf). real zzlev(ngrid,nlayer+1) ! Altitude at the atmospheric layer boundaries (ref : local surf). real zzlay_eff(ngrid,nlayer) ! Effective altitude at the middle of the atmospheric layers (ref : geoid ). real zzlev_eff(ngrid,nlayer+1) ! Effective altitude at the atmospheric layer boundaries ( ref : geoid ). ! TENDENCIES due to various processes : ! For Surface Temperature : (K/s) real zdtsurf(ngrid) ! Cumulated tendencies. real zdtsurfmr(ngrid) ! Mass_redistribution routine. real zdtsdif(ngrid) ! Turbdiff/vdifc routines. ! For Atmospheric Temperatures : (K/s) real zdtdif(ngrid,nlayer) ! Turbdiff/vdifc routines. real zdtmr(ngrid,nlayer) ! Mass_redistribution routine. real zdtsw1(ngrid,nlayer), zdtlw1(ngrid,nlayer) ! Callcorrk routine. ! For Surface Tracers : (kg/m2/s) real dqsurf(ngrid,nq) ! Cumulated tendencies. real zdqsdif(ngrid,nq) ! Turbdiff/vdifc routines. real zdqsurfmr(ngrid,nq) ! Mass_redistribution routine. ! For Tracers : (kg/kg_of_air/s) real zdqadj(ngrid,nlayer,nq) ! Convadj routine. real zdqdif(ngrid,nlayer,nq) ! Turbdiff/vdifc routines. real zdqevap(ngrid,nlayer) ! Turbdiff routine. real zdqmr(ngrid,nlayer,nq) ! Mass_redistribution routine. real zdqchi(ngrid,nlayer,nq) ! Chemical tendency ( chemistry routine ). real zdqmufi(ngrid,nlayer,nq) ! Microphysical tendency. real zdqfibar(ngrid,nlayer,nq) ! For 2D chemistry real zdqmufibar(ngrid,nlayer,nq) ! For 2D chemistry ! For Winds : (m/s/s) real zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! Convadj routine. real zdumr(ngrid,nlayer),zdvmr(ngrid,nlayer) ! Mass_redistribution routine. real zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! Turbdiff/vdifc routines. real zdhdif(ngrid,nlayer) ! Turbdiff/vdifc routines. real zdhadj(ngrid,nlayer) ! Convadj routine. ! For Pressure and Mass : real zdmassmr(ngrid,nlayer) ! Atmospheric Mass tendency for mass_redistribution (kg_of_air/m2/s). real zdmassmr_col(ngrid) ! Atmospheric Column Mass tendency for mass_redistribution (kg_of_air/m2/s). real zdpsrfmr(ngrid) ! Pressure tendency for mass_redistribution routine (Pa/s). ! Local variables for LOCAL CALCULATIONS: ! --------------------------------------- real zflubid(ngrid) real zplanck(ngrid),zpopsk(ngrid,nlayer) real ztim1,ztim2,ztim3, z1,z2 real ztime_fin real zdh(ngrid,nlayer) real gmplanet real taux(ngrid),tauy(ngrid) ! local variables for DIAGNOSTICS : (diagfi & stat) ! ------------------------------------------------- real ps(ngrid) ! Surface Pressure. real zt(ngrid,nlayer) ! Atmospheric Temperature. real zu(ngrid,nlayer),zv(ngrid,nlayer) ! Zonal and Meridional Winds. real zq(ngrid,nlayer,nq) ! Atmospheric Tracers. real zdtadj(ngrid,nlayer) ! Convadj Diagnostic. real zdtdyn(ngrid,nlayer) ! Dynamical Heating (K/s). real zdudyn(ngrid,nlayer) ! Dynamical Zonal Wind tendency (m.s-2). real,allocatable,dimension(:,:),save :: ztprevious ! Previous loop Atmospheric Temperature (K) ! Useful for Dynamical Heating calculation. real,allocatable,dimension(:,:),save :: zuprevious ! Previous loop Zonal Wind (m.s-1) ! Useful for Zonal Wind tendency calculation. !$OMP THREADPRIVATE(ztprevious,zuprevious) real zhorizwind(ngrid,nlayer) ! Horizontal Wind ( sqrt(u**+v*v)) real vmr(ngrid,nlayer) ! volume mixing ratio real time_phys real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS ! for Diagnostic. ! to test energy conservation (RW+JL) real mass(ngrid,nlayer),massarea(ngrid,nlayer) real dEtot, dEtots, AtmToSurf_TurbFlux real,save :: dEtotSW, dEtotsSW, dEtotLW, dEtotsLW !$OMP THREADPRIVATE(dEtotSW, dEtotsSW, dEtotLW, dEtotsLW) real dEzRadsw(ngrid,nlayer),dEzRadlw(ngrid,nlayer),dEzdiff(ngrid,nlayer) real dEdiffs(ngrid),dEdiff(ngrid) !JL12 conservation test for mean flow kinetic energy has been disabled temporarily real dItot, dItot_tmp, dVtot, dVtot_tmp real dWtot, dWtot_tmp, dWtots, dWtots_tmp ! For Clear Sky Case. real fluxsurf_lw1(ngrid), fluxsurf_sw1(ngrid), fluxsurfabs_sw1(ngrid) ! For SW/LW flux. real fluxtop_lw1(ngrid), fluxabs_sw1(ngrid) ! For SW/LW flux. real albedo_equivalent1(ngrid) ! For Equivalent albedo calculation. real tf, ntf real,allocatable,dimension(:,:),save :: qsurf_hist !$OMP THREADPRIVATE(qsurf_hist) ! Miscellaneous : character(len=10) :: tmp1 character(len=10) :: tmp2 character*2 :: str2 ! Local variables for Titan chemistry and microphysics ! ---------------------------------------------------- real,save :: ctimestep ! Chemistry timestep (s) !$OMP THREADPRIVATE(ctimestep) ! Chemical tracers in molar fraction real, dimension(ngrid,nlayer,nkim) :: ychim ! (mol/mol) real, dimension(ngrid,nlayer,nkim) :: ychimbar ! For 2D chemistry ! Molar fraction tendencies ( chemistry, condensation and evaporation ) for tracers (mol/mol/s) real, dimension(:,:,:), allocatable, save :: dycchi ! NB : Only for chem tracers. Saved since chemistry is not called every step. !$OMP THREADPRIVATE(dycchi) real, dimension(ngrid,nlayer,nq) :: dyccond ! Condensation rate. NB : for all tracers, as we want to use indx on it. real, dimension(ngrid,nlayer,nq) :: dyccondbar ! For 2D chemistry real, dimension(ngrid) :: dycevapCH4 ! Surface "pseudo-evaporation" rate (forcing constant surface humidity). ! Saturation profiles real, dimension(ngrid,nlayer,nkim) :: ysat ! (mol/mol) ! Surface methane real, dimension(:), allocatable, save :: tankCH4 ! Depth of surface methane tank (m) !$OMP THREADPRIVATE(tankCH4) real :: i2e(ngrid,nlayer) ! int 2 ext factor ( X.kg-1 -> X.m-3 for diags ) real,save,dimension(:,:,:), allocatable :: tpq ! Tracers for decoupled microphysical tests ( temporary in 01/18 ) !$OMP THREADPRIVATE(tpq) real,dimension(ngrid,nlayer,nq) :: dtpq ! (temporary in 01/18) !----------------------------------------------------------------------------- ! Interface to calmufi ! --> needed in order to pass assumed-shape arrays. Otherwise we must put calmufi in a module ! (to have an explicit interface generated by the compiler). ! Or one can put calmufi in MMP_GCM module (in muphytitan). INTERFACE SUBROUTINE calmufi(dt, plev, zlev, play, zlay, g3d, temp, pq, zdqfi, zdq) REAL(kind=8), INTENT(IN) :: dt !! Physics timestep (s). REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: plev !! Pressure levels (Pa). REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: zlev !! Altitude levels (m). REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: play !! Pressure layers (Pa). REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: zlay !! Altitude at the center of each layer (m). REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: g3d !! Latitude-Altitude depending gravitational acceleration (m.s-2). REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: temp !! Temperature at the center of each layer (K). REAL(kind=8), DIMENSION(:,:,:), INTENT(IN) :: pq !! Tracers (\(kg.kg^{-1}}\)). REAL(kind=8), DIMENSION(:,:,:), INTENT(IN) :: zdqfi !! Tendency from former processes for tracers (\(kg.kg^{-1}}\)). REAL(kind=8), DIMENSION(:,:,:), INTENT(OUT) :: zdq !! Microphysical tendency for tracers (\(kg.kg^{-1}}\)). END SUBROUTINE calmufi END INTERFACE !================================================================================================== ! ----------------- ! I. INITIALISATION ! ----------------- ! -------------------------------- ! I.1 First Call Initialisation. ! -------------------------------- if (firstcall) then allocate(tpq(ngrid,nlayer,nq)) tpq(:,:,:) = pq(:,:,:) ! Initialisation of nmicro as well as tracers names, indexes ... if (ngrid.ne.1) then ! Already done in rcm1d call initracer2(nq,nametrac) ! WARNING JB (27/03/2018): should be wrapped in an OMP SINGLE statement (see module notes) endif ! Allocate saved arrays. ALLOCATE(tsurf(ngrid)) ALLOCATE(tsoil(ngrid,nsoilmx)) ALLOCATE(albedo(ngrid,L_NSPECTV)) ALLOCATE(albedo_equivalent(ngrid)) ALLOCATE(albedo_bareground(ngrid)) ALLOCATE(emis(ngrid)) ALLOCATE(dtrad(ngrid,nlayer)) ALLOCATE(fluxrad_sky(ngrid)) ALLOCATE(fluxrad(ngrid)) ALLOCATE(capcal(ngrid)) ALLOCATE(fluxgrd(ngrid)) ALLOCATE(qsurf(ngrid,nq)) ALLOCATE(q2(ngrid,nlayer+1)) ALLOCATE(tankCH4(ngrid)) ALLOCATE(ztprevious(ngrid,nlayer)) ALLOCATE(zuprevious(ngrid,nlayer)) ALLOCATE(qsurf_hist(ngrid,nq)) ALLOCATE(fluxsurf_lw(ngrid)) ALLOCATE(fluxsurf_sw(ngrid)) ALLOCATE(fluxsurfabs_sw(ngrid)) ALLOCATE(fluxtop_lw(ngrid)) ALLOCATE(fluxabs_sw(ngrid)) ALLOCATE(fluxtop_dn(ngrid)) ALLOCATE(fluxdyn(ngrid)) ALLOCATE(OLR_nu(ngrid,L_NSPECTI)) ALLOCATE(OSR_nu(ngrid,L_NSPECTV)) ALLOCATE(sensibFlux(ngrid)) ALLOCATE(zdtlw(ngrid,nlayer)) ALLOCATE(zdtsw(ngrid,nlayer)) ALLOCATE(int_dtaui(ngrid,nlayer,L_NSPECTI)) ALLOCATE(int_dtauv(ngrid,nlayer,L_NSPECTV)) ! This is defined in comsaison_h ALLOCATE(mu0(ngrid)) ALLOCATE(fract(ngrid)) ! This is defined in radcommon_h ALLOCATE(gzlat(ngrid,nlayer)) ALLOCATE(gzlat_ig(nlayer)) ALLOCATE(Cmk(nlayer)) ! Variables set to 0 ! ~~~~~~~~~~~~~~~~~~ dtrad(:,:) = 0.0 fluxrad(:) = 0.0 zdtsw(:,:) = 0.0 zdtlw(:,:) = 0.0 ! Initialize setup for correlated-k radiative transfer ! JVO 17 : Was in callcorrk firstcall, but we need spectral intervals for microphysics ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (corrk) then call system('rm -f surf_vals_long.out') write( tmp1, '(i3)' ) L_NSPECTI write( tmp2, '(i3)' ) L_NSPECTV banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) call setspi ! Basic infrared properties. call setspv ! Basic visible properties. call sugas_corrk ! Set up gaseous absorption properties. OLR_nu(:,:) = 0.D0 OSR_nu(:,:) = 0.D0 int_dtaui(:,:,:) = 0.D0 int_dtauv(:,:,:) = 0.D0 endif ! Initialize names and timestep for chemistry ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ( callchim ) then if ( moyzon_ch .and. ngrid.eq.1 ) then print *, "moyzon_ch=",moyzon_ch," and ngrid=1" print *, "Please desactivate zonal mean for 1D !" stop endif allocate(dycchi(ngrid,nlayer,nkim)) ! only for chemical tracers ! Chemistry timestep ctimestep = ptimestep*REAL(ichim) endif ! Initialize microphysics. ! ~~~~~~~~~~~~~~~~~~~~~~~~ IF ( callmufi ) THEN ! WARNING JB (27/03/2018): inimufi AND mmp_initialize_optics should be wrapped in an OMP SINGLE statement. call inimufi(ptimestep) ! Optical coupling of YAMMS is plugged but inactivated for now ! as long as the microphysics only isn't fully debugged -- JVO 01/18 ! NOTE JB (03/18): mmp_optic_file is initialized in inimufi => mmp_initialize_optics must be called AFTER inimufi IF (.NOT.uncoupl_optic_haze) call mmp_initialize_optics(mmp_optic_file) ! initialize microphysics diagnostics arrays. call ini_diag_arrays(ngrid,nlayer,nice) ENDIF #ifdef CPP_XIOS ! Initialize XIOS context write(*,*) "physiq: call wxios_context_init" CALL wxios_context_init #endif ! Read 'startfi.nc' file. ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ call phyetat0(startphy_file,ngrid,nlayer,"startfi.nc",0,0,nsoilmx,nq, & day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf,tankCH4) if (.not.startphy_file) then ! additionnal "academic" initialization of physics if (is_master) write(*,*) "Physiq: initializing tsurf(:) to pt(:,1) !!" tsurf(:)=pt(:,1) if (is_master) write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" do isoil=1,nsoilmx tsoil(:,isoil)=tsurf(:) enddo if (is_master) write(*,*) "Physiq: initializing day_ini to pdat !" day_ini=pday endif if (pday.ne.day_ini) then write(*,*) "ERROR in physiq.F90:" write(*,*) "bad synchronization between physics and dynamics" write(*,*) "dynamics day: ",pday write(*,*) "physics day: ",day_ini stop endif write (*,*) 'In physiq day_ini =', day_ini ! Initialize albedo calculation. ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ albedo(:,:)=0.0 albedo_bareground(:)=0.0 call surfini(ngrid,nq,qsurf,albedo,albedo_bareground) ! Initialize orbital calculation. ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) if(tlocked)then print*,'Planet is tidally locked at resonance n=',nres print*,'Make sure you have the right rotation rate!!!' endif ! Initialize soil. ! ~~~~~~~~~~~~~~~~ if (callsoil) then call soil(ngrid,nsoilmx,firstcall,lastcall,inertiedat, & ptimestep,tsurf,tsoil,capcal,fluxgrd) else ! else of 'callsoil'. print*,'WARNING! Thermal conduction in the soil turned off' capcal(:)=1.e6 fluxgrd(:)=intheat print*,'Flux from ground = ',intheat,' W m^-2' endif ! end of 'callsoil'. icount=1 ! Initialize surface history variable. ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ qsurf_hist(:,:)=qsurf(:,:) ! Initialize variable for dynamical heating and zonal wind tendency diagnostic ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ztprevious(:,:)=pt(:,:) zuprevious(:,:)=pu(:,:) if(meanOLR)then call system('rm -f rad_bal.out') ! to record global radiative balance. call system('rm -f tem_bal.out') ! to record global mean/max/min temperatures. call system('rm -f h2o_bal.out') ! to record global hydrological balance. endif if (ngrid.ne.1) then ! Note : no need to create a restart file in 1d. call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid,nlayer,nq, & ptimestep,pday+nday,time_phys,cell_area, & albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) endif ! XIOS outputs #ifdef CPP_XIOS write(*,*) "physiq: call initialize_xios_output" call initialize_xios_output(pday,ptime,ptimestep,daysec, & presnivs,pseudoalt) #endif write(*,*) "physiq: end of firstcall" endif ! end of 'firstcall' ! ------------------------------------------------------ ! I.2 Initializations done at every physical timestep: ! ------------------------------------------------------ #ifdef CPP_XIOS ! update XIOS time/calendar call update_xios_timestep #endif ! Initialize various variables ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pdt(:,:) = 0.0 zdtsurf(:) = 0.0 pdq(:,:,:) = 0.0 dqsurf(:,:) = 0.0 pdu(:,:) = 0.0 pdv(:,:) = 0.0 pdpsrf(:) = 0.0 zflubid(:) = 0.0 taux(:) = 0.0 tauy(:) = 0.0 zday=pday+ptime ! Compute time, in sols (and fraction thereof). ! Compute Stellar Longitude (Ls), and orbital parameters. ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (season) then call stellarlong(zday,zls) else call stellarlong(float(day_ini),zls) end if call orbite(zls,dist_star,declin,right_ascen) if (tlocked) then zlss=Mod(-(2.*pi*(zday/year_day)*nres - right_ascen),2.*pi) elseif (diurnal) then zlss=-2.*pi*(zday-.5) else if(diurnal .eqv. .false.) then zlss=9999. endif ! Compute variations of g with latitude (oblate case). ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (oblate .eqv. .false.) then gzlat(:,:) = g else if (flatten .eq. 0.0 .or. J2 .eq. 0.0 .or. Rmean .eq. 0.0 .or. MassPlanet .eq. 0.0) then print*,'I need values for flatten, J2, Rmean and MassPlanet to compute gzlat (else set oblate=.false.)' call abort else gmplanet = MassPlanet*grav*1e24 do ig=1,ngrid gzlat(ig,:)= gmplanet/(Rmean**2) * (1.D0 + 0.75 *J2 - 2.0*flatten/3. + (2.*flatten - 15./4.* J2) * cos(2. * (pi/2. - latitude(ig)))) end do endif ! Compute altitudes with the geopotential coming from the dynamics. ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (eff_gz .eqv. .false.) then do l=1,nlayer zzlay(:,l) = pphi(:,l) / gzlat(:,l) ! Reference = local surface enddo else ! In this case we consider variations of g with altitude do l=1,nlayer zzlay(:,l) = g*rad*rad / ( g*rad - ( pphi(:,l) + phisfi(:) )) - rad gzlat(:,l) = g*rad*rad / ( rad + zzlay(:,l) )**2 end do endif ! if eff_gz zzlev(:,1)=0. zzlev(:,nlayer+1)=1.e7 ! Dummy top of last layer above 10000 km... ! JVO 19 : This altitude is indeed dummy for the GCM and fits ptop=0 ! but for upper chemistry that's a pb -> we anyway redefine it just after .. do l=2,nlayer do ig=1,ngrid z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) enddo enddo ! Effective altitudes ( eg needed for chemistry ) with correct g, and with reference to the geoid ! JVO 19 : We shall always have correct altitudes in chemistry no matter what's in physics ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (moyzon_ch) then ! Zonal averages zzlaybar(1,:)=g*rad*rad/(g*rad-(zphibar(1,:)+zphisbar(1)))-rad ! reference = geoid zzlevbar(1,1)=zphisbar(1)/g DO l=2,nlayer z1=(zplaybar(1,l-1)+zplevbar(1,l))/(zplaybar(1,l-1)-zplevbar(1,l)) z2=(zplevbar(1,l) +zplaybar(1,l))/(zplevbar(1,l) -zplaybar(1,l)) zzlevbar(1,l)=(z1*zzlaybar(1,l-1)+z2*zzlaybar(1,l))/(z1+z2) ENDDO zzlevbar(1,nlayer+1)=zzlaybar(1,nlayer)+(zzlaybar(1,nlayer)-zzlevbar(1,nlayer)) DO ig=2,ngrid if (latitude(ig).ne.latitude(ig-1)) then DO l=1,nlayer zzlaybar(ig,l)=g*rad*rad/(g*rad-(zphibar(ig,l)+zphisbar(ig)))-rad ENDDO zzlevbar(ig,1)=zphisbar(ig)/g DO l=2,nlayer z1=(zplaybar(ig,l-1)+zplevbar(ig,l))/ (zplaybar(ig,l-1)-zplevbar(ig,l)) z2=(zplevbar(ig,l) +zplaybar(ig,l))/(zplevbar(ig,l) -zplaybar(ig,l)) zzlevbar(ig,l)=(z1*zzlaybar(ig,l-1)+z2*zzlaybar(ig,l))/(z1+z2) ENDDO zzlevbar(ig,nlayer+1)=zzlaybar(ig,nlayer)+(zzlaybar(ig,nlayer)-zzlevbar(ig,nlayer)) else zzlaybar(ig,:)=zzlaybar(ig-1,:) zzlevbar(ig,:)=zzlevbar(ig-1,:) endif ENDDO else ! if not moyzon DO ig=1,ngrid DO l=1,nlayer zzlay_eff(ig,l)=g*rad*rad/(g*rad-(pphi(ig,l)+phisfi(ig)))-rad ! reference = geoid ENDDO zzlev_eff(ig,1)=phisfi(ig)/g DO l=2,nlayer z1=(pplay(ig,l-1)+pplev(ig,l))/ (pplay(ig,l-1)-pplev(ig,l)) z2=(pplev(ig,l) +pplay(ig,l))/(pplev(ig,l) -pplay(ig,l)) zzlev_eff(ig,l)=(z1*zzlay_eff(ig,l-1)+z2*zzlay_eff(ig,l))/(z1+z2) ENDDO zzlev_eff(ig,nlayer+1)=zzlay_eff(ig,nlayer)+(zzlay_eff(ig,nlayer)-zzlev_eff(ig,nlayer)) ENDDO endif ! moyzon ! ------------------------------------------------------------------------------------- ! Compute potential temperature ! Note : Potential temperature calculation may not be the same in physiq and dynamic... ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ do l=1,nlayer do ig=1,ngrid zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp zh(ig,l)=pt(ig,l)/zpopsk(ig,l) mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/gzlat(ig,l) massarea(ig,l)=mass(ig,l)*cell_area(ig) enddo enddo ! Compute vertical velocity (m/s) from vertical mass flux ! w = F / (rho*area) and rho = P/(r*T) ! But first linearly interpolate mass flux to mid-layers do l=1,nlayer-1 pw(:,l)=0.5*(flxw(:,l)+flxw(:,l+1)) enddo pw(:,nlayer)=0.5*flxw(:,nlayer) ! since flxw(nlayer+1)=0 do l=1,nlayer pw(:,l)=(pw(:,l)*r*pt(:,l)) / (pplay(:,l)*cell_area(:)) enddo !--------------------------------- ! II. Compute radiative tendencies !--------------------------------- if (callrad) then if( mod(icount-1,iradia).eq.0.or.lastcall) then ! Compute local stellar zenith angles ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (tlocked) then ! JL14 corrects tidally resonant (and inclined) cases. nres=omega_rot/omega_orb ztim1=SIN(declin) ztim2=COS(declin)*COS(zlss) ztim3=COS(declin)*SIN(zlss) call stelang(ngrid,sinlon,coslon,sinlat,coslat, & ztim1,ztim2,ztim3,mu0,fract, flatten) elseif (diurnal) then ztim1=SIN(declin) ztim2=COS(declin)*COS(2.*pi*(zday-.5)) ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) call stelang(ngrid,sinlon,coslon,sinlat,coslat, & ztim1,ztim2,ztim3,mu0,fract, flatten) else if(diurnal .eqv. .false.) then call mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad,flatten) ! WARNING: this function appears not to work in 1D endif ! Eclipse incoming sunlight (e.g. Saturn ring shadowing). if(rings_shadow) then call call_rings(ngrid, ptime, pday, diurnal) endif if (corrk) then ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! II.a Call correlated-k radiative transfer scheme ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ call call_profilgases(nlayer) ! standard callcorrk call callcorrk(ngrid,nlayer,pq,nq,qsurf,zday, & albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & tsurf,fract,dist_star, & zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw, & fluxsurfabs_sw,fluxtop_lw, & fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu, & int_dtaui,int_dtauv,lastcall) ! Radiative flux from the sky absorbed by the surface (W.m-2). GSR=0.0 fluxrad_sky(:)=emis(:)*fluxsurf_lw(:)+fluxsurfabs_sw(:) !if(noradsurf)then ! no lower surface; SW flux just disappears ! GSR = SUM(fluxsurf_sw(:)*cell_area(:))/totarea ! fluxrad_sky(:)=emis(:)*fluxsurf_lw(:) ! print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' !endif ! Net atmospheric radiative heating rate (K.s-1) dtrad(:,:)=zdtsw(:,:)+zdtlw(:,:) elseif(newtonian)then ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! II.b Call Newtonian cooling scheme ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ call newtrelax(ngrid,nlayer,mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) zdtsurf(:) = +(pt(:,1)-tsurf(:))/ptimestep ! e.g. surface becomes proxy for 1st atmospheric layer ? else ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! II.c Atmosphere has no radiative effect ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fluxtop_dn(:) = fract(:)*mu0(:)*Fat1AU/dist_star**2 if(ngrid.eq.1)then ! / by 4 globally in 1D case... fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 endif fluxsurf_sw(:) = fluxtop_dn(:) print*,'------------WARNING---WARNING------------' ! by MT2015. print*,'You are in corrk=false mode, ' print*,'and the surface albedo is taken equal to the first visible spectral value' fluxsurfabs_sw(:) = fluxtop_dn(:)*(1.-albedo(:,1)) fluxrad_sky(:) = fluxsurfabs_sw(:) fluxtop_lw(:) = emis(:)*sigma*tsurf(:)**4 dtrad(:,:)=0.0 ! no atmospheric radiative heating endif ! end of corrk endif ! of if(mod(icount-1,iradia).eq.0) ! Transformation of the radiative tendencies ! ------------------------------------------ zplanck(:)=tsurf(:)*tsurf(:) zplanck(:)=emis(:)*sigma*zplanck(:)*zplanck(:) fluxrad(:)=fluxrad_sky(:)-zplanck(:) pdt(:,:)=pdt(:,:)+dtrad(:,:) ! Test of energy conservation !---------------------------- if(enertest)then call planetwide_sumval(cpp*massarea(:,:)*zdtsw(:,:)/totarea_planet,dEtotSW) call planetwide_sumval(cpp*massarea(:,:)*zdtlw(:,:)/totarea_planet,dEtotLW) !call planetwide_sumval(fluxsurf_sw(:)*(1.-albedo_equivalent(:))*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk call planetwide_sumval(fluxsurfabs_sw(:)*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk call planetwide_sumval((fluxsurf_lw(:)*emis(:)-zplanck(:))*cell_area(:)/totarea_planet,dEtotsLW) dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) if (is_master) then print*,'---------------------------------------------------------------' print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' endif endif ! end of 'enertest' endif ! of if (callrad) ! -------------------------------------------- ! III. Vertical diffusion (turbulent mixing) : ! -------------------------------------------- if (calldifv) then zflubid(:)=fluxrad(:)+fluxgrd(:) ! JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff. if (UseTurbDiff) then call turbdiff(ngrid,nlayer,nq, & ptimestep,capcal,lwrite, & pplay,pplev,zzlay,zzlev,z0, & pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & pdt,pdq,zflubid, & zdudif,zdvdif,zdtdif,zdtsdif, & sensibFlux,q2,zdqdif,zdqsdif, & taux,tauy,lastcall) else zdh(:,:)=pdt(:,:)/zpopsk(:,:) call vdifc(ngrid,nlayer,nq,zpopsk, & ptimestep,capcal,lwrite, & pplay,pplev,zzlay,zzlev,z0, & pu,pv,zh,pq,tsurf,emis,qsurf, & zdh,pdq,zflubid, & zdudif,zdvdif,zdhdif,zdtsdif, & sensibFlux,q2,zdqdif,zdqsdif, & taux,tauy,lastcall) zdtdif(:,:)=zdhdif(:,:)*zpopsk(:,:) ! for diagnostic only zdqevap(:,:)=0. end if !end of 'UseTurbDiff' pdv(:,:)=pdv(:,:)+zdvdif(:,:) pdu(:,:)=pdu(:,:)+zdudif(:,:) pdt(:,:)=pdt(:,:)+zdtdif(:,:) zdtsurf(:)=zdtsurf(:)+zdtsdif(:) if (tracer) then pdq(:,:,:)=pdq(:,:,:)+ zdqdif(:,:,:) dqsurf(:,:)=dqsurf(:,:) + zdqsdif(:,:) end if ! of if (tracer) ! test energy conservation !------------------------- if(enertest)then dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) do ig = 1, ngrid dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground enddo call planetwide_sumval(dEdiff(:)*cell_area(:)/totarea_planet,dEtot) dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) call planetwide_sumval(dEdiffs(:)*cell_area(:)/totarea_planet,dEtots) call planetwide_sumval(sensibFlux(:)*cell_area(:)/totarea_planet,AtmToSurf_TurbFlux) if (is_master) then if (UseTurbDiff) then print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' else print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' end if endif ! end of 'is_master' ! JL12 : note that the black body radiative flux emitted by the surface has been updated by the implicit scheme but not given back elsewhere. endif ! end of 'enertest' else ! calldifv if(.not.newtonian)then zdtsurf(:) = zdtsurf(:) + (fluxrad(:) + fluxgrd(:))/capcal(:) endif endif ! end of 'calldifv' !---------------------------------- ! IV. Dry convective adjustment : !---------------------------------- if(calladj) then zdh(:,:) = pdt(:,:)/zpopsk(:,:) zduadj(:,:)=0.0 zdvadj(:,:)=0.0 zdhadj(:,:)=0.0 call convadj(ngrid,nlayer,nq,ptimestep, & pplay,pplev,zpopsk, & pu,pv,zh,pq, & pdu,pdv,zdh,pdq, & zduadj,zdvadj,zdhadj, & zdqadj) pdu(:,:) = pdu(:,:) + zduadj(:,:) pdv(:,:) = pdv(:,:) + zdvadj(:,:) pdt(:,:) = pdt(:,:) + zdhadj(:,:)*zpopsk(:,:) zdtadj(:,:) = zdhadj(:,:)*zpopsk(:,:) ! for diagnostic only if(tracer) then pdq(:,:,:) = pdq(:,:,:) + zdqadj(:,:,:) end if ! Test energy conservation if(enertest)then call planetwide_sumval(cpp*massarea(:,:)*zdtadj(:,:)/totarea_planet,dEtot) if (is_master) print*,'In convadj atmospheric energy change =',dEtot,' W m-2' endif endif ! end of 'calladj' !--------------------------------------------- ! V. Specific parameterizations for tracers !--------------------------------------------- if (tracer) then ! ------------------- ! V.1 Microphysics ! ------------------- ! JVO 05/18 : We must call microphysics before chemistry, for condensation ! if (callmufi) then zzlev(:,nlayer+1)=zzlay(:,nlayer)+(zzlay(:,nlayer)-zzlev(:,nlayer)) ! JVO 19 : We assume zzlev isn't reused later on #ifdef USE_QTEST dtpq(:,:,:) = 0.0 ! we want tpq to go only through mufi call calmufi(ptimestep,pplev,zzlev,pplay,zzlay,gzlat,pt,tpq,dtpq,zdqmufi) tpq(:,:,:) = tpq(:,:,:) + zdqmufi(:,:,:)*ptimestep ! only manipulation of tpq->*ptimestep here #else call calmufi(ptimestep,pplev,zzlev,pplay,zzlay,gzlat,pt,pq,pdq,zdqmufi) pdq(:,:,:) = pdq(:,:,:) + zdqmufi(:,:,:) #endif ! Microphysics condensation for 2D fields to sent non-saturated fields to photochem if ( callclouds .and. moyzon_ch .and. mod(icount-1,ichim).eq.0 ) then zdqfibar(:,:,:) = 0.D0 ! We work in zonal average -> forget processes other than condensation call calmufi(ptimestep,zplevbar,zzlevbar,zplaybar,zzlaybar, & gzlat,ztfibar,zqfibar,zdqfibar,zdqmufibar) endif endif ! ----------------- ! V.2. Chemistry ! ----------------- ! NB : Must be call last ( brings fields back to an equilibrium ) ! Known bug ? ( JVO 18 ) : If you try to use chimi_indx instead of iq+nmicro ! it leads to weird results / crash on dev mod ( ok in debug ) ... Why ? Idk ... if (callchim) then ! o. Convert updated tracers to molar fraction ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ do iq = 1,nkim ychim(:,:,iq) = ( pq(:,:,iq+nmicro) + pdq(:,:,iq+nmicro) ) / rat_mmol(iq+nmicro) enddo ! JVO 05/18 : We update zonally averaged fields with condensation ! as it is compulsory to have correct photochem production. But for other ! processes ( convadj ... ) we miss them in any case as we work in zonally/diurnal ! mean -> no fine diurnal/short time evolution, only seasonal evolution only. if ( moyzon_ch .and. mod(icount-1,ichim).eq. 0 ) then do iq = 1,nkim ychimbar(:,:,iq) = zqfibar(:,:,iq+nmicro) / rat_mmol(iq+nmicro) if ( callclouds ) then ychimbar(:,:,iq) = ychimbar(:,:,iq) + ( zdqmufibar(:,:,iq+nmicro) / rat_mmol(iq+nmicro) ) endif enddo endif ! i. Condensation of the 3D tracers after the transport ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ call calc_ysat(ngrid,nlayer,pplay/100.0,pt,ysat) ! Compute saturation profiles for every grid point dyccond(:,:,:) = 0.D0 ! Default value -> no condensation do iq=1,nkim where ( ychim(:,:,iq).gt.ysat(:,:,iq) ) & dyccond(:,:,iq+nmicro) = ( -ychim(:,:,iq)+ysat(:,:,iq) ) / ptimestep enddo if ( callclouds ) dyccond(:,:,ices_indx) = 0.D0 ! Condensation have been calculated in the cloud microphysics do iq=1,nkim ychim(:,:,iq) = ychim(:,:,iq) + dyccond(:,:,iq+nmicro) ! update molar ychim for following calchim pdq(:,:,iq+nmicro) = pdq(:,:,iq+nmicro) + dyccond(:,:,iq+nmicro)*rat_mmol(iq+nmicro) ! convert tendencies to mass mixing ratio enddo ! ii. 2D zonally averaged fields need to condense and evap before photochem ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ( moyzon_ch .and. mod(icount-1,ichim).eq. 0 ) then call calc_ysat(ngrid,nlayer,zplaybar/100.0,ztfibar,ysat) ! Compute saturation profiles for every grid point for the zon-ave fields dyccondbar(:,:,:) = 0.D0 ! Default value -> no condensation do iq = 1,nkim where ( ychimbar(:,:,iq).gt.ysat(:,:,iq) ) & dyccondbar(:,:,iq+nmicro) = ( -ychimbar(:,:,iq)+ysat(:,:,iq) ) / ptimestep enddo if ( callclouds ) dyccondbar(:,:,ices_indx) = 0.D0 ! Condensation have been calculated in the cloud microphysics do iq=1,nkim ychimbar(:,:,iq) = ychimbar(:,:,iq) + dyccondbar(:,:,iq+nmicro) enddo ! Pseudo-evap ( forcing constant surface humidity ) do ig=1,ngrid if ( ychimbar(ig,1,7) .lt. botCH4 ) ychimbar(ig,1,7) = botCH4 enddo endif ! if ( moyzon_ch .and. mod(icount-1,ichim).eq. 0 ) ! iii. Photochemistry ( must be call after condensation (and evap of 2D) ) ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if( mod(icount-1,ichim).eq.0. ) then print *, "We enter in the chemistry ..." if (moyzon_ch) then ! 2D zonally averaged chemistry ! Here we send zonal average fields ( corrected with cond ) from dynamics to chem. module call calchim(ngrid,ychimbar,declin,ctimestep,ztfibar,zphibar,zphisbar, & zplaybar,zplevbar,zzlaybar,zzlevbar,dycchi) else ! 3D chemistry (or 1D run) call calchim(ngrid,ychim,declin,ctimestep,pt,pphi,phisfi, & pplay,pplev,zzlay_eff,zzlev_eff,dycchi) endif ! if moyzon endif ! iv. Surface pseudo-evaporation ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ do ig=1,ngrid if ( (ychim(ig,1,7)+dycchi(ig,1,7)*ptimestep) .lt. botCH4 ) then ! +dycchi because ychim not yet updated dycevapCH4(ig) = ( -ychim(ig,1,7)+botCH4 ) / ptimestep - dycchi(ig,1,7) else dycevapCH4(ig) = 0.D0 endif enddo pdq(:,1,7+nmicro) = pdq(:,1,7+nmicro) + dycevapCH4(:)*rat_mmol(7+nmicro) ! v. Updates and positivity check ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ zdqchi(:,:,:) = 0.D0 ! -> for the microphysical tracers we need to update to 0 each time ;-) do iq=1,nkim zdqchi(:,:,iq+nmicro) = dycchi(:,:,iq)*rat_mmol(iq+nmicro) ! convert tendencies to mass mixing ratio where( (pq(:,:,iq+nmicro) + ( pdq(:,:,iq+nmicro)+zdqchi(:,:,iq+nmicro) )*ptimestep ) .LT. 0.) & ! When using zonal means we set the same tendency zdqchi(:,:,iq+nmicro) = 1.D-30 - pdq(:,:,iq+nmicro) - pq(:,:,iq+nmicro)/ptimestep ! everywhere in longitude -> could lead to negs ! enddo pdq(:,:,:) = pdq(:,:,:) + zdqchi(:,:,:) endif ! end of 'callchim' ! --------------- ! V.3 Updates ! --------------- ! Updating Atmospheric Mass and Tracers budgets. if(mass_redistrib) then zdmassmr(:,:) = mass(:,:) * zdqevap(:,:) do ig = 1, ngrid zdmassmr_col(ig)=SUM(zdmassmr(ig,:)) enddo call writediagfi(ngrid,"mass_evap","mass gain"," ",3,zdmassmr) call writediagfi(ngrid,"mass_evap_col","mass gain col"," ",2,zdmassmr_col) call writediagfi(ngrid,"mass","mass","kg/m2",3,mass) call mass_redistribution(ngrid,nlayer,nq,ptimestep, & capcal,pplay,pplev,pt,tsurf,pq,qsurf, & pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) pdq(:,:,:) = pdq(:,:,:) + zdqmr(:,:,:) dqsurf(:,:) = dqsurf(:,:) + zdqsurfmr(:,:) pdt(:,:) = pdt(:,:) + zdtmr(:,:) pdu(:,:) = pdu(:,:) + zdumr(:,:) pdv(:,:) = pdv(:,:) + zdvmr(:,:) pdpsrf(:) = pdpsrf(:) + zdpsrfmr(:) zdtsurf(:) = zdtsurf(:) + zdtsurfmr(:) endif ! ----------------------------- ! V.4. Surface Tracer Update ! ----------------------------- qsurf(:,:) = qsurf(:,:) + ptimestep*dqsurf(:,:) ! Add qsurf to qsurf_hist, which is what we save in diagfi.nc. At the same time, we set the water ! content of ocean gridpoints back to zero, in order to avoid rounding errors in vdifc, rain. qsurf_hist(:,:) = qsurf(:,:) endif! end of if 'tracer' !------------------------------------------------ ! VI. Surface and sub-surface soil temperature !------------------------------------------------ ! Increment surface temperature tsurf(:)=tsurf(:)+ptimestep*zdtsurf(:) ! Compute soil temperatures and subsurface heat flux. if (callsoil) then call soil(ngrid,nsoilmx,.false.,lastcall,inertiedat, & ptimestep,tsurf,tsoil,capcal,fluxgrd) endif ! Test energy conservation if(enertest)then call planetwide_sumval(cell_area(:)*capcal(:)*zdtsurf(:)/totarea_planet,dEtots) if (is_master) print*,'Surface energy change =',dEtots,' W m-2' endif !--------------------------------------------------- ! VII. Perform diagnostics and write output files !--------------------------------------------------- ! Note : For output only: the actual model integration is performed in the dynamics. ! Temperature, zonal and meridional winds. zt(:,:) = pt(:,:) + pdt(:,:)*ptimestep zu(:,:) = pu(:,:) + pdu(:,:)*ptimestep zv(:,:) = pv(:,:) + pdv(:,:)*ptimestep ! Diagnostic. zdtdyn(:,:) = (pt(:,:)-ztprevious(:,:)) / ptimestep ztprevious(:,:) = zt(:,:) zdudyn(:,:) = (pu(:,:)-zuprevious(:,:)) / ptimestep zuprevious(:,:) = zu(:,:) if(firstcall)then zdtdyn(:,:)=0.0 zdudyn(:,:)=0.0 endif ! Horizotal wind zhorizwind(:,:) = sqrt( zu(:,:)*zu(:,:) + zv(:,:)*zv(:,:) ) ! Dynamical heating diagnostic. do ig=1,ngrid fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp enddo ! Tracers. zq(:,:,:) = pq(:,:,:) + pdq(:,:,:)*ptimestep ! Surface pressure. ps(:) = pplev(:,1) + pdpsrf(:)*ptimestep ! Surface and soil temperature information call planetwide_sumval(cell_area(:)*tsurf(:)/totarea_planet,Ts1) call planetwide_minval(tsurf(:),Ts2) call planetwide_maxval(tsurf(:),Ts3) if(callsoil)then TsS = SUM(cell_area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer if (is_master) then print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' print*,Ts1,Ts2,Ts3,TsS end if else if (is_master) then print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' print*,Ts1,Ts2,Ts3 endif end if ! Check the energy balance of the simulation during the run if(corrk)then call planetwide_sumval(cell_area(:)*fluxtop_dn(:)/totarea_planet,ISR) call planetwide_sumval(cell_area(:)*fluxabs_sw(:)/totarea_planet,ASR) call planetwide_sumval(cell_area(:)*fluxtop_lw(:)/totarea_planet,OLR) call planetwide_sumval(cell_area(:)*fluxgrd(:)/totarea_planet,GND) call planetwide_sumval(cell_area(:)*fluxdyn(:)/totarea_planet,DYN) do ig=1,ngrid if(fluxtop_dn(ig).lt.0.0)then print*,'fluxtop_dn has gone crazy' print*,'fluxtop_dn=',fluxtop_dn(ig) print*,'temp= ',pt(ig,:) print*,'pplay= ',pplay(ig,:) call abort endif end do if(ngrid.eq.1)then DYN=0.0 endif if (is_master) then print*,' ISR ASR OLR GND DYN [W m^-2]' print*, ISR,ASR,OLR,GND,DYN endif if(enertest .and. is_master)then print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' endif if(meanOLR .and. is_master)then if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then ! to record global radiative balance open(92,file="rad_bal.out",form='formatted',position='append') write(92,*) zday,ISR,ASR,OLR close(92) open(93,file="tem_bal.out",form='formatted',position='append') if(callsoil)then write(93,*) zday,Ts1,Ts2,Ts3,TsS else write(93,*) zday,Ts1,Ts2,Ts3 endif close(93) endif endif endif ! end of 'corrk' ! Diagnostic to test radiative-convective timescales in code. if(testradtimes)then open(38,file="tau_phys.out",form='formatted',position='append') ig=1 do l=1,nlayer write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) enddo close(38) print*,'As testradtimes enabled,' print*,'exiting physics on first call' call abort endif if (is_master) print*,'--> Ls =',zls*180./pi !---------------------------------------------------------------------- ! Writing NetCDF file "RESTARTFI" at the end of the run !---------------------------------------------------------------------- ! Note: 'restartfi' is stored just before dynamics are stored ! in 'restart'. Between now and the writting of 'restart', ! there will have been the itau=itau+1 instruction and ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) ! thus we store for time=time+dtvr if(lastcall) then ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) if (ngrid.ne.1) then write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, & ptimestep,ztime_fin, & tsurf,tsoil,emis,q2,qsurf_hist,tankCH4) endif endif ! end of 'lastcall' !----------------------------------------------------------------------------------------------------- ! OUTPUT in netcdf file "DIAGFI.NC", containing any variable for diagnostic ! ! Note 1 : output with period "ecritphy", set in "run.def" ! ! Note 2 : writediagfi can also be called from any other subroutine for any variable, ! but its preferable to keep all the calls in one place ... !----------------------------------------------------------------------------------------------------- call writediagfi(ngrid,"Ls","solar longitude","deg",0,zls*180./pi) call writediagfi(ngrid,"Lss","sub solar longitude","deg",0,zlss*180./pi) call writediagfi(ngrid,"RA","right ascension","deg",0,right_ascen*180./pi) call writediagfi(ngrid,"Declin","solar declination","deg",0,declin*180./pi) call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) call writediagfi(ngrid,"temp","temperature","K",3,zt) call writediagfi(ngrid,"teta","potential temperature","K",3,zh) call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) call writediagfi(ngrid,"p","Pressure","Pa",3,pplay) ! Subsurface temperatures ! call writediagsoil(ngrid,"tsurf","Surface temperature","K",2,tsurf) ! call writediagsoil(ngrid,"temp","temperature","K",3,tsoil) ! Total energy balance diagnostics if(callrad.and.(.not.newtonian))then !call writediagfi(ngrid,"ALB","Surface albedo"," ",2,albedo_equivalent) call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) ! call writediagfi(ngrid,"ASRcs","absorbed stellar rad (cs).","W m-2",2,fluxabs_sw1) ! call writediagfi(ngrid,"OLRcs","outgoing longwave rad (cs).","W m-2",2,fluxtop_lw1) ! call writediagfi(ngrid,"fluxsurfsw","sw surface flux.","W m-2",2,fluxsurf_sw) ! call writediagfi(ngrid,"fluxsurflw","lw back radiation.","W m-2",2,fluxsurf_lw) ! call writediagfi(ngrid,"fluxsurfswcs","sw surface flux (cs).","W m-2",2,fluxsurf_sw1) ! call writediagfi(ngrid,"fluxsurflwcs","lw back radiation (cs).","W m-2",2,fluxsurf_lw1) call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) endif ! end of 'callrad' if(enertest) then if (calldifv) then call writediagfi(ngrid,"q2","turbulent kinetic energy","J.kg^-1",3,q2) call writediagfi(ngrid,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) ! call writediagfi(ngrid,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) ! call writediagfi(ngrid,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) ! call writediagfi(ngrid,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) endif if (corrk) then call writediagfi(ngrid,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) call writediagfi(ngrid,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) endif endif ! end of 'enertest' ! Diagnostics of optical thickness ! Warning this is exp(-tau), I let you postproc with -log to have tau itself - JVO 19 if (diagdtau) then do nw=1,L_NSPECTV write(str2,'(i2.2)') nw call writediagfi(ngrid,'dtauv'//str2,'Layer optical thickness attenuation in VI band '//str2,'',1,int_dtauv(:,nlayer:1:-1,nw)) enddo do nw=1,L_NSPECTI write(str2,'(i2.2)') nw call writediagfi(ngrid,'dtaui'//str2,'Layer optical thickness attenuation in IR band '//str2,'',1,int_dtaui(:,nlayer:1:-1,nw)) enddo endif ! Temporary inclusions for winds diagnostics. call writediagfi(ngrid,"zdudif","Turbdiff tend. zon. wind","m s-2",3,zdudif) call writediagfi(ngrid,"zdudyn","Dyn. tend. zon. wind","m s-2",3,zdudyn) ! Temporary inclusions for heating diagnostics. call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) ! For Debugging. call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) ! Output tracers. if (tracer) then if (callmufi) then ! Microphysical tracers are expressed in unit/m3. ! convert X.kg-1 --> X.m-3 (whereas for optics was -> X.m-2) i2e(:,:) = ( pplev(:,1:nlayer)-pplev(:,2:nlayer+1) ) / gzlat(:,1:nlayer) /(zzlev(:,2:nlayer+1)-zzlev(:,1:nlayer)) #ifdef USE_QTEST ! Microphysical tracers passed through dyn+phys(except mufi) call writediagfi(ngrid,"mu_m0as_dp","Dynphys only spherical mode 0th order moment",'m-3',3,zq(:,:,micro_indx(1))*i2e) call writediagfi(ngrid,"mu_m3as_dp","Dynphys only spherical mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(2))*i2e) call writediagfi(ngrid,"mu_m0af_dp","Dynphys only fractal mode 0th order moment",'m-3',3,zq(:,:,micro_indx(3))*i2e) call writediagfi(ngrid,"mu_m3af_dp","Dynphys only fractal mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(4))*i2e) ! Microphysical tracers passed through mufi only call writediagfi(ngrid,"mu_m0as_mo","Mufi only spherical mode 0th order moment",'m-3',3,tpq(:,:,micro_indx(1))*i2e) call writediagfi(ngrid,"mu_m3as_mo","Mufi only spherical mode 3rd order moment",'m3/m3',3,tpq(:,:,micro_indx(2))*i2e) call writediagfi(ngrid,"mu_m0af_mo","Mufi only fractal mode 0th order moment",'m-3',3,tpq(:,:,micro_indx(3))*i2e) call writediagfi(ngrid,"mu_m3af_mo","Mufi only fractal mode 3rd order moment",'m3/m3',3,tpq(:,:,micro_indx(4))*i2e) #else call writediagfi(ngrid,"mu_m0as","Spherical mode 0th order moment",'m-3',3,zq(:,:,micro_indx(1))*i2e) call writediagfi(ngrid,"mu_m3as","Spherical mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(2))*i2e) call writediagfi(ngrid,"mu_m0af","Fractal mode 0th order moment",'m-3',3,zq(:,:,micro_indx(3))*i2e) call writediagfi(ngrid,"mu_m3af","Fractal mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(4))*i2e) #endif ! Microphysical diagnostics call writediagfi(ngrid,"mmd_aer_prec","Total aerosols precipitations",'m',2,mmd_aer_prec) call writediagfi(ngrid,"mmd_aer_s_flux","Spherical aerosols sedimentation flux",'kg.m-2.s-1',3,mmd_aer_s_flux) call writediagfi(ngrid,"mmd_aer_f_flux","Fractal aerosols sedimentation flux",'kg.m-2.s-1',3,mmd_aer_f_flux) call writediagfi(ngrid,"mmd_rc_sph","Spherical mode caracteristic radius",'m',3,mmd_rc_sph) call writediagfi(ngrid,"mmd_rc_fra","Fractal mode caracteristic radius",'m',3,mmd_rc_fra) endif ! end of 'callmufi' ! Chemical tracers if (callchim) then do iq=1,nkim call writediagfi(ngrid,cnames(iq),cnames(iq),'mol/mol',3,zq(:,:,iq+nmicro)/rat_mmol(iq+nmicro)) enddo call writediagfi(ngrid,"evapCH4","Surface CH4 pseudo-evaporation rate",'mol/mol/s',2,dycevapCH4) endif endif ! end of 'tracer' ! XIOS outputs #ifdef CPP_XIOS ! Send fields to XIOS: (NB these fields must also be defined as ! in context_lmdz_physics.xml to be correctly used) CALL send_xios_field("ls",zls*180./pi) CALL send_xios_field("lss",zlss*180./pi) CALL send_xios_field("RA",right_ascen*180./pi) CALL send_xios_field("Declin",declin*180./pi) ! Total energy balance diagnostics if (callrad.and.(.not.newtonian)) then CALL send_xios_field("ISR_TOA",fluxtop_dn) CALL send_xios_field("OLR_TOA",fluxtop_lw) endif CALL send_xios_field("area",cell_area) CALL send_xios_field("pphi",pphi) CALL send_xios_field("pphis",phisfi) CALL send_xios_field("ps",ps) CALL send_xios_field("tsurf",tsurf) if(enertest) then if (calldifv) then CALL send_xios_field("sensibFlux",sensibFlux) endif endif CALL send_xios_field("temp",zt) CALL send_xios_field("teta",zh) CALL send_xios_field("u",zu) CALL send_xios_field("v",zv) CALL send_xios_field("w",pw) CALL send_xios_field("p",pplay) ! Winds diagnostics. CALL send_xios_field("dudif",zdudif) CALL send_xios_field("dudyn",zdudyn) CALL send_xios_field("horizwind",zhorizwind) ! Heating diagnostics. CALL send_xios_field("dtsw",zdtsw) CALL send_xios_field("dtlw",zdtlw) CALL send_xios_field("dtrad",dtrad) CALL send_xios_field("dtdyn",zdtdyn) CALL send_xios_field("dtdif",zdtdif) ! Chemical tracers if (callchim) then ! Advected fields do iq=1,nkim CALL send_xios_field(trim(cnames(iq)),zq(:,:,iq+nmicro)/rat_mmol(iq+nmicro)) ! kg/kg -> mol/mol enddo ! Upper chemistry fields do iq=1,nkim CALL send_xios_field(trim(cnames(iq))//"_up",ykim_up(iq,:,:)) ! mol/mol enddo ! Append fields in ykim_tot for output on the total vertical grid (0->1300km) do iq=1,nkim ! GCM levels do l=1,nlayer ykim_tot(iq,:,l) = zq(:,l,iq+nmicro)/rat_mmol(iq+nmicro) enddo ! Upper levels do l=1,nlaykim_up ykim_tot(iq,:,nlayer+l) = ykim_up(iq,:,l) enddo CALL send_xios_field(trim(cnames(iq))//"_tot",ykim_tot(iq,:,:)) ! mol/mol enddo ! Condensation tendencies ( mol/mol/s ) CALL send_xios_field("dqcond_CH4",dyccond(:,:,7+nmicro)) CALL send_xios_field("dqcond_C2H2",dyccond(:,:,10+nmicro)) CALL send_xios_field("dqcond_C2H4",dyccond(:,:,12+nmicro)) CALL send_xios_field("dqcond_C2H6",dyccond(:,:,14+nmicro)) CALL send_xios_field("dqcond_C3H6",dyccond(:,:,17+nmicro)) CALL send_xios_field("dqcond_C4H4",dyccond(:,:,21+nmicro)) CALL send_xios_field("dqcond_CH3CCH",dyccond(:,:,24+nmicro)) CALL send_xios_field("dqcond_C3H8",dyccond(:,:,25+nmicro)) CALL send_xios_field("dqcond_C4H2",dyccond(:,:,26+nmicro)) CALL send_xios_field("dqcond_C4H6",dyccond(:,:,27+nmicro)) CALL send_xios_field("dqcond_C4H10",dyccond(:,:,28+nmicro)) CALL send_xios_field("dqcond_AC6H6",dyccond(:,:,29+nmicro)) CALL send_xios_field("dqcond_HCN",dyccond(:,:,36+nmicro)) CALL send_xios_field("dqcond_CH3CN",dyccond(:,:,40+nmicro)) CALL send_xios_field("dqcond_HC3N",dyccond(:,:,42+nmicro)) CALL send_xios_field("dqcond_NCCN",dyccond(:,:,43+nmicro)) CALL send_xios_field("dqcond_C4N2",dyccond(:,:,44+nmicro)) ! Pseudo-evaporation flux (mol/mol/s) CALL send_xios_field("evapCH4",dycevapCH4(:)) endif ! of 'if callchim' ! Microphysical tracers if (callmufi) then CALL send_xios_field("mu_m0as",zq(:,:,micro_indx(1))*i2e) CALL send_xios_field("mu_m3as",zq(:,:,micro_indx(2))*i2e) CALL send_xios_field("mu_m0af",zq(:,:,micro_indx(3))*i2e) CALL send_xios_field("mu_m3af",zq(:,:,micro_indx(4))*i2e) endif if (lastcall.and.is_omp_master) then write(*,*) "physiq: call xios_context_finalize" call xios_context_finalize endif #endif icount=icount+1 end subroutine physiq end module physiq_mod