subroutine growthrate(timestep,t,p,ph2o,psat,seq,r,Cste) IMPLICIT NONE c======================================================================= c c Determination of the water ice crystal growth rate c c======================================================================= c----------------------------------------------------------------------- c declarations: c ------------- c c arguments: c ---------- REAL timestep REAL t ! temperature in the middle of the layer (K) REAL p ! pressure in the middle of the layer (K) REAL*8 ph2o ! water vapor partial pressure (Pa) REAL*8 psat ! water vapor saturation pressure (Pa) REAL r ! crystal radius before condensation (m) REAL*8 seq ! Equilibrium saturation ratio ! REAL dr ! crystal radius variation (m) REAL*8 Cste c local: c ------ REAL*8 molco2,molh2o REAL*8 Mco2,Mh2o,rho_i,sigh2o REAL*8 nav,rgp,kbz,pi,To c Effective gas molecular radius (m) data molco2/2.2d-10/ ! CO2 c Effective gas molecular radius (m) data molh2o/1.2d-10/ ! H2O c Molecular weight of CO2 data Mco2/44.d-3/ ! kg.mol-1 c Molecular weight of H2O data Mh2o/18.d-3/ ! kg.mol-1 c surface tension of ice/vapor data sigh2o/0.12/ ! N.m c Ice density data rho_i/917./ ! kg.m-3 also defined in initcld.f c Avogadro number data nav/6.023d23/ c Perfect gas constant data rgp/8.3143/ c Boltzman constant data kbz/1.381d-23/ c pi number data pi/3.141592654/ c Reference temperature, T=273,15 K data To/273.15/ REAL*8 k,Lv REAL*8 knudsen ! Knudsen number (gas mean free path/particle radius) REAL*8 a,Dv,lambda ! Intermediate computations for growth rate REAL*8 Rk,Rd c----------------------------------------------------------------------- c Ice particle growth rate by diffusion/impegement of water molecules c r.dr/dt = (S-Seq) / (Seq*Rk+Rd) c with r the crystal radius, Rk and Rd the resistances due to c latent heat release and to vapor diffusion respectively c----------------------------------------------------------------------- c - Equilibrium saturation accounting for KeLvin Effect seq=exp(2*sigh2o*Mh2o/(rho_i*rgp*t*r)) c - Thermal conductibility of CO2 k = (0.17913 * t - 13.9789) * 4.184e-4 c - Latent heat of h2o (J.kg-1) Lv = (2834.3 - 0.28 * (t-To) - 0.004 * (t-To)**2 ) * 1.e+3 c - Constant to compute gas mean free path c l= (T/P)*a, with a = ( 0.707*8.31/(4*pi*molrad**2 * avogadro)) a = 0.707*rgp/(4 * pi* molco2**2 * nav) c - Compute Dv, water vapor diffusion coefficient c accounting for both kinetic and continuum regime of diffusion, c the nature of which depending on the Knudsen number. Dv = 1./3. * sqrt( 8*kbz*t/(pi*Mh2o/nav) )* kbz * t / & ( pi * p * (molco2+molh2o)**2 * sqrt(1.+Mh2o/Mco2) ) knudsen = t / p * a / r lambda = (1.333+0.71/knudsen) / (1.+1./knudsen) Dv = Dv / (1. + lambda * knudsen) c - Compute Rk Rk = Lv**2 * rho_i * Mh2o / (k*rgp*t**2.) c - Compute Rd Rd = rgp * t *rho_i / (Dv*psat*Mh2o) c - Compute Cste=rdr/dt, then r(t+1)= sqrt(r(t)**2.+2.*Cste*dt) Cste = 1. / (seq*Rk+Rd) c Cste = (ph2o/psat-seq) / (seq*Rk+Rd) c rf = sqrt( max( r**2.+2.*Cste*timestep , 0. ) ) c dr = rf-r RETURN END