SUBROUTINE SFLUXV(DTAUV,TAUV,TAUCUMV,RSFV,DWNV,WBARV,COSBV, * UBAR0,STEL,NFLUXTOPV,FLUXTOPVDN, * NFLUXOUTV_nu,NFLUXGNDV_nu, * FMNETV,FLUXUPV,FLUXDNV,FZEROV,taugsurf) use radinc_h use radcommon_h, only: tlimit, gweight implicit none real*8 FMNETV(L_NLAYRAD) real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS), DWNV(L_NSPECTV) real*8 FMUPV(L_NLAYRAD), FMDV(L_NLAYRAD) real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) real*8 STEL(L_NSPECTV) real*8 FLUXUPV(L_NLAYRAD), FLUXDNV(L_NLAYRAD) real*8 NFLUXTOPV, FLUXUP, FLUXDN,FLUXTOPVDN real*8 NFLUXOUTV_nu(L_NSPECTV) real*8 NFLUXGNDV_nu(L_NSPECTV) integer L, NG, NW, NG1,k real*8 ubar0, f0pi, btop, bsurf, taumax, eterm real*8 rsfv(L_NSPECTV) ! Spectral dependency added by MT2015. real*8 FZEROV(L_NSPECTV) real*8 DIFFV, DIFFVT real*8 taugsurf(L_NSPECTV,L_NGAUSS-1), fzero C======================================================================C TAUMAX = L_TAUMAX C ZERO THE NET FLUXES NFLUXTOPV = 0.0 FLUXTOPVDN = 0.0 DO NW=1,L_NSPECTV NFLUXOUTV_nu(NW)=0.0 NFLUXGNDV_nu(NW)=0.0 END DO DO L=1,L_NLAYRAD FMNETV(L) = 0.0 FLUXUPV(L) = 0.0 FLUXDNV(L) = 0.0 END DO DIFFVT = 0.0 C WE NOW ENTER A MAJOR LOOP OVER SPECTRAL INTERVALS IN THE VISIBLE C TO CALCULATE THE NET FLUX IN EACH SPECTRAL INTERVAL DO 500 NW=1,L_NSPECTV F0PI = STEL(NW) FZERO = FZEROV(NW) IF(FZERO.ge.0.99) goto 40 DO NG=1,L_NGAUSS-1 if(TAUGSURF(NW,NG) .lt. TLIMIT) then fzero = fzero + (1.0-FZEROV(NW))*GWEIGHT(NG) goto 30 end if C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE VISIBLE BTOP = 0.0 !BSURF = 0./0. ! why was this here? BSURF = 0. C LOOP OVER THE NTERMS BEGINNING HERE ! FACTOR = 1.0D0 - WDEL(1)*CDEL(1)**2 ! TAU(1) = TDEL(1)*FACTOR ETERM = MIN(TAUV(L_NLEVRAD,NW,NG),TAUMAX) BSURF = RSFV(NW)*UBAR0*STEL(NW)*EXP(-ETERM/UBAR0) C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER C C FUW AND FDW ARE WORKING FLUX ARRAYS THAT WILL BE USED TO C RETURN FLUXES FOR A GIVEN NT CALL GFLUXV(DTAUV(1,NW,NG),TAUV(1,NW,NG),TAUCUMV(1,NW,NG), * WBARV(1,NW,NG),COSBV(1,NW,NG),UBAR0,F0PI,RSFV(NW), * BTOP,BSURF,FMUPV,FMDV,DIFFV,FLUXUP,FLUXDN) C NOW CALCULATE THE CUMULATIVE VISIBLE NET FLUX NFLUXTOPV = NFLUXTOPV+(FLUXUP-FLUXDN)*GWEIGHT(NG)* * (1.0-FZEROV(NW)) FLUXTOPVDN = FLUXTOPVDN+FLUXDN*GWEIGHT(NG)* * (1.0-FZEROV(NW)) DO L=1,L_NLAYRAD FMNETV(L)=FMNETV(L)+( FMUPV(L)-FMDV(L) )* * GWEIGHT(NG)*(1.0-FZEROV(NW)) FLUXUPV(L) = FLUXUPV(L) + FMUPV(L)*GWEIGHT(NG)* * (1.0-FZEROV(NW)) FLUXDNV(L) = FLUXDNV(L) + FMDV(L)*GWEIGHT(NG)* * (1.0-FZEROV(NW)) END DO c band-resolved flux leaving TOA (RDW) NFLUXOUTV_nu(NW) = NFLUXOUTV_nu(NW) * +FLUXUP*GWEIGHT(NG)*(1.0-FZEROV(NW)) c band-resolved flux at ground (RDW) NFLUXGNDV_nu(NW) = NFLUXGNDV_nu(NW) * +FMDV(L_NLAYRAD)*GWEIGHT(NG)*(1.0-FZEROV(NW)) C THE DIFFUSE COMPONENT OF THE DOWNWARD STELLAR FLUX DIFFVT = DIFFVT + DIFFV*GWEIGHT(NG)*(1.0-FZEROV(NW)) 30 CONTINUE END DO ! the Gauss loop 40 continue C Special 17th Gauss point NG = L_NGAUSS C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE VISIBLE BTOP = 0.0 C LOOP OVER THE NTERMS BEGINNING HERE ETERM = MIN(TAUV(L_NLEVRAD,NW,NG),TAUMAX) BSURF = RSFV(NW)*UBAR0*STEL(NW)*EXP(-ETERM/UBAR0) C WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER C C FUW AND FDW ARE WORKING FLUX ARRAYS THAT WILL BE USED TO C RETURN FLUXES FOR A GIVEN NT CALL GFLUXV(DTAUV(1,NW,NG),TAUV(1,NW,NG),TAUCUMV(1,NW,NG), * WBARV(1,NW,NG),COSBV(1,NW,NG),UBAR0,F0PI,RSFV(NW), * BTOP,BSURF,FMUPV,FMDV,DIFFV,FLUXUP,FLUXDN) C NOW CALCULATE THE CUMULATIVE VISIBLE NET FLUX NFLUXTOPV = NFLUXTOPV+(FLUXUP-FLUXDN)*FZERO FLUXTOPVDN = FLUXTOPVDN+FLUXDN*FZERO DO L=1,L_NLAYRAD FMNETV(L)=FMNETV(L)+( FMUPV(L)-FMDV(L) )*FZERO FLUXUPV(L) = FLUXUPV(L) + FMUPV(L)*FZERO FLUXDNV(L) = FLUXDNV(L) + FMDV(L)*FZERO END DO c band-resolved flux leaving TOA (RDW) NFLUXOUTV_nu(NW) = NFLUXOUTV_nu(NW) * +FLUXUP*FZERO c band-resolved flux at ground (RDW) NFLUXGNDV_nu(NW) = NFLUXGNDV_nu(NW)+FMDV(L_NLAYRAD)*FZERO C THE DIFFUSE COMPONENT OF THE DOWNWARD STELLAR FLUX DIFFVT = DIFFVT + DIFFV*FZERO 500 CONTINUE C *** END OF MAJOR SPECTRAL INTERVAL LOOP IN THE VISIBLE***** RETURN END