MODULE improvedco2clouds_mod IMPLICIT NONE CONTAINS subroutine improvedco2clouds(ngrid,nlay,microtimestep, & pplay,pplev,pteff,sum_subpdt, & pqeff,sum_subpdq,subpdqcloudco2,subpdtcloudco2, & nq,tauscaling, & mem_Mccn_co2,mem_Mh2o_co2,mem_Nccn_co2, & No_dust,Mo_dust) USE comcstfi_h, only: pi, g, cpp USE updaterad, only: updaterice_micro, updaterice_microco2, & updaterccnCO2 use tracer_mod, only: igcm_dust_mass, igcm_dust_number, rho_dust, & igcm_h2o_ice, igcm_ccn_mass, & igcm_ccn_number, nuice_sed, & igcm_co2, igcm_co2_ice, igcm_ccnco2_mass, & igcm_ccnco2_number, nuiceco2_sed, & rho_ice_co2,nuiceco2_ref use conc_mod, only: mmean use datafile_mod, only: datadir implicit none c------------------------------------------------------------------ c This routine is used to form CO2 clouds when a parcel of the GCM is c saturated. It includes the ability to have supersaturation, a c computation of the nucleation rates, growthrates and the c scavenging of dust particles by clouds. c It is worth noting that the amount of dust is computed using the c dust optical depth computed in aeropacity.F. That's why c the variable called "tauscaling" is used to convert c pq(dust_mass) and pq(dust_number), which are relative c quantities, to absolute and realistic quantities stored in zq. c This has to be done to convert the inputs into absolute c values, but also to convert the outputs back into relative c values which are then used by the sedimentation and advection c schemes. c CO2 ice particles can nucleate on both dust and on water ice particles c When CO2 ice is deposited onto a water ice particles, the particle is c removed from the water tracers. c Memory of the origin of the co2 particles is kept and thus the c water cycle shouldn't be modified by this. c WARNING: no sedimentation of the water ice origin is performed c in the microphysical timestep in co2cloud.F. c Authors of the water ice clouds microphysics c J.-B. Madeleine, based on the work by Franck Montmessin c (October 2011) c T. Navarro, debug,correction, new scheme (October-April 2011) c A. Spiga, optimization (February 2012) c Adaptation for CO2 clouds by Joachim Audouard (09/16), based on the work c of Constantino Listowski c There is an energy limit to how much co2 can sublimate/condensate. It is c defined by the difference of the GCM temperature with the co2 condensation c temperature. c Warning: c If meteoritic particles are activated and turn into co2 ice particles, c then they will be reversed in the dust tracers if the cloud sublimates c------------------------------------------------------------------ include "callkeys.h" include "microphys.h" c------------------------------------------------------------------ c Arguments: INTEGER,INTENT(in) :: ngrid,nlay integer,intent(in) :: nq ! number of tracers REAL,INTENT(in) :: microtimestep ! physics time step (s) REAL,INTENT(in) :: pplay(ngrid,nlay) ! mid-layer pressure (Pa) REAL,INTENT(in) :: pplev(ngrid,nlay+1) ! inter-layer pressure (Pa) REAL,INTENT(in) :: pteff(ngrid,nlay) ! temperature at the middle of the ! layers (K) REAL,INTENT(in) :: sum_subpdt(ngrid,nlay) ! tendency on temperature from ! previous physical parametrizations REAL,INTENT(in) :: pqeff(ngrid,nlay,nq) ! tracers (kg/kg) REAL,INTENT(in) :: sum_subpdq(ngrid,nlay,nq) ! tendencies on tracers ! before condensation (kg/kg.s-1) REAL,INTENT(in) :: tauscaling(ngrid) ! Convertion factor for qdust and Ndust c Outputs: REAL,INTENT(out) :: subpdqcloudco2(ngrid,nlay,nq) ! tendency on tracers ! due to CO2 condensation (kg/kg.s-1) ! condensation si igcm_co2_ice REAL,INTENT(out) :: subpdtcloudco2(ngrid,nlay) ! tendency on temperature due ! to latent heat REAL,INTENT(out) :: No_dust(ngrid,nlay) REAL,INTENT(out) :: Mo_dust(ngrid,nlay) c------------------------------------------------------------------ c Local variables: LOGICAL,SAVE :: firstcall=.true. REAL*8 derf ! Error function INTEGER ig,l,i real masse (ngrid,nlay) ! Layer mass (kg.m-2) REAL rice(ngrid,nlay) ! Water Ice mass mean radius (m) ! used for nucleation of CO2 on ice-coated ccns REAL rccnh2o(ngrid,nlay) ! Water Ice mass mean radius (m) REAL zq(ngrid,nlay,nq) ! local value of tracers REAL zq0(ngrid,nlay,nq) ! local initial value of tracers REAL zt(ngrid,nlay) ! local value of temperature REAL zqsat(ngrid,nlay) ! saturation vapor pressure for CO2 real tcond(ngrid,nlay) real zqco2(ngrid,nlay) REAL lw !Latent heat of sublimation (J.kg-1) REAL,save :: l0,l1,l2,l3,l4 DOUBLE PRECISION dMice ! mass of condensed ice DOUBLE PRECISION sumcheck DOUBLE PRECISION facteurmax!for energy limit on mass growth DOUBLE PRECISION pco2,psat ! Co2 vapor partial pressure (Pa) DOUBLE PRECISION satu ! Co2 vapor saturation ratio over ice DOUBLE PRECISION Mo ,No c D.BARDET: sensibility test c REAL, SAVE :: No ! when sensibility test c DOUBLE PRECISION No_dust(ngrid,nlay) ! when sensibility test c DOUBLE PRECISION Mo_dust(ngrid,nlay) ! when sensibility test DOUBLE PRECISION Rn, Rm, dev2,dev3, n_derf, m_derf DOUBLE PRECISION mem_Mccn_co2(ngrid,nlay) ! Memory of CCN mass of H2O and dust used by CO2 DOUBLE PRECISION mem_Mh2o_co2(ngrid,nlay) ! Memory of H2O mass integred into CO2 crystal DOUBLE PRECISION mem_Nccn_co2(ngrid,nlay) ! Memory of CCN number of H2O and dust used by CO2 DOUBLE PRECISION interm1,interm2,interm3 ! Radius used by the microphysical scheme (m) DOUBLE PRECISION n_aer(nbinco2_cld) ! number concentration volume-1 of particle/each size bin DOUBLE PRECISION m_aer(nbinco2_cld) ! mass mixing ratio of particle/each size bin DOUBLE PRECISION m_aer_h2oice2(nbinco2_cld) ! mass mixing ratio of particle/each size bin DOUBLE PRECISION n_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation DOUBLE PRECISION m_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation DOUBLE PRECISION rad_h2oice(nbinco2_cld) c REAL*8 sigco2 ! Co2-ice/air surface tension (N.m) c EXTERNAL sigco2 DOUBLE PRECISION dN,dM, dNh2o, dMh2o, dNN,dMM,dNNh2o,dMMh2o DOUBLE PRECISION dMh2o_ice,dMh2o_ccn DOUBLE PRECISION rate(nbinco2_cld) ! nucleation rate DOUBLE PRECISION rateh2o(nbinco2_cld) ! nucleation rate REAL seq DOUBLE PRECISION rho_ice_co2T(ngrid,nlay) DOUBLE PRECISION riceco2(ngrid,nlay) ! CO2Ice mean radius (m) REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) REAL rhocloudco2(ngrid,nlay) ! Cloud density (kg.m-3) REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) c REAL res ! Resistance growth DOUBLE PRECISION Ic_rice ! Mass transfer rate CO2 ice crystal DOUBLE PRECISION ratioh2o_ccn DOUBLE PRECISION vo2co2 c Parameters of the size discretization used by the microphysical scheme DOUBLE PRECISION, PARAMETER :: rmin_cld = 1.e-9 ! Minimum radius (m) DOUBLE PRECISION, PARAMETER :: rmax_cld = 5.e-6 ! Maximum radius (m) DOUBLE PRECISION, PARAMETER :: rbmin_cld =1.e-10 ! Minimum bounary radius (m) DOUBLE PRECISION, PARAMETER :: rbmax_cld = 2.e-4 ! Maximum boundary radius (m) DOUBLE PRECISION vrat_cld ! Volume ratio DOUBLE PRECISION rb_cldco2(nbinco2_cld+1) ! boundary values of each rad_cldco2 bin (m) SAVE rb_cldco2 DOUBLE PRECISION dr_cld(nbinco2_cld) ! width of each rad_cldco2 bin (m) DOUBLE PRECISION vol_cld(nbinco2_cld) ! particle volume for each bin (m3) DOUBLE PRECISION Proba,Masse_atm,drsurdt,reff,Probah2o REAL sigma_iceco2 ! Variance of the co2 ice and CCN distributions SAVE sigma_iceco2 REAL sigma_ice ! Variance of the h2o ice and CCN distributions SAVE sigma_ice DOUBLE PRECISION Niceco2,Qccnco2,Nccnco2 ! Variables for the meteoritic flux: integer,parameter :: nbin_meteor=100 integer,parameter :: nlev_meteor=130 double precision meteor_ccn(ngrid,nlay,100) !100=nbinco2_cld !!! double precision,save :: meteor(130,100) double precision mtemp(100),pression_meteor(130) logical file_ok integer read_ok integer nelem,lebon1,lebon2 double precision :: ltemp1(130),ltemp2(130) integer ibin,j integer,parameter :: uMeteor=666 IF (firstcall) THEN !============================================================= ! 0. Definition of the size grid !============================================================= c rad_cldco2 is the primary radius grid used for microphysics computation. c The grid spacing is computed assuming a constant volume ratio c between two consecutive bins; i.e. vrat_cld. c vrat_cld is determined from the boundary values of the size grid: c rmin_cld and rmax_cld. c The rb_cldco2 array contains the boundary values of each rad_cldco2 bin. c dr_cld is the width of each rad_cldco2 bin. vrat_cld = log(rmax_cld/rmin_cld) / float(nbinco2_cld-1) *3. vrat_cld = exp(vrat_cld) rb_cldco2(1) = rbmin_cld rad_cldco2(1) = rmin_cld vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld do i=1,nbinco2_cld-1 rad_cldco2(i+1) = rad_cldco2(i) * vrat_cld**(1./3.) vol_cld(i+1) = vol_cld(i) * vrat_cld enddo do i=1,nbinco2_cld rb_cldco2(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * & rad_cldco2(i) dr_cld(i) = rb_cldco2(i+1) - rb_cldco2(i) enddo rb_cldco2(nbinco2_cld+1) = rbmax_cld dr_cld(nbinco2_cld) = rb_cldco2(nbinco2_cld+1) - & rb_cldco2(nbinco2_cld) print*, ' ' print*,'Microphysics co2: size bin information:' print*,'i,rb_cldco2(i), rad_cldco2(i),dr_cld(i)' print*,'-----------------------------------' do i=1,nbinco2_cld write(*,'(i3,3x,3(e13.6,4x))') i,rb_cldco2(i), rad_cldco2(i), & dr_cld(i) enddo write(*,'(i3,3x,e13.6)') nbinco2_cld+1,rb_cldco2(nbinco2_cld+1) print*,'-----------------------------------' do i=1,nbinco2_cld+1 rb_cldco2(i) = log(rb_cldco2(i)) !! we save that so that it is not computed !! at each timestep and gridpoint enddo c Contact parameter of co2 ice on dst ( m=cos(theta) ) c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c mteta = 0.952 c mtetaco2 = 0.952 c write(*,*) 'co2_param contact parameter:', mtetaco2 c Volume of a co2 molecule (m3) vo1co2 = m0co2 / dble(rho_ice_co2) ! m0co2 et non mco2 c Variance of the ice and CCN distributions sigma_iceco2 = sqrt(log(1.+nuiceco2_sed)) sigma_ice = sqrt(log(1.+nuice_sed)) write(*,*) 'Variance of ice & CCN CO2 distribs :', sigma_iceco2 write(*,*) 'nuice for co2 ice sedimentation:', nuiceco2_sed write(*,*) 'Volume of a co2 molecule:', vo1co2 if (co2useh2o) then write(*,*) write(*,*) "co2useh2o=.true. in callphys.def" write(*,*) "This means water ice particles can " write(*,*) "serve as CCN for CO2 microphysics" endif if (meteo_flux) then write(*,*) write(*,*) "meteo_flux=.true. in callphys.def" write(*,*) "meteoritic dust particles are available" write(*,*) "for co2 ice nucleation! " write(*,*) "Flux given by J. Plane (pressions,size bins)" ! Initialisation of the flux: it is constant and is it saved !We must interpolate the table to the GCM pressures INQUIRE(FILE=TRIM(datadir)// & '/Meteo_flux_Plane.dat', EXIST=file_ok) IF (.not. file_ok) THEN write(*,*) 'file Meteo_flux_Plane.dat should be in ' & ,trim(datadir) STOP endif !used Variables open(unit=uMeteor,file=trim(datadir)// & '/Meteo_flux_Plane.dat' & ,FORM='formatted') !13000 records (130 pressions x 100 bin sizes) read(uMeteor,*) !skip 1 line do i=1,130 read(uMeteor,*,iostat=read_ok) pression_meteor(i) if (read_ok==0) then write(*,*) pression_meteor(i) else write(*,*) 'Error reading Meteo_flux_Plane.dat' call abort_physic("CO2clouds", & "Error reading Meteo_flux_Plane.dat",1) endif enddo read(uMeteor,*) !skip 1 line do i=1,130 do j=1,100 ! les mêmes 100 bins size que la distri nuclea: on touche pas read(uMeteor,'(F12.6)',iostat=read_ok) meteor(i,j) if (read_ok/=0) then write(*,*) 'Error reading Meteo_flux_Plane.dat' call abort_physic("CO2clouds", & "Error reading Meteo_flux_Plane.dat",1) endif enddo !On doit maintenant réinterpoler le tableau(130,100) sur les pressions du GCM (nlay,100) enddo close(uMeteor) write(*,*) "File meteo_flux read, end of firstcall in co2 micro" endif !of if meteo_flux ! Parameter values for Latent heat computation l0=595594d0 l1=903.111d0 l2=-11.5959d0 l3=0.0528288d0 l4=-0.000103183d0 c D.BARDET: c No = 1.e10 firstcall=.false. END IF !============================================================= ! 1. Initialisation !============================================================= meteor_ccn(:,:,:)=0. rice(:,:) = 1.e-8 riceco2(:,:) = 1.e-11 c Initialize the tendencies subpdqcloudco2(1:ngrid,1:nlay,1:nq)=0. subpdtcloudco2(1:ngrid,1:nlay)=0. c pteff temperature layer; sum_subpdt dT.s-1 c pqeff traceur kg/kg; sum_subpdq tendance idem .s-1 zt(1:ngrid,1:nlay) = & pteff(1:ngrid,1:nlay) + & sum_subpdt(1:ngrid,1:nlay) * microtimestep zq(1:ngrid,1:nlay,1:nq) = & pqeff(1:ngrid,1:nlay,1:nq) + & sum_subpdq(1:ngrid,1:nlay,1:nq) * microtimestep WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 ) & zq(1:ngrid,1:nlay,1:nq) = 1.e-30 zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq) !============================================================= ! 2. Compute saturation !============================================================= dev2 = 1. / ( sqrt(2.) * sigma_iceco2 ) dev3 = 1. / ( sqrt(2.) * sigma_ice ) call co2sat(ngrid*nlay,zt,pplay,zqsat) !zqsat is psat(co2) zqco2=zq(:,:,igcm_co2)+zq(:,:,igcm_co2_ice) CALL tcondco2(ngrid,nlay,pplay,zqco2,tcond) !============================================================= ! 3. Bonus: additional meteoritic particles for nucleation !============================================================= if (meteo_flux) then !pression_meteo(130) !pplev(ngrid,nlay+1) !meteo(130,100) !resultat: meteo_ccn(ngrid,nlay,100) do l=1,nlay do ig=1,ngrid masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g ltemp1=abs(pression_meteor(:)-pplev(ig,l)) ltemp2=abs(pression_meteor(:)-pplev(ig,l+1)) lebon1=minloc(ltemp1,DIM=1) lebon2=minloc(ltemp2,DIM=1) nelem=lebon2-lebon1+1. mtemp(:)=0d0 !mtemp(100) : valeurs pour les 100bins do ibin=1,100 mtemp(ibin)=sum(meteor(lebon1:lebon2,ibin)) enddo meteor_ccn(ig,l,:)=mtemp(:)/nelem/masse(ig,l) !Par kg air csi par m carre, x epaisseur/masse pour par kg/air !write(*,*) "masse air ig l=",masse(ig,l) !check original unit with J. Plane enddo enddo endif c ------------------------------------------------------------------------ c --------- Actual microphysics : Main loop over the GCM's grid --------- c ------------------------------------------------------------------------ DO l=1,nlay DO ig=1,ngrid c Get the partial pressure of co2 vapor and its saturation ratio pco2 = zq(ig,l,igcm_co2) * (mmean(ig,l)/44.01) * pplay(ig,l) satu = pco2 / zqsat(ig,l) rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4*zt(ig,l) & -2.87e-6*zt(ig,l)*zt(ig,l)) !T-dependant CO2 ice density vo2co2 = m0co2 / dble(rho_ice_co2T(ig,l)) rho_ice_co2=rho_ice_co2T(ig,l) !============================================================= !4. Nucleation !============================================================= IF ( satu .ge. 1 ) THEN ! if there is condensation call updaterccnCO2(zq(ig,l,igcm_dust_mass), & zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig)) c D.BARDET: sensibility test c rdust=2.e-6 c Expand the dust moments into a binned distribution n_aer(:)=0. m_aer(:)=0. Mo =4.*pi*rho_dust*No*rdust(ig,l)**(3.) & *exp(9.*nuiceco2_ref/2.)/3. ! in Madeleine et al 2011 No = zq(ig,l,igcm_dust_number)* tauscaling(ig)+1.e-30 No_dust=No Mo_dust=Mo Rn = rdust(ig,l) Rn = -log(Rn) Rm = Rn - 3. * sigma_iceco2*sigma_iceco2 n_derf = derf( (rb_cldco2(1)+Rn) *dev2) m_derf = derf( (rb_cldco2(1)+Rm) *dev2) do i = 1, nbinco2_cld n_aer(i) = -0.5 * No * n_derf !! this ith previously computed m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed n_derf = derf((rb_cldco2(i+1)+Rn) *dev2) m_derf = derf((rb_cldco2(i+1)+Rm) *dev2) n_aer(i) = n_aer(i) + 0.5 * No * n_derf m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf enddo c Ajout meteor_ccn particles aux particules de poussière background if (meteo_flux) then do i = 1, nbinco2_cld n_aer(i) = n_aer(i) + meteor_ccn(ig,l,i) m_aer(i) = m_aer(i) + 4./3.*pi*rho_dust & *meteor_ccn(ig,l,i)*rad_cldco2(i)*rad_cldco2(i) & *rad_cldco2(i) enddo endif c Same but with h2o particles as CCN only if co2useh2o=.true. n_aer_h2oice(:)=0. m_aer_h2oice(:)=0. if (co2useh2o) then call updaterice_micro(zq(ig,l,igcm_h2o_ice), & zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number), & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) Mo = zq(ig,l,igcm_h2o_ice) + & zq(ig,l,igcm_ccn_mass)*tauscaling(ig)+1.e-30 ! Total mass of H20 crystals,CCN included No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 Rn = rice(ig,l) Rn = -log(Rn) Rm = Rn - 3. * sigma_ice*sigma_ice n_derf = derf( (rb_cldco2(1)+Rn) *dev3) m_derf = derf( (rb_cldco2(1)+Rm) *dev3) do i = 1, nbinco2_cld n_aer_h2oice(i) = -0.5 * No * n_derf m_aer_h2oice(i) = -0.5 * Mo * m_derf n_derf = derf( (rb_cldco2(i+1)+Rn) *dev3) m_derf = derf( (rb_cldco2(i+1)+Rm) *dev3) n_aer_h2oice(i) = n_aer_h2oice(i) + 0.5 * No * n_derf m_aer_h2oice(i) = m_aer_h2oice(i) + 0.5 * Mo * m_derf rad_h2oice(i) = rad_cldco2(i) enddo endif ! Call to nucleation routine call nucleaco2(dble(pco2),zt(ig,l),dble(satu) & ,n_aer,rate,n_aer_h2oice & ,rad_h2oice,rateh2o,vo2co2) dN = 0. dM = 0. dNh2o = 0. dMh2o = 0. do i = 1, nbinco2_cld Proba =1.0-exp(-1.*microtimestep*rate(i)) dN = dN + n_aer(i) * Proba dM = dM + m_aer(i) * Proba enddo if (co2useh2o) then do i = 1, nbinco2_cld Probah2o = 1.0-exp(-1.*microtimestep*rateh2o(i)) dNh2o = dNh2o + n_aer_h2oice(i) * Probah2o dMh2o = dMh2o + m_aer_h2oice(i) * Probah2o enddo endif ! dM masse activée (kg) et dN nb particules par kg d'air ! Now increment CCN tracers and update dust tracers dNN= dN/tauscaling(ig) dMM= dM/tauscaling(ig) dNN=min(dNN,zq(ig,l,igcm_dust_number)) dMM=min(dMM,zq(ig,l,igcm_dust_mass)) zq(ig,l,igcm_ccnco2_mass) = & zq(ig,l,igcm_ccnco2_mass) + dMM zq(ig,l,igcm_ccnco2_number) = & zq(ig,l,igcm_ccnco2_number) + dNN zq(ig,l,igcm_dust_mass)= zq(ig,l,igcm_dust_mass)-dMM zq(ig,l,igcm_dust_number)=zq(ig,l,igcm_dust_number)-dNN c Update CCN for CO2 nucleating on H2O CCN : ! Warning: must keep memory of it if (co2useh2o) then dNNh2o=dNh2o/tauscaling(ig) dNNh2o=min(dNNh2o,zq(ig,l,igcm_ccn_number)) ratioh2o_ccn=1./(zq(ig,l,igcm_h2o_ice) & +zq(ig,l,igcm_ccn_mass)*tauscaling(ig)) dMh2o_ice=dMh2o*zq(ig,l,igcm_h2o_ice)*ratioh2o_ccn dMh2o_ccn=dMh2o*zq(ig,l,igcm_ccn_mass)* & tauscaling(ig)*ratioh2o_ccn dMh2o_ccn=dMh2o_ccn/tauscaling(ig) dMh2o_ccn=min(dMh2o_ccn,zq(ig,l,igcm_ccn_mass)) dMh2o_ice=min(dMh2o_ice,zq(ig,l,igcm_h2o_ice)) zq(ig,l,igcm_ccnco2_mass) = & zq(ig,l,igcm_ccnco2_mass) + dMh2o_ice+dMh2o_ccn zq(ig,l,igcm_ccnco2_number) = & zq(ig,l,igcm_ccnco2_number) + dNNh2o zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number)-dNNh2o zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)-dMh2o_ice zq(ig,l,igcm_ccn_mass)= zq(ig,l,igcm_ccn_mass)-dMh2o_ccn mem_Mh2o_co2(ig,l)=mem_Mh2o_co2(ig,l)+dMh2o_ice mem_Mccn_co2(ig,l)=mem_Mccn_co2(ig,l)+dMh2o_ccn mem_Nccn_co2(ig,l)=mem_Nccn_co2(ig,l)+dNNh2o endif ! of if co2useh2o ENDIF ! of is satu >1 !============================================================= ! 5. Ice growth: scheme for radius evolution !============================================================= c We trigger crystal growth if and only if there is at least one nuclei (N>1). c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. IF (zq(ig,l,igcm_ccnco2_number) & * tauscaling(ig)+1.e-30.ge. 1)THEN ! we trigger crystal growth call updaterice_microco2(dble(zq(ig,l,igcm_co2_ice)), & dble(zq(ig,l,igcm_ccnco2_mass)), & dble(zq(ig,l,igcm_ccnco2_number)), & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) Ic_rice=0. lw = l0 + l1 * zt(ig,l) + l2 * zt(ig,l)**2 + & l3 * zt(ig,l)**3 + l4 * zt(ig,l)**4 !J.kg-1 facteurmax=abs(Tcond(ig,l)-zt(ig,l))*cpp/lw !specific heat of co2 ice = 1000 J.kg-1.K-1 !specific heat of atm cpp = 744.5 J.kg-1.K-1 c call scheme of microphys. mass growth for CO2 call massflowrateco2(pplay(ig,l),zt(ig,l), & satu,riceco2(ig,l),mmean(ig,l),Ic_rice) c Ic_rice Mass transfer rate (kg/s) for a rice particle >0 si croissance ! if (isnan(Ic_rice) .or. Ic_rice .eq. 0.) then Ic_rice=0. subpdtcloudco2(ig,l)=-sum_subpdt(ig,l) dMice=0 else dMice=zq(ig,l,igcm_ccnco2_number)*Ic_rice*microtimestep & *tauscaling(ig) ! Kg par kg d'air, >0 si croissance ! !kg.s-1 par particule * nb particule par kg air*s ! = kg par kg air dMice = max(dMice,max(-facteurmax,-zq(ig,l,igcm_co2_ice))) dMice = min(dMice,min(facteurmax,zq(ig,l,igcm_co2))) ! facteurmax maximum quantity of CO2 that can sublime/condense according to available thermal energy ! latent heat release >0 if growth i.e. if dMice >0 subpdtcloudco2(ig,l)=dMice*lw/cpp/microtimestep ! kgco2/kgair* J/kgco2 * 1/(J.kgair-1.K-1)/s= K par seconde !Now update tracers zq(ig,l,igcm_co2_ice) = zq(ig,l,igcm_co2_ice)+dMice zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2)-dMice endif !============================================================= ! 6. Dust cores releasing if no more co2 ice : !============================================================= if (zq(ig,l,igcm_co2_ice).le. 1.e-25)THEN ! On sublime tout if (co2useh2o) then if (mem_Mccn_co2(ig,l) .gt. 0) then zq(ig,l,igcm_ccn_mass)=zq(ig,l,igcm_ccn_mass) & +mem_Mccn_co2(ig,l) endif if (mem_Mh2o_co2(ig,l) .gt. 0) then zq(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) & +mem_Mh2o_co2(ig,l) endif if (mem_Nccn_co2(ig,l) .gt. 0) then zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number) & +mem_Nccn_co2(ig,l) endif endif zq(ig,l,igcm_dust_mass) = & zq(ig,l,igcm_dust_mass) & + zq(ig,l,igcm_ccnco2_mass)- & (mem_Mh2o_co2(ig,l)+mem_Mccn_co2(ig,l)) zq(ig,l,igcm_dust_number) = & zq(ig,l,igcm_dust_number) & + zq(ig,l,igcm_ccnco2_number) & -mem_Nccn_co2(ig,l) zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2) & + zq(ig,l,igcm_co2_ice) zq(ig,l,igcm_ccnco2_mass)=0. zq(ig,l,igcm_co2_ice)=0. zq(ig,l,igcm_ccnco2_number)=0. mem_Nccn_co2(ig,l)=0. mem_Mh2o_co2(ig,l)=0. mem_Mccn_co2(ig,l)=0. riceco2(ig,l)=0. endif !of if co2_ice <1e-25 ENDIF ! of if NCCN > 1 ENDDO ! of ig loop ENDDO ! of nlayer loop !============================================================= ! 7. END: get cloud tendencies !============================================================= ! Get cloud tendencies subpdqcloudco2(1:ngrid,1:nlay,igcm_co2) = & (zq(1:ngrid,1:nlay,igcm_co2) - & zq0(1:ngrid,1:nlay,igcm_co2))/microtimestep subpdqcloudco2(1:ngrid,1:nlay,igcm_co2_ice) = & (zq(1:ngrid,1:nlay,igcm_co2_ice) - & zq0(1:ngrid,1:nlay,igcm_co2_ice))/microtimestep if (co2useh2o) then subpdqcloudco2(1:ngrid,1:nlay,igcm_h2o_ice) = & (zq(1:ngrid,1:nlay,igcm_h2o_ice) - & zq0(1:ngrid,1:nlay,igcm_h2o_ice))/microtimestep subpdqcloudco2(1:ngrid,1:nlay,igcm_ccn_mass) = & (zq(1:ngrid,1:nlay,igcm_ccn_mass) - & zq0(1:ngrid,1:nlay,igcm_ccn_mass))/microtimestep subpdqcloudco2(1:ngrid,1:nlay,igcm_ccn_number) = & (zq(1:ngrid,1:nlay,igcm_ccn_number) - & zq0(1:ngrid,1:nlay,igcm_ccn_number))/microtimestep endif subpdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_mass) = & (zq(1:ngrid,1:nlay,igcm_ccnco2_mass) - & zq0(1:ngrid,1:nlay,igcm_ccnco2_mass))/microtimestep subpdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_number) = & (zq(1:ngrid,1:nlay,igcm_ccnco2_number) - & zq0(1:ngrid,1:nlay,igcm_ccnco2_number))/microtimestep subpdqcloudco2(1:ngrid,1:nlay,igcm_dust_mass) = & (zq(1:ngrid,1:nlay,igcm_dust_mass) - & zq0(1:ngrid,1:nlay,igcm_dust_mass))/microtimestep subpdqcloudco2(1:ngrid,1:nlay,igcm_dust_number) = & (zq(1:ngrid,1:nlay,igcm_dust_number) - & zq0(1:ngrid,1:nlay,igcm_dust_number))/microtimestep c TEST D.BARDET call WRITEDIAGFI(ngrid,"No_dust","Nombre particules de poussière" & ,"part/kg",3,No_dust) call WRITEDIAGFI(ngrid,"Mo_dust","Masse particules de poussière" & ,"kg/kg ",3,Mo_dust) END SUBROUTINE improvedco2clouds END MODULE improvedco2clouds_mod