MODULE optcv_mod IMPLICIT NONE CONTAINS SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & QXVAER,QSVAER,GVAER,WBARV,COSBV, & TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR) use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig,gweight use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2 use comcstfi_mod, only: g, r, mugaz use callkeys_mod, only: kastprof,continuum,graybody,H2Ocont_simple,callgasvis,diagdtau implicit none !================================================================== ! ! Purpose ! ------- ! Calculates shortwave optical constants at each level. ! ! Authors ! ------- ! Adapted from the NASA Ames code by R. Wordsworth (2009) ! !================================================================== ! ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL ! LAYER: WBAR, DTAU, COSBAR ! LEVEL: TAU ! ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code ! layer L. NW is spectral wavelength interval, ng the Gauss point index. ! ! TLEV(L) - Temperature at the layer boundary ! PLEV(L) - Pressure at the layer boundary (i.e. level) ! GASV(NT,NPS,NW,NG) - Visible k-coefficients ! !------------------------------------------------------------------- real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) real*8 PLEV(L_LEVELS) real*8 TMID(L_LEVELS), PMID(L_LEVELS) real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) ! for aerosols real*8 QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) real*8 QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) real*8 GVAER(L_LEVELS,L_NSPECTV,NAERKIND) real*8 TAUAERO(L_LEVELS,NAERKIND) real*8 TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND) real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) integer L, NW, NG, K, LK, IAER integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) real*8 ANS, TAUGAS real*8 TAURAY(L_NSPECTV) real*8 TRAY(L_LEVELS,L_NSPECTV) real*8 DPR(L_LEVELS), U(L_LEVELS) real*8 LCOEF(4), LKCOEF(L_LEVELS,4) real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) real*8 DCONT,DAERO real*8 DRAYAER double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc double precision p_cross ! variable species mixing ratio variables real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) real*8 KCOEF(4) integer NVAR(L_LEVELS) ! temporary variables to reduce memory access time to gasv real*8 tmpk(2,2) real*8 tmpkvar(2,2,2) ! temporary variables for multiple aerosol calculation real*8 atemp(L_NLAYRAD,L_NSPECTV) real*8 btemp(L_NLAYRAD,L_NSPECTV) real*8 ctemp(L_NLAYRAD,L_NSPECTV) ! variables for k in units m^-1 real*8 dz(L_LEVELS) ! variables for diags of optical depth real*8 INT_DTAU(L_NLAYRAD,L_NSPECTV) character*2 str2 integer igas, jgas integer interm !! AS: to save time in computing continuum (see bilinearbig) IF (.not.ALLOCATED(indv)) THEN ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) indv = -9999 ! this initial value means "to be calculated" ENDIF !======================================================================= ! Determine the total gas opacity throughout the column, for each ! spectral interval, NW, and each Gauss point, NG. ! Calculate the continuum opacities, i.e., those that do not depend on ! NG, the Gauss index. taugsurf(:,:) = 0.0 dpr(:) = 0.0 lkcoef(:,:) = 0.0 do K=2,L_LEVELS DPR(k) = PLEV(K)-PLEV(K-1) ! if we have continuum opacities, we need dz if(kastprof)then dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) U(k) = Cmk*DPR(k)*mugaz/muvar(k) else dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present endif call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) do LK=1,4 LKCOEF(K,LK) = LCOEF(LK) end do end do ! levels ! Spectral dependance of aerosol absorption !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR ! but visible does not handle very well diffusion in first layer. ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) ! in the 4 first semilayers in optcv, but not optci. ! This solves random variations of the sw heating at the model top. do iaer=1,naerkind do NW=1,L_NSPECTV TAEROS(1:4,NW,IAER)=0.d0 do K=5,L_LEVELS TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) end do ! levels end do end do ! Rayleigh scattering do NW=1,L_NSPECTV TRAY(1:4,NW) = 1d-30 do K=5,L_LEVELS TRAY(K,NW) = TAURAY(NW) * DPR(K) end do ! levels end do ! we ignore K=1... do K=2,L_LEVELS do NW=1,L_NSPECTV DRAYAER = TRAY(K,NW) ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity do iaer=1,naerkind DRAYAER = DRAYAER + TAEROS(K,NW,IAER) end do DCONT = 0.0 ! continuum absorption if(continuum.and.(.not.graybody).and.callgasvis)then ! include continua if necessary wn_cont = dble(wnov(nw)) T_cont = dble(TMID(k)) do igas=1,ngasmx if(gfrac(igas).eq.-1)then ! variable p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol else p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) endif dtemp=0.0 if(igas.eq.igas_N2)then interm = indv(nw,igas,igas) ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indv(nw,igas,igas) = interm ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible elseif(igas.eq.igas_H2)then ! first do self-induced absorption interm = indv(nw,igas,igas) call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indv(nw,igas,igas) = interm ! then cross-interactions with other gases do jgas=1,ngasmx p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) dtempc = 0.0 if(jgas.eq.igas_N2)then interm = indv(nw,igas,jgas) call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indv(nw,igas,jgas) = interm ! should be irrelevant in the visible elseif(jgas.eq.igas_He)then interm = indv(nw,igas,jgas) call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indv(nw,igas,jgas) = interm endif dtemp = dtemp + dtempc enddo elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! if(H2Ocont_simple)then call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) else interm = indv(nw,igas,igas) call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) indv(nw,igas,igas) = interm endif endif DCONT = DCONT + dtemp enddo DCONT = DCONT*dz(k) endif do ng=1,L_NGAUSS-1 ! Now compute TAUGAS ! Interpolate between water mixing ratios ! WRATIO = 0.0 if the requested water amount is equal to, or outside the ! the water data range if(L_REFVAR.eq.1)then ! added by RW for special no variable case ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically ! the execution time of optci/v -> ~ factor 2 on the whole radiative ! transfer on the tested simulations ! tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) else tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) endif ! Interpolate the gaseous k-coefficients to the requested T,P values ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) TAUGAS = U(k)*ANS TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT DTAUKV(K,nw,ng) = TAUGAS & + DRAYAER & ! DRAYAER includes all scattering contributions + DCONT ! For parameterized continuum aborption end do ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), ! which holds continuum opacity only NG = L_NGAUSS DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption end do end do !======================================================================= ! Now the full treatment for the layers, where besides the opacity ! we need to calculate the scattering albedo and asymmetry factors !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR ! but not in the visible ! The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci. ! This solves random variations of the sw heating at the model top. do iaer=1,naerkind DO NW=1,L_NSPECTV TAUAEROLK(1:4,NW,IAER)=0.d0 DO K=5,L_LEVELS TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo ENDDO ENDDO end do DO NW=1,L_NSPECTV DO L=1,L_NLAYRAD-1 K = 2*L+1 atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) END DO ! NW spectral loop DO NG=1,L_NGAUSS DO NW=1,L_NSPECTV DO L=1,L_NLAYRAD-1 K = 2*L+1 DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) END DO ! L vertical loop ! Last level L = L_NLAYRAD K = 2*L+1 DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) END DO ! NW spectral loop END DO ! NG Gauss loop ! Total extinction optical depths DO NG=1,L_NGAUSS ! full gauss loop DO NW=1,L_NSPECTV TAUCUMV(1,NW,NG)=0.0D0 DO K=2,L_LEVELS TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) END DO DO L=1,L_NLAYRAD TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) END DO TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) END DO END DO ! end full gauss loop ! Optical thickness for 1D diagnostics (added by JVO) if (diagdtau) then ! diagtau can be true only if 1D do l=1,L_NLAYRAD do nw=1,L_NSPECTV INT_DTAU(L,NW) = 0.0d+0 DO NG=1,L_NGAUSS INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtauv(L,nw,ng)*gweight(NG) enddo enddo enddo do nw=1,L_NSPECTV write(str2,'(i2.2)') nw call writediagfi(1,'dtauv'//str2,'Layer optical thickness in VI band '//str2,'',1,int_dtau(L_NLAYRAD:1:-1,nw)) enddo endif end subroutine optcv END MODULE optcv_mod