SUBROUTINE updatereffrad(ngrid,nlayer, & rdust,rice,nuice, & reffrad,nueffrad, & pq,tauscaling,tau,pplay) USE updaterad use tracer_mod, only: nqmx, igcm_dust_mass, igcm_dust_number, & igcm_h2o_ice, igcm_ccn_mass, radius, & igcm_ccn_number, nuice_ref, varian, & ref_r0, igcm_dust_submicron USE dimradmars_mod, only: nueffdust,naerkind, & name_iaer, & iaer_dust_conrath,iaer_dust_doubleq, & iaer_dust_submicron,iaer_h2o_ice USE comcstfi_h IMPLICIT NONE c======================================================================= c subject: c -------- c Subroutine designed to update the aerosol size distribution used by c the radiative transfer scheme. This size distribution is assumed c to be a log-normal distribution, with effective radius "reffrad" and c variance "nueffrad". c At firstcall, "rice" and "nuice" are not known, because c the H2O ice microphysical scheme is called after the radiative c transfer in physiq.F. That's why we assess the size of the c water-ice particles at firstcall (see part 1.2 below). c c author: c ------ c J.-B. Madeleine (2009-2010) c c======================================================================= c c Declarations : c ------------- c #include "callkeys.h" c----------------------------------------------------------------------- c Inputs: c ------ INTEGER ngrid,nlayer c Ice geometric mean radius (m) REAL :: rice(ngrid,nlayer) c Estimated effective variance of the size distribution (n.u.) REAL :: nuice(ngrid,nlayer) c Tracer mass mixing ratio (kg/kg) REAL pq(ngrid,nlayer,nqmx) REAL rdust(ngrid,nlayer) ! Dust geometric mean radius (m) REAL pplay(ngrid,nlayer) ! altitude at the middle of the layers REAL tau(ngrid,naerkind) c Outputs: c ------- c Aerosol effective radius used for radiative transfer (meter) REAL :: reffrad(ngrid,nlayer,naerkind) c Aerosol effective variance used for radiative transfer (n.u.) REAL :: nueffrad(ngrid,nlayer,naerkind) c Local variables: c --------------- INTEGER :: ig,l ! 3D grid indices INTEGER :: iaer ! Aerosol index c Number of cloud condensation nuclei near the surface c (only used at firstcall). This value is taken from c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and c converted to part kg-1 using a typical atmospheric density. REAL, PARAMETER :: ccn0 = 1.3E8 c For microphysics only: REAL Mo,No ! Mass and number of ccn REAL rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) REAL tauscaling(ngrid) ! Convertion factor for qccn and Nccn LOGICAL,SAVE :: firstcall=.true. REAL CBRT EXTERNAL CBRT c================================================================== c 1. Update radius from fields from dynamics or initial state c================================================================== c 1.1 Dust particles c ------------------ IF (doubleq.AND.active) THEN DO l=1,nlayer DO ig=1, ngrid call updaterdust(pq(ig,l,igcm_dust_mass), & pq(ig,l,igcm_dust_number),rdust(ig,l)) nueffdust(ig,l) = exp(varian**2.)-1. ENDDO ENDDO ELSE DO l=1,nlayer DO ig=1, ngrid rdust(ig,l) = 0.8E-6 nueffdust(ig,l) = 0.3 ENDDO ENDDO ENDIF c 1.2 Water-ice particles c ----------------------- IF (water.AND.activice) THEN IF (microphys) THEN c At firstcall, the true number and true mass of cloud condensation nuclei are not known. c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient c computed after radiative transfer. If tauscaling is not in startfi, we make an assumption for its value. IF (firstcall) THEN IF (minval(tauscaling).lt.0) tauscaling(:) = 1.e-3 ! default value when non-read in startfi is -1 IF (freedust) tauscaling(:) = 1. ! if freedust, enforce no rescaling at all firstcall = .false. ENDIF DO l=1,nlayer DO ig=1,ngrid call updaterice_micro(pq(ig,l,igcm_h2o_ice), & pq(ig,l,igcm_ccn_mass), & pq(ig,l,igcm_ccn_number), & tauscaling(ig),rice(ig,l), & rhocloud(ig,l)) nuice(ig,l) = nuice_ref ENDDO ENDDO ELSE ! if not microphys DO l=1,nlayer DO ig=1,ngrid call updaterice_typ(pq(ig,l,igcm_h2o_ice), & tau(ig,1),pplay(ig,l),rice(ig,l)) nuice(ig,l) = nuice_ref ENDDO ENDDO ENDIF ! of if microphys ENDIF ! of if (water.AND.activice) c================================================================== c 2. Radius used in the radiative transfer code (reffrad) c================================================================== DO iaer = 1, naerkind ! Loop on aerosol kind aerkind: SELECT CASE (name_iaer(iaer)) c================================================================== CASE("dust_conrath") aerkind ! Typical dust profile c================================================================== DO l=1,nlayer DO ig=1,ngrid reffrad(ig,l,iaer) = rdust(ig,l) * & (1.e0 + nueffdust(ig,l))**2.5 nueffrad(ig,l,iaer) = nueffdust(ig,l) ENDDO ENDDO c================================================================== CASE("dust_doubleq") aerkind! Two-moment scheme for dust c================================================================== DO l=1,nlayer DO ig=1,ngrid reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 nueffrad(ig,l,iaer) = nueffdust(ig,l) ENDDO ENDDO c================================================================== CASE("dust_submicron") aerkind ! Small dust population c================================================================== DO l=1,nlayer DO ig=1,ngrid reffrad(ig,l,iaer)=radius(igcm_dust_submicron) nueffrad(ig,l,iaer)=0.03 ENDDO ENDDO c================================================================== CASE("h2o_ice") aerkind ! Water ice crystals c================================================================== DO l=1,nlayer DO ig=1,ngrid c About reffice, do not confuse the mass mean radius c (rayon moyen massique) and the number median radius c (or geometric mean radius, rayon moyen géométrique). c rice is a mass mean radius, whereas rdust c is a geometric mean radius: c number median rad = mass mean rad x exp(-1.5 sigma0^2) c (Montmessin et al. 2004 paragraph 30). Therefore: reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) nueffrad(ig,l,iaer)=nuice_ref ENDDO ENDDO c================================================================== END SELECT aerkind ENDDO ! iaer (loop on aerosol kind) RETURN END