subroutine lwu (kdlon,kflev & ,dp,plev,tlay,aerosol & ,QIRsQREF3d,omegaIR3d,gIR3d & ,aer_t,co2_u,co2_up & ,tautotal,omegtotal,gtotal) c---------------------------------------------------------------------- c LWU computes - co2: longwave effective absorber amounts including c pressure and temperature effects c - aerosols: amounts for every band c transmission for bandes 1 and 2 of co2 c---------------------------------------------------------------------- c----------------------------------------------------------------------- c ATTENTION AUX UNITES: c le facteur 10*g fait passer des kg m-2 aux g cm-2 c----------------------------------------------------------------------- c! modif diffusion c! on ne change rien a la bande CO2 : les quantites d'absorbant CO2 c! sont multipliees par 1.66 c! pview= 1/cos(teta0)=1.66 c c Modif J.-B. Madeleine: Computing optical properties of dust and c water-ice crystals in each gridbox. Optical parameters of c water-ice clouds are convolved to crystal sizes predicted by c the microphysical scheme. c c MODIF : FF : removing the monster bug on water ice clouds 11/2010 c c MODIF : TN : corrected bug if very big water ice clouds 04/2012 c----------------------------------------------------------------------- use dimradmars_mod, only: ndlo2, nir, nuco2, ndlon, nflev use dimradmars_mod, only: naerkind use yomlw_h, only: nlaylte, tref, at, bt, cst_voigt USE comcstfi_h implicit none #include "callkeys.h" c---------------------------------------------------------------------- c 0.1 arguments c --------- c inputs: c ------- integer kdlon ! part of ngrid integer kflev ! part of nalyer real dp (ndlo2,kflev) ! layer pressure thickness (Pa) real plev (ndlo2,kflev+1) ! level pressure (Pa) real tlay (ndlo2,kflev) ! layer temperature (K) real aerosol (ndlo2,kflev,naerkind) ! aerosol extinction optical depth c at reference wavelength "longrefvis" set c in dimradmars_mod , in each layer, for one of c the "naerkind" kind of aerosol optical properties. REAL QIRsQREF3d(ndlo2,kflev,nir,naerkind) ! 3d ext. coef. REAL omegaIR3d(ndlo2,kflev,nir,naerkind) ! 3d ssa REAL gIR3d(ndlo2,kflev,nir,naerkind) ! 3d assym. param. c outputs: c -------- real aer_t (ndlo2,nuco2,kflev+1) ! transmission (aer) real co2_u (ndlo2,nuco2,kflev+1) ! absorber amounts (co2) real co2_up (ndlo2,nuco2,kflev+1) ! idem scaled by the pressure (co2) real tautotal(ndlo2,kflev,nir) ! \ Total single scattering real omegtotal(ndlo2,kflev,nir) ! > properties (Addition of the real gtotal(ndlo2,kflev,nir) ! / NAERKIND aerosols properties) c---------------------------------------------------------------------- c 0.2 local arrays c ------------ integer jl,jk,jkl,ja,n real aer_a (ndlon,nir,nflev+1) ! absorber amounts (aer) ABSORPTION real co2c ! co2 concentration (pa/pa) real pview ! cosecant of viewing angle real pref ! reference pressure (1013 mb = 101325 Pa) real tx,tx2 real phi (ndlon,nuco2) real psi (ndlon,nuco2) real plev2 (ndlon,nflev+1) real zzz real ray,coefsize,coefsizew,coefsizeg c************************************************************************ c---------------------------------------------------------------------- c 0.3 Initialisation c ------------- pview = 1.66 co2c = 0.95 pref = 101325. do jk=1,nlaylte+1 do jl=1,kdlon plev2(jl,jk)=plev(jl,jk)*plev(jl,jk) enddo enddo c---------------------------------------------------------------------- c Computing TOTAL single scattering parameters by adding properties of c all the NAERKIND kind of aerosols in each IR band call zerophys(ndlon*kflev*nir,tautotal) call zerophys(ndlon*kflev*nir,omegtotal) call zerophys(ndlon*kflev*nir,gtotal) do n=1,naerkind do ja=1,nir do jk=1,nlaylte do jl = 1,kdlon tautotal(jl,jk,ja)=tautotal(jl,jk,ja) + & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n) omegtotal(jl,jk,ja) = omegtotal(jl,jk,ja) + & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n)* & omegaIR3d(jl,jk,ja,n) gtotal(jl,jk,ja) = gtotal(jl,jk,ja) + & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n)* & omegaIR3d(jl,jk,ja,n)*gIR3d(jl,jk,ja,n) enddo enddo enddo enddo do ja=1,nir do jk=1,nlaylte do jl = 1,kdlon gtotal(jl,jk,ja)=gtotal(jl,jk,ja)/omegtotal(jl,jk,ja) omegtotal(jl,jk,ja)=omegtotal(jl,jk,ja)/tautotal(jl,jk,ja) enddo enddo enddo c---------------------------------------------------------------------- c 1.0 cumulative (aerosol) amounts (for every band) c ---------------------------- jk=nlaylte+1 do ja=1,nir do jl = 1 , kdlon aer_a(jl,ja,jk)=0. enddo enddo do jk=1,nlaylte jkl=nlaylte+1-jk do ja=1,nir do jl=1,kdlon aer_a(jl,ja,jkl)=aer_a(jl,ja,jkl+1)+ & tautotal(jl,jkl,ja)*(1.-omegtotal(jl,jkl,ja)) enddo enddo enddo c---------------------------------------------------------------------- c 1.0 bands 1 and 2 of co2 c -------------------- jk=nlaylte+1 do ja=1,nuco2 do jl = 1 , kdlon co2_u(jl,ja,jk)=0. co2_up(jl,ja,jk)=0. aer_t(jl,ja,jk)=1. enddo enddo do jk=1,nlaylte jkl=nlaylte+1-jk do ja=1,nuco2 do jl=1,kdlon c introduces temperature effects on absorber(co2) amounts c ------------------------------------------------------- tx = sign(min(abs(tlay(jl,jkl)-tref),70.) . ,tlay(jl,jkl)-tref) tx2=tx*tx phi(jl,ja)=at(1,ja)*tx+bt(1,ja)*tx2 psi(jl,ja)=at(2,ja)*tx+bt(2,ja)*tx2 phi(jl,ja)=exp(phi(jl,ja)/cst_voigt(2,ja)) psi(jl,ja)=exp(2.*psi(jl,ja)) c cumulative absorber(co2) amounts c -------------------------------- co2_u(jl,ja,jkl)=co2_u(jl,ja,jkl+1) . + pview/(10*g)*phi(jl,ja)*dp(jl,jkl)*co2c co2_up(jl,ja,jkl)=co2_up(jl,ja,jkl+1) . + pview/(10*g*2*pref)*psi(jl,ja) . * (plev2(jl,jkl)-plev2(jl,jkl+1))*co2c c (aerosol) transmission c ---------------------- c on calcule directement les transmissions pour les aerosols. c on multiplie le Qext par 1-omega dans la bande du CO2. c et pourquoi pas d'abord? hourdin@lmd.ens.fr c TN 04/12 : if very big water ice clouds, aer_t is strictly rounded c to zero in lower levels, which is a source of NaN !aer_t(jl,ja,jkl)=exp(-pview*aer_a(jl,ja,jkl)) aer_t(jl,ja,jkl)=max(exp(-pview*aer_a(jl,ja,jkl)),1e-30) enddo enddo enddo c---------------------------------------------------------------------- return end