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Chapter 1

Introduction

This document is a user manual for the Generic Climate Model developed by the Labora-
toire de Météorologie Dynamique of the CNRS in Paris. It corresponds to the version of the
model available since January 2011, that includes the new dynamic code Imdz3.3 and input
and output data in NetCDF format. The physical part includes generalized correlated-k
radiative transfer, generalized tracer transport, and a water cycle that includes water vapour
and ice transport, radiative and thermodynamic effects, and simple hydrology.

Chapter 2 of this document, to be read before any of the others, describes the main
features of the model. The model is divided into two relatively independent parts: (1)
The hydrodynamic code, which integrates the fluid mechanical primitive equations in time
over the globe, and (2) the physical parameterizations, which include the radiative transfer,
tracer transport / evolution, and surface-atmosphere interaction. It is followed by a list
of references for anyone requiring a detailed description of the physics and the numerical
formulation of the parameterizations (Chapter 4).

For your first contact with the model, Chapter 5 guides the user through a practice
simulation (choosing the initial states and parameters and visualizing the output files). The
document then describes the code used for the model, including a user computer manual
for compiling and running it (Chapter 6).

Chapter 7 describes the input/output data of the model. The input files are the files
needed to initialize the model (state of the atmosphere at instant t0 as well as a dataset of
boundary conditions). The output files are “historical files”, archives of the atmospheric
flow history as simulated by the model, the “diagfi files”, the “stats files”, the daily aver-
ages, and so on. Common ways of editing or visualizing these files (editor “ncdump” and
the graphics software “grads”) are also explained. Chapter 8 explains how to run a simula-
tion that includes the water cycle. Finally, Chapter 9 will help you to use a 1-dimensional
version of the model, which may be a simpler tool for some analysis work.



Chapter 2

Main features of the model

2.1 Basic principles

The General Circulation Model (GCM) calculates the temporal evolution of the different
variables (listed below) that control or describe the planetary meteorology and climate at
different points of a 3D “grid” (see below) that covers the entire atmosphere.

From an initial state, the model calculates the evolution of these variables, timestep by
timestep:

e At instant ¢, we know variable X, (temperature for example) at one point in the
atmosphere.

e We calculate the evolution (the tendencies) (%)1 , (%—)f)g , etc. arising from
each physical phenomenon, calculated by a parameterization of each of these phe-
nomenon (for example, heating due to absorption of solar radiation).

e At the next time step ¢ + d¢, we can calculate X, s; from X; and (%—)f). This is the
“integration” of the variables in time. (For example, X, 5; = X; + t( %()1 +
5t(%E)s + )

The main task of the model is to calculate these tendencies (%X ) arising from the

t
different parameterized phenomena.

2.2 Dynamical-Physical separation

In practice, the 3D model operates in two parts:

- a dynamical part containing the numerical solution of the general equations for atmo-
spheric circulation. This part (including the programming) is common to all terrestrial-type
atmospheres, and applicable in certain cases to the upper atmospheres of gas giant planets.
- a physical part that is specific to the planet in question and which calculates the circula-
tion forcing and climatic details at each point.

The calculations for the dynamical part are made on a 3D grid with horizontal ex-
changes between the grid boxes, whereas the physical part can be seen as a juxtaposition
of atmosphere “columns” that do not interact with each other (see diagram 2.1).

The dynamical and physical parts deal with variables of different natures, and operate
on grids that are differently constructed. The temporal integration of the variables is based
on different numerical schemes (simple, such as the one above for the physical part, and
more complicated, the “Matsuno-Leapfrog” scheme for the dynamical part). The timesteps
are also different. The physical timestep is iphysiqg times longer than the dynamical
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Figure 2.1: Physical/dynamical interface

timestep, as the solution of the dynamic equations requires a shorter timestep than the
forced calculation for the physical part.

In practice, the main program that handles the whole model (gcm. F) is located in the
dynamical part. When the temporal evolution is being calculated, at each timestep the
program calls the following:

1. Call to the subroutine that handles the total tendency calculation (%—f) arising from

the dynamical part (caldyn.F)

2. Integration of these dynamical tendencies to calculate the evolution of the variables
at the following timesteps (subroutine integrd.F)

3. Every iphysiqg dynamical timestep, a call to the interface subroutine (calfis.F)
with the physical model (physiqg.F90), that calculates the evolution of some of the
purely physical variables (e.g: surface temperature t surf) and returns the tenden-

cies (%—)f) arising from the physical part.

4. Integration of the physical variables (subroutine addfi.F)

5. Similarly, calculation and integration of tendencies due to the horizontal dissipation
and the “sponge layer” is done every 1dissip dynamical time step.

Remark: The physical part can be run separately for a 1-D calculation for a single column
using program rcmld.F.

2.3 Grid boxes:

Examples of typical grid values are 64x48x25, 64x48x32 or 32x24x25 in longitudexlati-
tudexaltitude. Grid box size depends on the planetary radius: for Mars (radius~3400 km),
for example, a 64x48 horizontal grid corresponds to grid boxes of the order of 330x220
kilometers near the equator.

2.3.1 Horizontal grids

Dynamics and physics use different grids. Figure 2.2 shows the correspondence and in-
dexing of the physical and dynamical grids as well as the different locations of variables
on these grids. To identify the coordinates of a variable (at one grid point up, down, right
or left) we use coordinates rlonu, rlatu, rlonv, rlatv (longitudes and latitudes, in
radians).
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Figure 2.2: Dynamical and physical grids for a 6 x 7 horizontal resolution. In the dynam-
ics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical
variables are on the dynamical “scalar” grid. The physics uses the same “scalar” grid for all
the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-
1)xIM points when counting from the north pole. N.B.: In the Fortran program, the fol-
lowing variables are used: 1im=IM , iipl=IM+1, Jjjm=JIM , JIipl=JM+1.




On the dynamical grid, values at i=1 are the same as at i=IM+1 as the latter node is
a redundant point (due to the periodicity in longitude, these two nodes are actualy located
at the same place). Similarly, the extreme j=1 and j=JM+1 nodes on the dynamical grid
(respectively corresponding to North and South poles) are duplicated IM+1 times.
In contrast, the physical grid does not contain redundant points (only one value for each
pole and no extra point along longitudes), as shown in figure 2.2. In practice, computa-
tions relative to the physics are made for a series of ngrid atmospheric columns, where
NGRID=IMxX(JM-1)+2.

2.3.2 Vertical grids
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Figure 2.3: Sketch illustrating the difference between hybrid and non-hybrid coordinates

The GCM was initially programmed using sigma coordinates ¢ = p/ps (atmospheric
pressure over surface pressure ratio) which had the advantage of using a constant domain
(o = 1 at the surface and 0 = 0 at the top of the atmosphere) whatever the underlying
topography. However, it is obvious that these coordinates significantly disturb the strato-
spheric dynamical representation as the topography is propagated to the top of the model
by the coordinate system. This problem can elegantly be solved by using a hybrid sigma-
P (sigma-pressure) hybrid coordinate which is equivalent to using o coordinates near the
surface and gradually shifting to purely pressure p coordinates with increasing altitude.
Figure 2.3 illustrates the importance of using these hybrid coordinates compared to simple
o coordinates. The distribution of the vertical layers is irregular, to enable greater precision
at ground level. In general we use 25 levels to describe the atmosphere to a height of 80 km,
32 levels for simulations up to 120 km, or 50 levels to rise up to thermosphere. The first
layer describes the first few meters above the ground, whereas the upper layers span several
kilometers. Figure 2.4 describes the vertical grid representation and associated variables.
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Figure 2.4: Vertical grid description of the 11m (or nlayer) atmospheric layers in
the programming code (11m is the variable used in the dynamical part, and nlayer is
used in the physical part). Variables ap, bp and aps, bps indicate the hybrid levels
at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer
is Plev(l) = ap(l) + bp(l) x Ps and pressure in the middle of the layer is defined by
Play(l) = aps(l) + bps(l) x Ps, (where Ps is surface pressure). Sigma coordinates are
merely a specific case of hybrid coordinates such that aps = 0 and bps = P/Ps. Note
that for the hybrid coordinates, bps = 0 above ~ 50 km, leading to purely pressure levels.
The user can choose whether to run the model using hybrid coordinates or not by setting
variable hybrid in run.def to True or False.



2.4 Variables used in the model

2.4.1 Dynamical variables

The dynamical state variables are the atmospheric temperature, surface pressure, winds
and tracer concentrations. In practice, the formulation selected to solve the equations in the
dynamics is optimised using the following less “natural” variables:

- potential temperature 6 (t et a in the code), linked to temperature T by § = T'(P/Pref)™ "
with k = R/C), (note that  is called kappa in the dynamical code, and rcp in the
physical code). We take Pref = 610 Pa on Mars.

- surface pressure (ps in the code).
- mass the atmosphere mass in each grid box (masse in the code).

- the covariant meridional and zonal winds ucov and vcov. These variables are linked
to the “natural” winds by ucov = cu » uandvcov = cv * v, where cu and
cv are constants that only depend on the latitude.

- mixing ratio of tracers in the atmosphere, typically expressed in kg/kg (array g in the
code).

ucov and vcov, “vectorial” variables, are stored on “scalari” grids u and v respec-
tively, in the dynamics (see section 2.2). teta, g, ps, masse, “scalar variables”, are
stored on the “scalar” grid of the dynamics.
2.4.2 Physical variables

In the physics, the state variables of the dynamics are transmitted via an interface that
interpolates the winds on the scalar grid (that corresponds to the physical grid) and trans-
forms the dynamical variables into more “natural” variables. Thus we have winds u and v
(m.s~1), temperature T (K), pressure at the middle of the layers play (Pa) and at interlayers
plev (Pa), tracers q, etc. (kg/kg) on the same grid.

Furthermore, the physics also handle the evolution of the purely physical state variables:

- tsurf surface temperature (K)

- tsoil temperature at different layers under the surface (K)

- emis surface emissivity

- alb surface albedo

- q2 wind variance, or more precisely the square root of the turbulent kinetic energy
- gsurf tracer on the surface (kg.m~?2)

- rnat surface type (0 = ocean, 1 = continent)

- beta surface wetness (0 — 1 implies dry — saturated)

- [anything else?]



2.4.3 Tracers

The model may include different types of tracers:
- condensed species (e.g., CO2, HyO, dust)
- chemically active species (in principle only at the moment)
- radiatively active gases (e.g., water vapor)

In the code, all tracers are stored in one three-dimensional array g, the third index of
which corresponds to each individual tracer. In input and output files (“‘start.nc”, “startfi.nc”,
see Section 5) tracers are stored separately using their individual names. Loading specific
tracers requires that the approriate tracer names are set in the t raceur . def file (see Sec-
tion 7.2.3), and specific computations for given tracers (e.g. computing the water or CO»
cycles) is controlled by setting the corresponding options in the callphys.def file (see

Section 7.2.2).

10



Chapter 3

3D Dynamical Code

3.1 Discretisation of the dynamical equations

Extrait de la note de Robert Sadourny, Phu Le Van et Frédéric Hourdin, Laboratoire de
Meétéorologie Dynamique.

[to be translated when I get the time...]

Le modele climatique du LMD est bati, comme tous les modeles de circulation générale
atmosphérique, sur la résolution numérique des équations primitives de la météorologie
décrites dans de nombreux ouvrages ?. L’analyse présentée ici a été menée sur la nouvelle
version de la dynamique du LMD écrite par Phu Le Van ? sur une formulation de Robert
Sadourny. Cette formulation differe de I’ancienne essentiellement par deux points: dans la
nouvelle formulation, la répartition des points en longitude et en latitude peut étre changée
arbitrairement. L’ autre modification porte sur la répartition des points aux pdles'.

La coordonnée verticale du modele est la pression normalisée par sa valeur a la surface:
o = p/ps. On utilise en fait o aux niveaux inter-couches et s = ¢ au milieu des couches.
On note X et Y les coordonnées horizontales:

X (resp. Y) est une fonction biunivoque de la longitude A (resp. de la latitude ¢).
Ces deux fonctions peuvent étre choisies de facon arbitraire dans le modele LMDZ ce qui
permet d’effectuer un zoom sur une région du globe particuliere. Une grille de ce type est
montrée sur la Figure 3.1. Les variables scalaires (température potentielle 6 = ¢,T/p,",
géopotentiel @ et pression de surface ps) sont évaluées aux points correspondant a des
couples de valeurs entieres (X,Y) = (¢,7). Les variables dynamiques sont décalées par
rapport aux variables scalaires en utilisant une grille C' dans la définition de Arakawa ?2:
le vent zonal est calculé aux points (X,Y) = (i + 1/2,j) et le vent méridien aux points
(X,Y) = (i,4 + 1/2). La disposition des variables sur la grille est illustrée sur la Fig-
ure 3.2.

On utilise en fait les composantes covariantes (@ et ¥) et contravariantes (13 et 1:1) du vent
définies par

[~
I

3.1)

(S
Il
3

cut et @:u/cu avec ¢, = acos (dA\/dX)
v et v=v/c, avec ¢, =a(de/dY)

ol u et v sont les composantes physiques du vecteur vent horizontal. On introduit également:

la pression extensive: p; (pression au sol multipliée par 1’aire de la maille).

! Aux poles sont calculés: le vent méridien dans I’ancienne formulation et les variables scalaires dans la nou-
velle.

11
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Figure 3.1: Grille obtenue avec 96 points en longitude et 73 en latitude et un zoom d’un
facteur 3 centré sur la méditérannée (grille utilisée au laboratoire par Ali Harzallah)
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les trois composantes du flux de masse:

—x- v d
U=ps i, V=7ps tetW =& avec & = ch (3.2)

le facteur de Coriolis multiplié par I’aire de la maille: f = 2Q sin ¢cyc,
ou (2 est la vitesse de rotation de la planéte.

la vorticité potentielle absolue:

(3.3)

I’énergie cinétique

—X =Y
K=- (fw) + vv ) 3.4)

Lanotation 0 X signifie simplement qu’on effectue la différence entre deux points consécutifs
suivant la direction X. La notation @~ signifie qu’on prend la moyenne arithmétique de
la quantité a suivant la direction X. F est un filtre longitudinale appliqué dans les régions
polaires. Les équations discrétisées sont écrites sous la forme suivante:

équations du mouvement:

%—ZYVWMXH@ FE) 40X F (p") -

w0t ()

=55
Ps 0z0 Ds 0z0

3.5
ou 7, est la composante zonale covariante du vecteur vent absolu: 4, = 4 + ¢, af2 cos ¢ et

X5 T . 5, (Wygz) s

—Y —X
Ds 0z0 Ds Oz0

% + 27T 1oy F (@4 K) + 50 0y F (ps") -

(3.6)
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équation thermodynamique:

7
8(52‘9) +F[ox (7°0) + oy (V)] + (SZEQZJW) — Sy G.7)
équation hydrostatique: .
67® = —p"0 6z (3.8)

équations de continuité:

Ops
(,i —F l% 620 (0xU + 6yV) (3.9)
Ips
52W:—(520' ]:((SxU"F(SyV)-f— ot (310)

On a noté S les termes sources dans les différentes équations. Dans ces termes sources,
on distingue 1) d’une part les paramétrisations physiques mentionnées plus haut et qui font
intervenir pour une maille donnée du modele, tous les points situés sur une méme verticale
mais ceux-1a seulement; 2) les opérateurs de dissipation horizontale, censés rendre compte
des échanges entre échelles explicitement représentées dans le modele et échelles sous-
mailles. Ces opérateurs ont la structure de Laplaciens agissant sur des plans horizontaux
c’est a dire qu’il font intervenir un voisin de chaque c6té dans les deux directions horizon-
tales. Cet opérateur est généralement itéré pour le rendre plus sélectif en échelle (plus on
itere un laplacien et plus son effet sur les petites échelles devient important relativement).

3.2 High latitude filters

Extract adapted from Forget et al. [1999]

At high latitude a filter is applied near the singularity in the grid at the pole in order to
satisfy the Courant-Friedrichs-Lewy numerical stability criterion without going to an ex-
cessively small timestep. In the original version of the dynamical code a classical Fourier
filter was used, but we found that because the Martian polar atmosphere appears to be much
more dynamically unstable than the Earth’s polar atmosphere, a more efficient formulation
(based on the grouping of adjacent gridpoints together) was necessary to avoid numerical
instability.

In practice the following technique is used in the subroutine called groupeun.F :

e The points are grouped in packets of 2""8"°UP at the poles(e.g. ngroup=3 — packets
of 8), then 2N8TOUP-1_9NGroup-2_ o1c iy the lower latitudes moving away from the
pole

e The higher ngroup is, the more efficient the smoothing is, and the more stable the
model.

e BUT, iim must be divisible by 21'8"0UP 1}

3.3 Dissipation

Extract adapted from Forget et al. [1999]

14



In the LMD grid point model, nonlinear interactions between explicitly resolved scales
and subgrid-scale processes are parameterized by applying a scale-selective horizontal dis-
sipation operator based on an n time iterated Laplacian A™. For the grid point model, for
instance, this can be written dq/0t = ([—1]"/74iss)(02)?" A"q where dz is the smallest
horizontal distance represented in the model and 7y;5s is the dissipation timescale for a st
ructure of scale dz. These operators are necessary to ensure the grid point model numerical
stability. In practice, the operator is separately applied to (1) potential temperature, (2) the
divergence of the flow, and (3) its vorticity. We respectively use n = 2, n = 1, and n = 2
in the grid point model.

Note: In practice, values of n and 7y are adjustable and prescribed at the beginning
of each run, in run definition file “run.def” (cf. 7.2.1)

3.4 Sponge layer

Extract adapted from Forget et al. [1999]

In the upper levels a sponge layer is also used in both models in an attempt to reduce
spurious reflections of vertically propagating waves from the model top. Unlike the tra-
ditional Rayleigh friction formulation, this operates as a linear drag solely on the eddy
components of the vorticity and divergence fields and is not scale-selective. The timescales
on which it operates are typically half a day, 1 day, and 2 days at the three uppermost levels,
respectively.

Note: the sponge layer “timescale” values and their extensions in altitude are ad-

justable and prescribed at the beginning of each run, in run definition file “run.def”
(cf.7.2.1)

15



Chapter 4

Physical parameterizations of the
generic model: some references

4.1 General

The Generic Climate Model uses a large number of physical parameterizations based on
various scientific theories. Some also use specific numerical methods. A list of these
parameterizations is given below, along with the most appropriate references for each one.
Most of these documents can be found at

http://www.lmd. jussieu.fr/mars.html.

General references: No documents attempt to give a complete scientific description of
the current version of the GCM. Here’s a reference to a Mars GCM description:
e Forget et al. [1999] (article published in the JGR)

e “Updated Detailed Design Document for the Model” (ESA contract, Work Package
6, 1999, available on the web) which is simply a compilation of the preceding article
with a few additions that were published separately.

4.2 Radiative transfer

The radiative transfer parameterizations are used to calculate the heating and cooling ratios
in the atmosphere and the radiative flux at the surface.

[TO WRITE: IMPORTANT SECTION - REFERENCES HERE ARE FOR MARS
ONLY]

4.2.1 Absorption/emission and diffusion by dust:
Dust spatial distribution
( dustopacity)

e Vertical distribution and description of “MGS” and “Viking” scenarios in the ESA re-
port Mars Climate Database V3.0 Detailed Design Document by Lewis et al. (2001),
available on the web.

e For the “MY24” scenario, dust distribution obtained from assimilation of TES data
is used (and read via the readtesassim routine).
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Thermal IR radiation
( lwmain)
e Numerical method: Toon et al. [1989]

e Optical properties of dust: Forget [1998]

Solar radiation
( swmain)
e Numerical method: Fouquart and Bonel [1980]

e Optical properties of dust: see the discussion in Forget et al. [1999], which quotes
Ockert-Bell et al. [1997] and Clancy and Lee [1991].

4.3 Subgrid atmospheric dynamical processes
4.3.1 Turbulent diffusion in the upper layer
( vdifce)

e Implicit numerical scheme in the vertical: see the thesis of Laurent Li (LMD, Uni-
versité Paris 7, 1990), Appendix C2.

e (Calculation of the turbulent diffusion coefficients: Forget et al. [1999].

4.3.2 Convection

( convadj)
See Hourdin et al. [1993]

4.4 Surface thermal conduction
(soil)

Thesis of Frédéric Hourdin (LMD, Université Paris 7, 1992) : section 3.3 (equations)
and Appendix A (Numerical scheme).

4.5 CO, Condensation

In Forget et al. [1998] (article published in Icarus):

- Numerical method for calculating the condensation and sublimation levels at the surface
and in the atmosphere ( newcondens) explained in the appendix.

- Description of the numerical scheme for calculating the evolution of CO, snow emissivity
(co2snow) explained in section 4.1

4.6 Tracer transport and sources

e “Van-Leer” transport scheme used in the dynamical part ( tracvl and vlsplt
in the dynamical part): Hourdin and Armengaud [1999]
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e Transport by turbulent diffusion (in vdifc), convection (in convadj), sedi-
mentation ( sedim), dust lifting by winds ( dustlift) : see note “Preliminary
design of dust lifting and transport in the Model” (ESA contract, Work Package 4,
1998, available on the web).

e Watercycle, see Montmessin et al. [2004]
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Chapter 5

Running the model: a practice
simulation

This chapter is meant for first-time users of the LMD model. As the best introduction to the
model is surely to run a simulation, here we explain how to go about it. All you will need
are files necessary to build the GCM (all are in the LMDZ . GENERIC directory) as well as
some initial states to initiate simulations (see below).

Once you have followed the example given below, you can then go on to change the control
parameters and the initial states as you wish. A more detailed description of the model’s
organization as well as associated inputs and outputs are given in sections 6 and 7.

5.1 Installing the model from SVN

The first thing is to download the model from our SVN server. If you cannot use SVN, just
find an old school way to get a copy of the basic model directory LMDZ . GENERIC (and
all the other source files needed for visualization) and download it to your account. Then
start directly from the fifth point.

e Go to the directory where you want to download the model. Not that only one directory
(the root directory) will be added in the current directory.

e If svn is installed on your system, set up the root directory by tipping

svn co "http://svn.lmd.jussieu.fr/Planeto/trunk" -N Name_of_root_directory
cd Name_of_root_directory

e You can now download one of the LMDZ models (for Generic, Mars, Venus, Titan, ...)
by tipping

svn update LMDZ.MODEL_YOU_WANT
For the Generic model, just tipe
svn update LMDZ.GNERIC

The contents of the directory that has been created are described in Chapter 6.

e For visualization of the simulations, yo will need some utilities that we might as well
download now by doing
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svn update UTIL

o Now we must set up the makegcm script that will perform the compilation of the model.
Go into the LMDZ . GENERIC directory and edit the appropriate makegcm_mycompiler
(hereafter called makegcm), where mycompiler is the compiler that you want to
use. There are two important environment variables concerning source files that are
initialized by makegcm and that we need to set properly:

1. LMDGCUM, the path to the source files. By default, the line
setenv LMDGCM ‘readlink -f $scriptdir®

allows makegcm to assume that it is executed in the root source directory so
that this should work without any change. If makegcm does not find the source,
you can enter manually the path by changing the above line by

setenv LMDGCM "path/to/source/directory/LMDZ.GENERIC"

2. LIBOGCU, the path to the compilation directory where all object files will be
kept. By default, the line

setenv LIBOGCM S$LMDGCM/libo

specifies that source will be keptin a 1 ibo directory created in LMDZ . GENERIC.
You can also change that if needed.

o Install NetCDF http://www.unidata.ucar.edu/packages/netcdf/INSTALL.html and set en-
vironment variables NCDF INC and NCDFLIB:

The latest version of the NetCDF package is available on the web at the following
address: http://www.unidata.ucar.edu/software/netcdf along with instructions
for building (or downloading precompiled binaries of) the library.

Once the NetCDF library has been compiled (or downloaded), you should have
access to the library 1ibnetcdf . a itself, the various files (netcdf.inc,
netcdf.mod, ...) to include in programs, and basic NetCDF software (nc-
dump and ncgen).

To ensure that during compilation, the model can find the NetCDF library and in-
clude files, you must declare environment variables NCDFLIB and NCDFINC.

NCDF LIB must contain the path to the directory containing the object library 1ibnetcdf.a
and NCDF INC must contain the path to the directory containing the include files
(netcdf.inc,...)

As for LMDGCM variable, these variables can be declared by changing the right
line in makegcm

setenv NCDFINC /wherever/is/netcdf/include
setenv NCDFLIB /wherever/is/netcdf/lib

For example, if working at LMD and with ifort, the path is

setenv NCDFINC /donnees/emlmd/netcdf64-4.0.1_ifort/include
setenv NCDFLIB /donnees/emlmd/netcdf64-4.0.1 ifort/lib

o Install software for loading and displaying NetCDF files such as GrAdS (http://grads.iges.org/grads/),
Ferret (http://ferret.wrc.noaa.gov/Ferret), or Python. Some visualization scripts, es-
pecially for Python, can be found in the UTIL directory and will be described later.
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e Finally, make sure that you have access to all the executables needed for building and
using the model and remember to set environment variables to the correct corre-
sponding pathes (note that if you do not want to have to redefine these every session,
you should put the definitions in the corresponding . cshrc or .bashrc files).

- UNIX function make
- a Fortran compiler
- ncdump

- grads (or ferret)

5.2 Installing the model without SVN

Create an alias so that the compilation script makegem is available from anywhere (more
convinient than having to type the full path to the script, or copying it over where you want
to run it). The makegcm script is in the LMDZ.GENERIC directory, which is referenced
by the LMDGCM variable, so:

If using Csh:

alias makegcm $LMDGCM’ /makegcm’

if using Bash:

alias makegcm=$LMDGCM/makegcm

5.3 Compiling the model

Two options exist to compile the model.

1. Create an alias so that the compilation script makegcm is available from anywhere.
If using Csh:

alias makegcm ’path/to/LMDZ.GENERIC/makegcm’

if using Bash:

alias makegcm=path/to/LMDZ.GENERIC/makegcm

Then the compilation is done by tipping
makegcm -options gcm

This solution can be convenient but is less flexible if you want to compile the model
in many different configurations and keep track of it.

2. Create and edit an executable script (that we will call compile) in the directory
where you will want to run the model. Put the line

/path/to/the/model/I/use/makegcm —-options gcm
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The advantage of this option is that the compile is present in all of the working
directories where the model is ran, allowing you to keep track of the options used.

Just remains to choose the options. The basic options are as follows
makegcm —d LONxXLATxXALT -p std -t XX -s YY -b IRxVI gcm

where LONxLATxALT are the number of grid cells in longitude, latitude and altitude, XX
is the number of tracers, YY is the number of scatterers that will be taken into account in
the radiative code and IRxVTI is the number of spectral bands in the thermal emission and
stellar part of the radiative code. The option —debug is available with most compilers.
The code runs much more slowly but can output more user friendly bug report messages.

- Example 1: Compiling the generic model at grid resolution 64x48x20 for example,
type (in compliance with the manual for the makegcm function given in section 6.4)

makegcm —-d 64x48x20 -p std gcm

You can find executable gem.e (the compiled model) in the directory where you ran the
makegcm command.

- Example 2: Compiling the generic model with 2 tracers (e.g. water vapour and ice to
simulate the water cycle):

makegcm -d 32x32x20 -t 2 -p std gcm

- Example 3: Compiling the the generic model to check for and trace errors (with ifort
compiler - useful for debugging - warning, the model then runs very slowly!):

makegcm —-d 32x32x20 -p std -0 "-g —-fpeO0 —-traceback" gcm

5.4 Input files (initial states and def files)

- In directory LMDZ . GENERIC/deftank you will find some examples of run parameter
files (. def files) which the model needs at runtime. The four files the model requires
(they must be in the same directory as the executable gcm. e) are: run.def (described in
section 7.2) callphys.def (see section 7.2.2), gases.def, z2sig.def and traceur.def.

The example . def files given in the de ft ank directory are for various configurations
(e.g. model resolution, planet type), copy (and eventually rename these files to match the
generic names) to the directory where you will run the model.

- Copy initial condition files start.nc and startfi.nc (described in section 7.2) to the same
directory.

You can extract such files from start_archive ‘banks of initial states’ (i.e. files which con-
tain collections of initial states from stndard scenarios and which can thus be used to check
if the model is installed correctly) stored on the LMD website at

http://www.lmd. jussieu.fr/ forget/datagcm/Starts. See section 5.9
for a description of how to proceed to extract start files from start_archives.

[NOTE: WITH THE GENERIC MODEL WE ALMOST ALWAYS START FROM
“startplanet” FILES]
5.5 Running the model
Once you have the program gem.e, input files start.nc startfi.nc, and parameter files

run.def, callphys.def, gases.def, traceur.def, and z2sig.def in the same directory, sim-
ply execute the program to run a simulation:
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Creation of the initial state

start_archive.nc

Newstart

surface.nc

run.def
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run.def

callphys.def
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_callphys.def
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\
|
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Figure 5.1: Input/output data
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gcm. e

You might also want to keep all messages and diagnostics written to standard output
(i.e. the screen). You should then redirect the standard output (and error) to some file, e.g.
gcm.out:

If using Csh:
gcm.e >! gcm.out
If using Bash:

gcm.e > gcm.out 2>l

5.6 Visualizing the output files

As the model runs it generates output files diagfi.nc and stats.nc files. The former contains
instantaneous values of various fields and the later statistics (over the whole run) of some
variables.

5.6.1 Using GrAds to visualize outputs

If you have never used the graphic software GrAds, we strongly recommend spending half
an hour to familiarize yourself with it by following the demonstration provided for that
purpose. The demo is fast and easy to follow and you will learn the basic commands. To
do this read file

/distrib/local/grads/sample

For example, to visualize files diagfi.nc and stats.nc
NetCDF files diagfi.nc and stats.nc can be accessed directly using GrAdS
thanks to utility program gradsnc, (the user does not need to intervene).

To visualize the temperature in the 5th layer using file diagfi . nc for example:
- GrAdS session:

grads return
return (opens a landscape window)
ga—> sdfopen diagfi.nc

ga—> query file (displays info about the open file, including the name of the
stored variables. Shortcut: g file)

ga—-> set z 5 (fixes the altitude to the 5th layer)
ga—> set t 1 (fixes the time to the first stored value)

ga—> query dims (indicates the fixed values for the 4 dimensions. Shortcut: g
dims)

ga—-> display temp (displays the temperature card for the 5th layer and for
the first time value stored. Shortcut: d T)

ga—> clear (clears the display. Shortcut: c)

ga—> set gxout shaded (not a contour plot, but a shaded one)

ga—> display temp

ga—> set gxout contour (returns to contour mode to display the levels)

ga—> display temp (superimposes the contours if the clear command is not
used)
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5.7 Resuming a simulation

At the end of a simulation, the model generates restart files (files restart.nc and
restartfi.nc) which contain the final state of the model. As shown in figure 5.1,
these files (which are of the same format as the start files) can later be used as initial states
for a new simulation.

The restart files just need to be renamed:

mv restart.nc start.nc
mv restartfi.nc startfi.nc

and running a simulation with these will in fact resume the simulation from where the
previous run ended.

5.8 Chain simulations

In practice, we recommend running a chain of simulations lasting several days or longer
(or hundreds of days at low resolution).

To do this, a script named run0 is available in LMDZ . GENERIC/deftank , which
should be used as follows:

e Set the length of each simulation in run.def (i.e. set the value of nday)

e Set the maximum number of simulations at the beginning of the run0 script (i.e. set
the value of nummax)

e Copy start files start.nc startfi.nc over and rename them start0.nc
startfi0.nc.

e Run script run0

runO runs a series of simulations that generate the indexed output files (e.g. startl,
startfil, diagfil, etc.) including files 1runl, lrun2, etc. containing the redi-
rection of the display and the information about the run.

NOTE: to restart a series of simulations after a first series (for example, starting from
start5 and startfib), just write the index of the initial files (e.g. 5) in the file
named num_run. If num_run exists, the model will start from the index written in
num_run. If not it will start from, start0 and startfioO.

NOTE: A script is available for performing annual runs with 12 seasons at 30° solar
longitude as it is in the database (script run_mcd, also found in directory de ft ank). This
script functions with script run0. Just set the number of simulations to 1 in run0. Then
copy run.def into run.def.ref and set nday to 9999 in this file. To start from startN.c, edit
the file run_mcd and comment (with a #) the N months already created and describe N in
num_run. Then run run_mcd.

5.9 Creating and modifying initial states

5.9.1 Using program “newstart”

When working with the generic model, it is common to start with simple initial conditions
(e.g., isothermal, motionless atmosphere). For this we create an initial state using newstart.
In practice, we usually take an old initial state, and simply modify it.

Like the GCM, the program newstart must be compiled (using the makegcm script)
to the required grid resolution. For example:
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makegcm —-d 32x32x20 -p std newstart

Then run
newstart.e
The program then gives you two options:

From which kind of files do you want to create newstart and startfi
0 - from a file start_archive
1 - from files start and startfi

e - Option “1” allows you to read and modify the information needed to create a new
initial state from the files start.nc, startfi.nc

e - Option “0” allows you to read and modify the information needed to create a new
initial state from file start_archive.nc (whateverthe start_archive.nc grid
resolution is).

If you use tracers, make sure that they are taken into account in your start files (either start
or start_archive).

Then answer to the various questions in the scroll menu. These questions allow you to
modify the initial state for the following parameters.

First set of questions:
Change values in tab_cntrl ?

(Current values given above)

3) day_ini : Initial day (=0 at Ls=0)

19) z0 : surface roughness (m)

21) emin_turb : minimal energy (PBL)

20) Imixmin : mixing length (PBL)

26) emissiv : ground emissivity

24 et 25) emisice : CO2 ice max emissivity

22 et 23) albedice : CO2 ice cap albedos

31 et 32) iceradius : mean scat radius of CO2 snow

33 et 34) dtemisice : time scale for snow metamorphism

27) tauvis : mean dust vis. reference opacity
35) volcapa : soil volumetric heat capacity

18) obliquit : planet obliquity (deg)

17) peri_day : periastron date (sols since Ls=0)
15) periastr : min. star-planet dist (Mkm)

16) apoastr : max. star-planet (Mkm)

14) year_day : length of year (in sols)

5) rad : radius of the planet (m)

6) omeg : planet rotation rate (rad/s)

7) g : gravity (m/s2)

8) mugaz : molecular mass of the atmosphere (g/mol)
9) rcp : r/Cp

10) daysec : length of a sol (s)

Second set of questions
flat : no topography ("aquaplanet")

bilball : uniform albedo and thermal inertia
coldspole : cold subsurface and high albedo at S.pole
gname : change tracer name

g=0 : ALL tracer =zero
g=x : give a specific uniform value to one tracer
ini_g : tracers initialisation for chemistry, water and ice
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ini_g-H20 : tracers initialisation for chemistry and ice
ini_g-iceH20 : tracers initialisation for chemistry only
noglacier : Remove tropical H20 ice if |lat|<45
watercapn : H20 ice on permanent N polar cap

watercaps : H20 ice on permanent S polar cap

oborealis : H20 ice across Vastitas Borealis

iceball : Thick ice layer all over surface

wetstart : start with a wet atmosphere

isotherm : Isothermal Temperatures, wind set to zero

radequi : Earth-like rad. eq. temperature profile and winds set to zero
co2ice=0 : remove CO2 polar cap

ptot : change total pressure

emis : change surface emissivity

therm_ini_s : Set soil thermal inertia to reference suface values

Program newstart.e creates files restart .nc and restartfi.nc that you gen-
erally need to rename (for instance rename them in startO.nc and startfi0.nc if you want to
use run0 or run_mcd, starting with season 0; rename them start .nc and startfi.nc
if you just want to perform one run with gcm. e).

5.9.2 Creating the initial start_archive.nc file

Archive file start_archive.nc is created from files start.nc and startfi.nc
by program start2archive. Program start2archive compiles to the same grid resolution as
the start.nc and startfi.nc grid resolution. For example:

makegcm —-d 32x32x20 -p std start2archive

Thenrun start2archive.e

Younow havea start_archive.nc file for one season that you can use with newstart.
If you want to gather other states obtained at other times of year, rerun start2archive.e
with the start.nc and startfi.nc corresponding to these. These additional initial
states will automatically be added to the start_archive.nc file present in the direc-
tory.

5.9.3 Changing the horizontal or vertical grid resolution

To run at a different grid resolution than available initial conditions files, one needs to use
tools newstart and start2archive
For example, to create initial states at grid resolution 32x24x25 from NetCDF files
start and startfi atgrid resolution 64 x48x32 :

e Create file start_archive.nc with start2archive.e compiled at grid resolu-
tion 64 x48 %25 using old file z2sig. def used previously

e Create files newstart.nc and newstartfi.nc with newstart.e compiled at
grid resolution 32x24x25, using new file z2sig.def

[NOT RELEVANT??] If you want to create starts files with tracers for 50 layers using
a start_archive.nc obtained for 32 layers, do not forget to use the ini_qg option
in newstart in order to correctly initialize tracers value for layer 33 to layer 50. You just
have to answer yes to the question on thermosphere initialization if you want to initialize
the thermosphere part only (1=33 to 1=50), and no if you want to initialize tracers for all
layers (1=0 to 1=50).
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Chapter 6

Program organization and
compilation script

All the elements of the LMD model are in the LMDZ.GENERIC directory (and subdi-
rectories). As explained in Section 5, this directory should be associated with environment
variable LMDGCM:

If using Csh:

setenv LMDGCM /where/you/put/the/model/LMDZ.GENERIC
If using Bash:

export LMDGCM=/where/you/put/the/model/LMDZ.GENERIC
Here is a brief description of the LMDZ.GENERIC directory contents:

libf/ All the model FORTRAN Sources (.F or .F90)
and include files (.h) organised in sub-directories
(physics (phystd), dynamics (dyn3d), filters (filtrez)...)

deftank/ A collection of examples of parameter files required
to run the GCM (run.def, callphys.def, ...)

makegcm Script that should be used to compile the GCM as well
as related utilities (newstart, start2archive, testphysld)

create_make_gcm Executable used to create the makefile.
This command is run automatically by
"makegcm" (see below) .

6.1 Organization of the model source files

The model source files are stored in various sub directories in directory libf. These sub-
directories correspond to the different parts of the model:

grid: mainly made up of “dimensions.h” file, which contains the parameters that define
the model grid, i.e. the number of points in longitude (IIM), latitude (JJM) and
altitude (LLM), as well as the number of tracers (NQMX).

dyn3d: contains the dynamical subroutines.
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bibio: contains some generic subroutines not specifically related to physics or dynamics
but used by either or both.

phymars: contains the physics routines.

filtrez: contains the longitudinal filter sources applied in the upper latitudes, where the
Courant-Friedrich-Levy stability criterion is violated.

6.2 Programming

The model is written in Fortran-77 and Fortran-90.

e The program sources are written in “file.F” or “file.F90” files. The extension .F
is the standard extension for fixed-form Fortran and the extension .F90 is for free-
form Fortran. These files must be preprocessed (by aC preprocessor such as (cpp))
before compilation (this behaviour is, for most compilers, implicitly obtained but
using a capital F in the extention of the file names).

e Constants are placed in COMMON declarations, located in the common “include”
files **file.h”

e In general, variables are passed from subroutine to subroutine as arguments (and
never as COMMON blocks).

e In some parts of the code, for “historical” reasons, the following rule is sometimes
used: in the subroutine, the variables (ex: name) passed as an argument by the
calling program are given the prefix p (ex: pname) while the local variables are
given the prefix z (ex: zname). As a result, several variables change their prefix
(and thus their name) when passing from a calling subroutine to a called subroutine.
We’re trying to eliminate this as the code is developed.

6.3 Model organization

Figure 6.1 describes the main subroutines called by physiq.F. OBSOLETE - FOR MARS
ONLY!!!

6.4 Compiling the model

Technically, the model is compiled using the Unix utility make. The file makefile,
which describes the code dependencies and requirements, is created automatically by the
script

create_make_gcm

This utility script recreates the make file file when necessary, for example, when a source
file has been added or removed since the last compilation.
None of this is visible to the user. To compile the model just run the command

makegcm

with adequate options (e.g. makegcm -d 62x48x32 -p mars gcm), as discussed
below and described in section 5.3.

The makegcm command compiles the model (gem) and related utilities (newstart,
start2archive, testphysld). A detailed description of how to use it and of the various
parameters that can be supplied is given in the help manual below (which will also be given
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1. Initialisation
phyeta0.F ;surfini.F,iniorbit. F, initracer.F,solarlong.F

1.5 Calculation of mean mass and cp, R and thermal conduction coeff
concentration.F

2. Calculation of the radiative tendencies : radiative transfer
(longwave and shortwave) for CO2 and dust.
dustopacity.F and callradite. F

8. Gravity wave and subgrid scale topography drag.
calldrag_noro.F

10. Vertical diffusion (turbulent mixing).

vidfe.F
12. Convective adjustment
convadj.F
physiq.F 14.  Condensation and sublimation of carbon dioxide.
newcondens.F

7. TRACERS :
6a. water and water ice: watercloud.F
6b. call for photochemistry when tracers are chemical species: callchim.F
6¢.other scheme for tracer (dust) transport (lifting, sedimentation): dustdevil.F, callsedim.F
6d. updates (CO2 pressure variations, surface budget)

19 Thermosphere
thermosphere.F

8.5 Surface and sub-surface temperature calculations
soil.F

9. Writing output files :

- "startfi", "histfi" (if it's time): physdeml.F

- saving statistics (if "callstats = .true."): wstats.F'

- dumping eof (if "calleofdump = .true."): eofdump.F

- output any needed variables in "diagfi" : writediagfi.F

Figure 6.1: Organigram of subroutine function physiq.F90
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by the makegcm —h command).

Note that before compiling the GCM with makegcm you should have set the environment
variable LIBOGCM to a path where intermediate objects and libraries will be generated.
If using Csh:

setenv LIBOGCM /where/you/want/objects/to/go/libo
If using Bash:

export LIBOGCM=/where/you/want/objects/to/go/libo

Help manual for the makegem script

makegcm [Options] prog

The makegcm script:

1. compiles a series of subroutines located in the $LMDGCM/libf
sub-directories.
The objects are then stored in the libraries in $LIBOGCM.

2. then, makegcm compiles program prog.f located by default in
$SLMDGCM/1ibf/dyn3d and makes the link with the libraries.

Environment Variables ’S$LMDGCM’ and ' $LIBOGCM’
must be set as environment variables or directly
in the makegcm file.

The makegcm command is used to control the different versions of the model
in parallel, compiled using the compilation options
and the various dimensions, without having to recompile the whole model.

The FORTRAN libraries are stored in directory S$LIBOGCM.

OPTIONS:

The following options can either be defined by default by editing the
makegcm "script", or in interactive mode:

-d imxjmxlm where im, Jjm, and lm are the number of longitudes,
latitudes and vertical layers respectively.

-t ntrac Selects the number of tracers present in the model

Options -d and -t overwrite file
$LMDGCM/1libf/grid/dimensions.h

which contains the 3 dimensions of the

horizontal grid

im, Jm, 1m plus the number of tracers passively advected
by the dynamics ntrac,

in 4 PARAMETER FORTRAN format

with a new file:
$SLMDGCM/1libf/grid/dimension/dimensions.im. jm.1lm.tntrac
If the file does not exist already

it is created by the script
$LMDGCM/1libf/grid/dimension/makdim

-p PHYS Selects the set of physical parameterizations
you want to compile the model with.
The model is then compiled using the physical
parameterization sources in directory:
SLMDGCM/1ibf/phyPHYS
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-g grille

Selects the grid type.

This option overwrites file

$LMDGCM/1ibf/grid/fxyprim.h

with file

$LMDGCM/1ibf/grid/fxy_grille.h

the grid can take the following values:

1. reg - the regular grid

2. sin - to obtain equidistant points in terms of sin(latitude)
3. new - to zoom into a part of the globe

-0 "compilation options" set of fortran compilation options to use

—include path

—adjnt

—-filtre

Used if the subroutines contain #include files (ccp) that
are located in directories that are not referenced by default.

Compiles the adjoint model to the dynamical code.

filter

To select the longitudinal filter in the polar regions.
"filter" corresponds to the name of a directory located in
SLMDGCM/1ibf. The standard filter for the model is "filtrez"
which can be used for a regular grid and for a

grid with longitudinal zoom.

-link "-Ldirl -1filel -Ldir2 -1file2 ..."

Adds a link to FORTRAN libraries
libfilel.a, libfile2.a

located in directories dirl, dir2 ...respectively
If dirn is a directory with an automatic path
(/usr/lib ... for example)

there is no need to specify -Ldirn.
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Chapter 7

Input/Output

7.1 NetCDF format

GCM input/output data are written in NetCDF format (Network Common Data Form).
NetCDF is an interface used to store and access geophysical data, and a library that pro-
vides an implementation of this interface. The NetCDF library also defines a machine-
independent format for representing scientific data. Together, the interface, library and
format support the creation, access and sharing of scientific data. NetCDF was developed
at the Unidata Program Center in Boulder, Colorado. The freely available source can be
obtained from the Unidata websitehttp://www.unidata.ucar.edu/software/netcdf.
A data set in NetCDF format is a single file, as it is self-descriptive.

7.1.1 NetCDF file editor: ncdump
The editor is included in the NetCDF library. By default it generates an ASCII representa-
tion as standard output from the NetCDF file specified at the input.
Main commands for ncdump
ncdump diagfi.nc
dump contents of NetCDF file diagfi.nc to standard output (i.e. the screen).

nedump -c diagfi.nc

Displays the coordinate variable values (variables which are also dimensions), as well as
the declarations, variables and attribute values. The values of the non-coordinate variable
data are not displayed at the output.

ncdump -h diagfi.nc

Shows only the informative header of the file, which is the declaration of the dimensions,
variables and attributes, but not the values of these variables. The output is identical to that
in option -c except for the fact that the coordinated variable values are not included.

ncdump -v varl,...,varn diagfinc

The output includes the specific variable values, as well as all the dimensions, variables
and attributes. More that one variable can be specified in the list following this option.
The list must be a simple argument for the command, and must not contain any spaces. If
no variable is specified, the command displays all the values of the variables in the file by
default.

33



90N

60N

y e Ve N N ( S
Ve f\"/ 160~ { | /
S o ) ) (
180 166 ) / L SN
SONT 179 (N ) \\(C
j ( | g )
B \200 o
N 0105/
EQq- 70 (—ﬁﬁwo/ 8. /
. 160160 < 1805 a O\
\ 170/ e . /)
3054 /\170\4/\\/,170 DO S e
— 160\ 00 T
160 ) 170———
| —iso— T 150~ ~J //F/_/—/i

s 7ffb15'%g§im//f\wsu—

908
180 120w 60W 0 60E 120E 180

Figure 7.1: Example of temperature data (in this case for present-day Mars) at a given time
using GrADS visualization

7.1.2 Graphic visualization of the NetCDF files using GrAds

GrAdS (The Grid Analysis and Display System) is a graphic software developed by Brian
Doty at the ”Center for Ocean-Land-Atmosphere (COLA)”.

One of its functions is to enable data stored in NetCDF format to be visualized directly.
In figure 7.1 for example, we can see the GrADS visualization of the temperature data at
a given moment. However, unlike NetCDF, GrADS only recognizes files where all the
variables are stored on the same horizontal grid. These variables can be in 1, 2, 3 or 4
dimensions (X,Y,Z and t).

GrADS can also be obtained on the WWWhittp://grads.iges.org/grads/.

7.2 Input and parameter files

The (3D version of the) GCM requires the input of two initialization files (in NetCDF for-
mat):

-start.nc contains the initial states of the dynamical variables.

-startfi.nc contains the initial states of the physical variables.

Note that collections of initial states can be retreived at:
http://www.lmd. jussieu.fr/ forget/datagcm/Starts

Extracting start.nc and startfi.nc from these archived requires using program
newstart, as described in section 5.9.

To run, the GCM also requires the four following parameter files (ascii text files):
-run.def the parameters of the dynamical part of the program, and the temporal integration
of the model.

-callphys.def the parameters for calling the physical part.

-traceur.def the names of the tracer to use.

-z2sig.def the vertical distribution of the atmospheric layers.

Examples of these parameter files can be found in the LMDZ . MARS /de ftank directory.
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7.2.1 run.def

A typical run.def file is given as an example below. The choice of variables to be set
is simple (e.g. nday number of modeled days to run), while the others do not need to be
changed for normal use.

The format of the run.def file is quite straightforward (and flexible): values given to
parameters must be given as:

parameter = value

Any blank line or line beginning with symbol # is a comment, and instruction lines may
be written in any order. Moreover, not specifying a parameter/value set (e.g. deleting it or
commenting it out) means you want the GCM to use a default built-in value. Additionally,
one may use a specific keyword INCLUDEDEF to specify another (text) file in which to
also read values of parameters; e.g.:

INCLUDEDEF=callphys.def
Here are some details about some of the parameters which may be set in run.def:

e day _step, the number of dynamical steps per day to use for the time integration. This
needs to be large enough for the model to remain stable (this is related to the CFL sta-
bility criterion which essentially depends on the horizontal resolution of the model).
On Mars, in theory, the GCM can run with day_step=480 using the 64 x48 grid,
but model stability improves when this number is higher: day_step=960 is recom-
mended when using the 64x48 grid. According to the CFL criterion, day_step
should vary in proportion with the resolution: for example day_step=480 using
the 32x24 horizontal resolution. Note that day_step must also be divisible by
iperiod. For other planets... [FINISH]

o tetagdiv, tetagrot, tetatemp control the dissipation intensity. It is better to limit the
dissipation intensity (tetagdiv, tetagrot, tetatemp should not be too low). However
the model diverges if tetagdiv, tetagrot, tetatemp are too high, especially if there is a
lot of dust in the atmosphere.

Example used with nitergdiv=1 and nitergrot=niterh=2 :
- using the 32x24 grid tetagdiv=6000 s ; tetagrot=tetatemp=30000 s
- using the 64 x48 grid: tetagdiv=3000 s ; tetagrot=tetatemp=9000 s

e idissip is the time step used for the dissipation: dissipation is computed and added
every idissip dynamical time step. If idissip is too short, the model waste
time in these calculations. But if idissip is too long, the dissipation will not be
parametrized correctly and the model will be more likely to diverge. A check must be
made, so that: idissip < tetagdivxdaystep/86400 (same rule for tetagrot
and tetatemp). This is tested automatically during the run.

o iphysiq is the time step used for the physics: physical tendencies are computed every
iphysiqg dynamical time step. In practice, we usually set the physical time step to
be of the order of half an hour. We thus generally set iphysig= day_step/48

Example of run.def file:

# Nombre de Jjours d’integration
nday=669

# nombre de pas par jour (multiple de iperiod) ( ici pour dt = 1 min )
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day_step = 960

# periode pour le pas Matsuno (en pas)
iperiod=5

# periode de sortie des variables de controle (en pas)
iconser=120

# periode d’ecriture du fichier histoire (en jour)
iecri=100

# periode de stockage fichier histmoy (en Jjour)
periodav=60.

# periode de la dissipation (en pas)
idissip=5

# choix de 1’operateur de dissipation (star ou non star )
lstardis=.true.

# avec ou sans coordonnee hybrides
hybrid=.true.

# nombre d’iterations de 1’operateur de dissipation gradiv
nitergdiv=1

# nombre d’iterations de 1l’operateur de dissipation nxgradrot
nitergrot=2

# nombre d’iterations de 1l’operateur de dissipation divgrad
niterh=2

# temps de dissipation des plus petites long.d ondes pour u,v (gradiv)
tetagdiv=10000.

# temps de dissipation des plus petites long.d ondes pour u,v(nxgradrot)
tetagrot=10000.

# temps de dissipation des plus petites long.d ondes pour h ( divgrad)
tetatemp=10000.

# coefficient pour gamdissip
coefdis=0.

# choix du shema d’integration temporelle (Matsuno ou Matsuno-leapfrog)
purmats=.false.

# avec ou sans physique
physic=.true.

# periode de la physique (en pas)
iphysig=20

# choix d’une grille reguliere
grireg=.true.

# frequence (en pas) de 1l’ecriture du fichier diagfi
ecritphy=1920

# longitude en degres du centre du zoom
clon=63.

# latitude en degres du centre du zoom
clat=0.

# facteur de grossissement du zoom, selon longitude
grossismx=1.
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# facteur de grossissement du zoom ,selon latitude
grossismy=1.

# Fonction f(y) hyperbolique si = .true. , sinon sinusoidale
fxyhypb=.false.

# extension en longitude de la zone du zoom ( fraction de la zone totale)
dzoomx= 0.

# extension en latitude de la zone du zoom ( fraction de la zone totale)
dzoomy=0.

# raideur du zoom en X
taux=2.

# raideur du zoom en Y

tauy=2.
# Fonction f(y) avec y = Sin(latit.) si = .TRUE. , Sinon vy = latit.
ysinus= .false.

# Avec sponge layer
callsponge = .true.

# Sponge: model (u=v=0), model (u=umoy,v=0), mode2 (u=umoy, v=vmoy)
mode_sponge= 2

# Sponge: hauteur de sponge (km)
hsponge= 90

# Sponge: tetasponge (secondes)
tetasponge = 50000

# some definitions for the physics, in file ’callphys.def’
INCLUDEDEF=callphys.def

7.2.2 callphys.def

The callphys.def file (along the same format as the run.def file) contains parame-
ter/value sets for the physics.

Example of callphys.def file:

## Orbit / general options

#4 "~ oo Tom T T m e
# Run with or without tracer transport ?
tracer = .true.

# Diurnal cycle ? 1if diurnal=false, diurnally averaged solar heating

diurnal = .true.

# Seasonal cycle ? if season=false, Ls stays constant, to value set in "start"

season = .true.

# Tidally resonant orbit ? must have diurnal=false, correct rotation rate in newstart
tlocked = .false.

# Tidal resonance ratio ? ratio T_orbit to T_rotation

nres =10

# Write some more output on the screen ?
lwrite = .false.

# Save statistics in file "stats.nc" ?
callstats = .true.

# Test energy conservation of model physics ?
enertest = .true.

37



## Radiative transfer options

## "o Tmm T T m e
# call radiative transfer?
callrad = .true.

# the rad. transfer is computed every "iradia" physical timestep
iradia =4
# call multilayer correlated-k radiative transfer ?

corrk = .true.
# folder in which correlated-k data is stored ?
corrkdir = CO2_H20var

# call visible gaseous absorption in radiative transfer ?
callgasvis = .true.
# Include Rayleigh scattering in the visible ?

rayleigh = .true.

# Characteristic planetary equilibrium (black body) temperature

# This is used only in the aerosol radiative transfer setup. (see aerave.F)
tplanet = 215.

# Output spectral OLR in 1D/3D?

specOLR = .false.

# Output global radiative balance in file ’'rad_bal.out’ - slow for 1D!!
meanOLR = .true.
# Variable gas species: Radiatively active ?

varactive = .true.
# Variable gas species: Fixed vertical distribution ?
varfixed = .false.

# Variable gas species: Saturation percentage value at ground ?
satval = 0.0

## Star type

B ST e e
# The choices are:

#

# startype = 1 Sol (G2V-class main sequence)

# startype = 2 Ad Leo (M-class, synthetic)

# startype = 3 GJ644

# startype = 4 HD128167

B T T T e
# Stellar flux at 1 AU. Examples:

# 1366.0 W m-2 Sol today

# 1024.5 W m-2 Sol today x 0.75 = weak early Sun

# 18.462 W m-2 The feeble G1581

# 19.960 W m-2 G1581 with e=0.38 orbital average

FatlAU = 1024.5

## Tracer and aerosol options

## "o To T T m e

# Gravitational sedimentation of tracers (KEEP FALSE FOR NOW) ?
sedimentation = .false.

## Other physics options

## "o Tom T m e

# call turbulent vertical diffusion ?
calldifv = .true.

# call convective adjustment ?

calladj = .true.

# call thermal conduction in the soil ?
callsoil = .true.

FHEEHHE AR R R
## extra specific options for Early Mars
FHEHHE A AR A R R

## Tracer and aerosol options

# Fixed aerosol distributions?
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aerofixed = .false.
# Varying H20 cloud fraction?

CLFvarying = .false.

# H20 cloud fraction?

CLFfixval = 0.5

# number mixing ratio of CO2 ice particles
Nmix_co2 = 100000.

# number mixing ratio of water ice particles
Nmix_h2o = 100000.

## Water options

## "~

# Model water cycle

water = .true.

# Model water cloud formation

watercond = .true.

# Model water precipitation (including coagulation etc.)
waterrain = .true.

# WATER: Precipitation threshold (simple scheme only) ?
rainthreshold = 0.0011
# Include hydrology ?

hydrology = .true.

# H20 snow (and ice) albedo ?

albedosnow = 0.5

# Maximum sea ice thickness ?

maxicethick = 0.05

# Freezing point of seawater (degrees C) ?
Tsaldiff = 0.0

## CO2 options

# gas is non-ideal CO2 ?

nonideal = .false.

# call CO2 condensation ?

co2cond = .true.

# Set initial temperature profile to 1 K above CO2 condensation everywhere?
nearco2cond = .false.

7.2.3 traceur.def

Tracers in input (start.nc and startfi.nc) and output files (restart.nc and
restartfi.nc)are stored using individual tracer names (e.g. co2 for CO2 gas, h2o_vap
for water vapour, h2o_ice for water ice, ...).

The first line of the t raceur . def file (an ASCII file) must contain the number of tracers
to load and use (this number should be the same as given to the —t option of the makegcm
script when the GCM was compiled), followed by the tracer names (one per line). Note
that if the corresponding tracers are not found in input files start .ncand start £i.nc,
then the tracer is initialized to zero.

Example of a traceur.def file: (with water vapour and ice tracers)

2
h2o_ice
h2o_vap

7.2.4 z2sig.def

The z2sig.def file contains the pseudo-altitudes (in km) at which the user wants to set
the vertical levels.

Note that levels should be unevenly spread, with a higher resolution near the surface in or-
der to capture the rapid variations of variables there. It is recommended to use the altitude
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levels as set in the z2sig.def file provided in the de ft ank directory.

Example of 72sig.def file

10.00000 H: atmospheric scale height (km) (used as a reference only)
.0040 Typical pseudo-altitude (m) for 1lst layer (z=Hxlog(sigma))
.018 P rr ot s v r rr ¢ 2nd layer, etc...

.0400

.1000

.228200

.460400

.907000

.73630

.19040

.54010

8.97780

13.5138

18.9666

25.0626

31.5527

38.4369

45.4369

52.4369

g wkrFkr O oOoOo oo o

7.2.5 Initialization files: start and startfi

Files start .ncand startfi.nc,like all the NetCDF files of the GCM, are constructed
on the same model (see NetCDF file composition, figure 7.2). They contain:

- a header with a “control” variable followed by a series of variables defining the (physical
and dynamical) grids

- a series of non temporal variables that give information about surface conditions on the
planet.

- a “time” variable giving the values of the different instants at which the temporal variables
are stored (a single time value (t=0) for start, as it describes the dynamical initial states, and
no time values for startfi, as it describes only a physical state).

To visualize the contents of a start . nc file using the ncdump command:

ncdump -h start.nc

netcdf start {

dimensions:
index = 100 ;
rlonu = 33 ;

latitude = 25 ;
longitude = 33 ;
rlatv = 24 ;

altitude = 18 ;

interlayer = 19 ;
Time = UNLIMITED ; // (1 currently)
variables:
float controle (index) ;
controle:title = "Parametres de controle" ;

float rlonu(rlonu) ;
rlonu:title =
float rlatu(latitude) ;
rlatu:title = "Latitudes des points U" ;
float rlonv(longitude) ;

"Longitudes des points U" ;
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DYNAMIQUE PHYSIQUE

(ex: start) (ex: startfi)
Entéte Entéte
1_ controle (tab_cntrl) 1_ controle (tab_cntrl)
2_rlonu 2_hor_coor
3_rlatu Informations 3_ vert_coor Informations
4 rlonv S 4 vert2_coor ol Ue
grille grille
Conditions de surface Conditions de surface
1_ phisinit 1_ phisfi
2_albedodat
4_zmea
temps temps
Valeur des instants auxquels Valeur des instants auxquels
sont stockées les variables sont stockées les variables

Stockage des variables temporelles ~ Stockage des variables temporelles

( =1 ) =1 )

¢ ucov ) C coZice D)
C veov ) C tsurf D}
C h ) C tsoil )
C ) C 9
( =2 ) t=2 )
¢ ucov D) C coZice D)
¢ veov ) ( tsurf D)
¢ h ) ( tsoil ),
C ) ¢ J
¢ =3 ) ( t=3 )
D ucov ) P coZice )
G VCoV ) NG tsurf )
. h b tsoil ) !

Figure 7.2: Organization of NetCDF files

rlonv:title = "Longitudes des points V" ;
float rlatv(rlatv) ;

rlatv:title = "Latitudes des points V" ;
float ap(interlayer) ;

ap:title "Coef A: hybrid pressure levels" ;
float bp(interlayer) ;

bp:title "Coef B: hybrid sigma levels"
float aps(altitude) ;

aps:title = "Coef AS: hybrid pressure at midlayers" ;
float bps(altitude) ;

bps:title = "Coef BS: hybrid sigma at midlayers" ;

float presnivs(altitude) ;
float latitude (latitude)
latitude:units =

= ~.

'degrees_north"

latitude:long_name = "North latitude" ;
float longitude (longitude) ;
longitude:long_name = "East longitude"
longitude:units = "degrees_east"
float altitude (altitude) ;
altitude:long_name = "pseudo-alt"
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float

float

float

float

float

float

float

float

float

float

float

float

altitude:units = "km"
altitude:positive = "up" ;
cu(latitude, rlonu) ;
cu:title = "Coefficient de passage pour U"
cv(rlatv, longitude) ;
cv:title = "Coefficient de passage pour V"
aire(latitude, longitude) ;
aire:title = "Aires de chaque maille"
phisinit (latitude, longitude) ;
phisinit:title = "Geopotentiel au sol"
Time (Time) ;
Time:title = "Temps de simulation"
Time:units = "days since 1-01-01 00:00:00"
ucov (Time, altitude, latitude, rlonu) ;
ucov:title = "Vitesse U" ;
vcov (Time, altitude, rlatv, longitude) ;
vcov:title = "Vitesse V" ;
teta(Time, altitude, latitude, longitude) ;
teta:title = "Temperature"
h2o_ice(Time, altitude, latitude, longitude) ;
h2o_ice:title = "Traceur h2o_ice"
h2o_vap(Time, altitude, latitude, longitude) ;
h2o0_vap:title = "Traceur h2o_vap"
masse (Time, altitude, latitude, longitude) ;
masse:title = "C est quoi 2"
ps (Time, latitude, longitude) ;
ps:title = "Pression au sol" ;

// global attributes:

}

:title = "Dynamic start file"

List of contents of a startfi.nc file:

ncdump -h startfi.nc

netcdf startfi {

dimensions:
index

= 100 ;

physical_points = 738 ;
subsurface_layers = 18 ;
nlayer_plus_1 = 19 ;
number_of_advected_fields = 3 ;

variables:
float

float

float

float

float

float

float

float

float

float

float

float

controle (index) ;

controle:title = "Control parameters"
soildepth (subsurface_layers) ;

soildepth:title = "Soil mid-layer depth"
longitude (physical_points) ;

longitude:title = "Longitudes of physics grid"
latitude (physical_points) ;

latitude:title = "Latitudes of physics grid"
area (physical_points) ;

area:title = "Mesh area"
phisfi (physical_points) ;

phisfi:title = "Geopotential at the surface"
albedodat (physical_points) ;

albedodat:title = "Albedo of bare ground" ;
ZMEA (physical_points) ;

ZMEA:title = "Relief: mean relief"
ZSTD (physical_points) ;

ZSTD:title = "Relief: standard deviation"
ZSIG(physical_points) ;

Z3IG:title = "Relief: sigma parameter"
ZGAM (physical_points) ;

ZGAM:title = "Relief: gamma parameter"
ZTHE (physical_points) ;
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ZTHE:title = "Relief: theta parameter" ;
float co2ice(physical_points) ;
co2_ice:title = "CO2 ice cover" ;
float inertiedat (subsurface_layers, physical_points) ;
inertiedat:title = "Soil thermal inertia" ;
float tsurf (physical_points) ;
tsurf:title = "Surface temperature" ;
float tsoil (subsurface_layers, physical_points) ;
tsoil:title = "Soil temperature" ;
float emis (physical_points) ;
emis:title = "Surface emissivity" ;
float g2 (nlayer_plus_1, physical_points) ;
g2:title = "pbl wind variance" ;
float h2o_ice (physical_points) ;
h2o_ice:title = "tracer on surface" ;

// global attributes:
:title = "Physics start file" ;
}

Physical and dynamical headers There are two types of headers: one for the physical
headers, and one for the dynamical headers. The headers always begin with a “control’
variable (described below), that is allocated differently in the physical and dynamical parts.
The other variables in the header concern the (physical and dynamical) grids. They are the
following:

the horizontal coordinates
- rlonu, rlatu, rlonv, rlatv for the dynamical part,
- lati, long for the physical part,

the coefficients for passing from the physical grid to the dynamical grid
- cu,cv only in the dynamical header

and finally, the grid box areas
- aire for the dynamical part,
- area for the physical part.

Surface conditions The surface conditions are mostly given in the physical NetCDF files
by variables:

- phisfi for the initial state of surface geopotential,

- albedodat for the bare ground albedo,

- inertiedat for the surface thermal inertia,

- zmea, zstd, zsig, zgam and zthe for the subgrid scale topography.

For the dynamics:
- physinit for the initial state of surface geopotential

Remark: variables phisfi and physinit contain the same information (surface geopotential),

but phisfi gives the geopotential values on the physical grid, while physinit give the values
on the dynamical grid.

Physical and dynamical state variables To save disk space, the initialization files store
the variables used by the model, rather than the “natural” variables.

For the dynamics:

43



- ucov and vcov the covariant winds
These variables are linked to the “natural” winds by
ucov = cu * uandvcov = cv % v

- teta the potential temperature,

-K
or more precisely, the potential enthalpy linked to temperature Tby 6 = T ( Pfe f)

- the tracers,
- ps surface pressure.
- masse the atmosphere mass in each grid box.

“Vectorial” variables ucov and vcov are stored on “staggered” grids u and v respectively
(in the dynamics) (see section 2.2).

Scalar variables h, q (tracers), ps, masse are stored on the “scalar” grid of the dynamical
part.

For the physics:
- co2ice surface dry ice,
- tsurf surface temperature,
- tsoil temperatures at different layers under the surface,
- emis surface emissivity,

- q2 wind variance,
or more precisely, the square root of the turbulent kinetic energy.

- the surface “tracer” budget (kg.m~?2),

All these variables are stored on the “physical” grid (see section 2.2).

The “control” array Both physical and dynamical headers of the GCM NetCDF files
start with a controle variable. This variable is an array of 100 reals (the vector called
tab_cntrl in the program), which contains the program control parameters. Parameters
differ between the physical and dynamical sections, and examples of both are listed below.
The contents of table tab_cntrl can also be checked with the command ncdump —-ff
-v controle.

The ”control” array in the header of a dynamical NetCDF file: start

tab_cntrl(l) = FLOAT (i 1m) ! number of nodes along longitude
tab_cntrl (2) = FLOAT (J ! number of nodes along latitude
tab_cntrl(3) = FLOAT(llm) ! number of atmospheric layers
tab_cntrl (4) = FLOAT (idayref) ! initial day

tab_cntrl (5) = rad ! radius of the planet

tab_cntrl(6) = omeg ! rotation of the planet (rad/s)
tab_cntrl(7) =g ! gravity (m/s2) 73.72 for Mars
tab_cntrl (8) = cpp

tab_cntrl (9) = kappa ' = r/cp

tab_cntrl (10) = daysec ! lenght of a sol (s) 788775
tab_cntrl(11) = dtvr ! dynamical time step (s)

tab_cntrl (12) = etotO ! total energy

tab_cntrl (13) = ptot0 ! total pressure

tab_cntrl (14) = ztotO ! total enstrophy

tab_cntrl (15) = stot0 ! total enthalpy
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The ”controle” array in the header of a physical NetCDF file:

tab_cntrl (16)
tab_cntrl (17)
tab_cntrl (18)
tab_cntrl (19)
tab_cntrl (20)
tab_cntrl (21)
tab_cntrl (22)

tab_cntrl (24)
tab_cntrl (25)

tab_cntrl (27)
tab_cntrl (28)

= ang0 ! total angular momentum
= pa
= preff | reference pressure (Pa)
clon ! longitude of center of zoom
= clat ! latitude of center of zoom
= grossismx ! zooming factor, along longitude
= grossismy ! zooming factor, along latitude
= dzoomx ! extention (in longitude) of zoom
= dzoomy ! extention (in latitude) of zoom
= taux ! stiffness factor of zoom in longitude
= tauy ! stiffness factor of zoom in latitude

c Informations on the physics grid

tab_cntrl (1

tab_cntrl (2
tab_cntrl (3
tab_cntrl (4

)
) =
)
)

c Informations about

c Informations about Mars,

tab_cntrl(5) =
tab_cntrl (6
tab_cntrl (7
tab_cntrl (8
(9
(1

tab_cntrl
tab_cntrl

tab_cntrl(11)
tab_cntrl (12)
tab_cntrl (13)

tab_cntrl (14)
tab_cntrl
tab_cntrl
tab_cntrl

(1
(
(
tab_cntrl(

5)
16)
17)
18)

float (ngridmx

)

float (nlayermx)

day_ini + int (time) !

time -int (time)

year_day !
periheli
aphelie
peri_day

|
!
|
obliquit !

c Boundary layer and turbulence

tab_cntrl (19)
tab_cntrl (20)
tab_cntrl (21)

z0 !
Imixmin !
emin_turb !

c Optical properties of polar caps

tabfcntrl(ZZ)
tab_cntrl (2
tab_cntrl (
tab_cntrl (
tab_cntrl (
tab_cntrl (
tab_cntrl (
tab_cntrl (
tab_cntrl (

= albedice (1)

albedice (2)
emisice (1)
emisice (2)
emissiv
iceradius (1)
iceradius (2)
dtemisice (1)
dtemisice (2)

c dust aerosol properties

tab_cntrl (27)

tab_cntrl (28)
tab_cntrl (29)
tab_cntrl (30)

Soil properties:

tab_cntrl (35)

o

tauvis

volcapa !

max.
date of perihelion
Obliquity of the planet

surface roughness
mixing length
minimal energy

! number of nodes o
! number of atmosph
initi
! initia

only for physics
length of year
min.

(sols)

Sun-Mars distance
SUn-Mars distance
(so

(m)
100
“l.e-8

and ground emissivity

Albedo of northern

Albedo of southern

Emissivity of north
Emissivity of south
Emissivity of marti
mean scat radius of
mean scat radius of
time scale for snow
time scale for snow

mean visible optical
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startfi.nc

n physics grid
eric layers

al day

le time of day

Mars, used by dynamics and physics
rad ! radius of Mars (m) 73397200
omeg ! rotation rate (rad.s-1)
g ! gravity (m.s-2) 73.72
mugaz ! Molar mass of the atmosphere (g.mol-1) 743.49
= rcp !' = r/cp 70.256793 (=kappa dans dynamique)
= daysec ! length of a sol (s) ~88775
= phystep ! time step in the physics
= 0.
= 0.

"668.6
(Mkm) ~206.
(Mkm) ~249.
1ls since N.
(deg) 723.

66
22
spring)
98

“0.01

0.5
0.5

cap
cap
ern cap
ern cap ~0.95

an soil 7.95

C0O2 snow (north)

CO2 snow (south)
metamorphism (north)
metamorphism (south)

“0.95

depth

soil volumetric heat capacity



7.3 Output files

7.3.1 NetCDF restart files - restart.nc and restartfi.nc

These files are of the exact same format as start .nc and startfi.nc

7.3.2 NetCDF file - diagfi.nc

NetCDF file diagfi.nc stores the instantaneous physical variables throughout the sim-

ulation at regular intervals (set by the value of parameter ecritphy in parameter file

run.def; note that ecritphy should be a multiple of iphysiq as well as a divisor of

day_step).

Any variable from any sub-routine of the physics can be stored by calling subroutine
writediagfi

Ilustrative example of the contents of a diagfi.nc file (using ncdump):

nedump -h diagfi.nc

netcdf diagfi {
dimensions:
Time = UNLIMITED ; // (12 currently)
index = 100 ;
rlonu = 65 ;
latitude = 49 ;
longitude = 65 ;
rlatv = 48 ;
interlayer = 26 ;
altitude = 25 ;
subsurface_layers = 18 ;
variables:
float Time (Time) ;
Time:long_name = "Time"
Time:units = "days since 0000-00-0 00:00:00"
float controle (index) ;
controle:title = "Control parameters" ;
float rlonu(rlonu) ;
rlonu:title = "Longitudes at u nodes" ;
float latitude(latitude) ;
latitude:units = "degrees_north"
latitude:long_name = "North latitude" ;
float longitude (longitude) ;
longitude:long_name = "East longitude"
longitude:units = "degrees_east" ;
float altitude (altitude) ;
altitude:long_name = "pseudo-alt"
altitude:units = "km"
altitude:positive = "up" ;
float rlatv(rlatv) ;
rlatv:title = "Latitudes at v nodes"
float aps(altitude) ;
aps:title = "hybrid pressure at midlayers" ;
aps:units = "Pa"
float bps(altitude) ;
bps:title = "hybrid sigma at midlayers"
bps:units = ""
float ap(interlayer) ;

ap:title = "hybrid pressure at interlayers"
ap:units = "pa"

float bp(interlayer) ;
bp:title = "hybrid sigma at interlayers"
bp:units = ""

float soildepth (subsurface_layers) ;
soildepth:long_name = "Soil mid-layer depth" ;
soildepth:units = "m"
soildepth:positive = "down"
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float cu(latitude, rlonu) ;
cu:title = "Conversion coefficients cov <--> natural"

float cv(rlatv, longitude) ;
cv:title = "Conversion coefficients cov <--> natural"

float aire(latitude, longitude) ;
aire:title = "Mesh area"

float phisinit (latitude, longitude) ;
phisinit:title = "Geopotential at the surface"

float emis(Time, latitude, longitude) ;
emis:title = "Surface emissivity" ;
emis:units = "w.m-1"

float tsurf(Time, latitude, longitude) ;
tsurf:title = "Surface temperature”
tsurf:units = "K"

float ps(Time, latitude, longitude) ;
ps:title = "surface pressure"
ps:units = "Pa" ;

float co2ice(Time, latitude, longitude) ;
co2ice:title = "co2 ice thickness"
co2ice:units = "kg.m-2"

float mtot (Time, latitude, longitude) ;
mtot:title = "total mass of water wvapor" ;
mtot:units = "kg/m2"

float icetot (Time, latitude, longitude) ;
icetot:title = "total mass of water ice" ;
icetot:units = "kg/m2"

float tauTES(Time, latitude, longitude) ;
tauTES:title = "tau abs 825 cm-1"
tauTES:units = ""

float h2o_ice_s(Time, latitude, longitude) ;
h2o0_ice_s:title = "surface h2o_ice" ;
h2o0_ice_s:units = "kg.m-2"

}
The structure of the file is thus as follows:
- the dimensions

- variable “time” containing the time of the timestep stored in the file (in Martian days
since the beginning of the run)

- variable “control” containing many parameters, as described above.

- from ““ rhonu” to ’phisinit”: a list of data describing the geometrical coordinates of the
data file, plus the surface topography

- finally, all the 2D or 3D data stored in the run.

7.3.3 Stats files

As an option (stats must be setto .true. in callphys.def), the model can accu-
mulate any variable from any subroutine of the physics by calling subroutine wstat

This save is performed at regular intervals 12 times a day. An average of the daily evo-
lutions over the whole run is calculated (for example, for a 10 day run, the averages of the
variable values at OhTU, 2hTU, 4hTU,...24hTU are calculated), along with RMS standard
deviations of the variables. This ouput is given in file stats.nc.

[lustrative example of the contents of a stats . nc file (using ncdump):
ncdump -h stats.nc

netcdf stats {
dimensions:
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latitude = 49 ;

longitude = 65 ;

altitude = 25 ;

llmpl = 26 ;

Time = UNLIMITED ; // (12 currently)

variables:
float Time (Time) ;
Time:title = "Time"
Time:units = "days since 0000-00-0 00:00:00"
float latitude(latitude) ;
latitude:title = "latitude" ;
latitude:units = "degrees_north"
float longitude (longitude) ;
longitude:title = "East longitude"
longitude:units = "degrees_east"
float altitude (altitude) ;
altitude:long_name = "altitude"
altitude:units = "km"
altitude:positive = "up" ;
float aps(altitude) ;
aps:title = "hybrid pressure at midlayers"

aps:units = ""
float bps(altitude) ;
bps:title = "hybrid sigma at midlayers" ;
bps:units = ""
float ps(Time, latitude, longitude) ;
ps:title = "Surface pressure"
ps:units = "Pa"
float ps_sd(Time, latitude, longitude) ;
ps_sd:title = "Surface pressure total standard deviation over th
e season" ;
ps_sd:units = "Pa"
float tsurf(Time, latitude, longitude) ;
tsurf:title = "Surface temperature”
tsurf:units = "K"
float tsurf_sd(Time, latitude, longitude) ;
tsurf_sd:title = "Surface temperature total standard deviation o
ver the season" ;
tsurf_sd:units = "K"
float co2ice(Time, latitude, longitude) ;
co2ice:title = "CO2 ice cover"
co2ice:units = "kg.m-2"
float co2ice_sd(Time, latitude, longitude) ;
co2ice_sd:title = "CO2 ice cover total standard deviation over t
he season" ;
co2ice_sd:units = "kg.m-2"
float fluxsurf_lw(Time, latitude, longitude) ;
fluxsurf_lw:title = "Thermal IR radiative flux to surface"
fluxsurf_lw:units = "W.m-2"
float fluxsurf_lw_sd(Time, latitude, longitude) ;
fluxsurf_lw_sd:title = "Thermal IR radiative flux to surface tot
al standard deviation over the season" ;
fluxsurf_lw_sd:units = "W.m-2"
float fluxsurf_sw(Time, latitude, longitude) ;
fluxsurf_sw:title = "Solar radiative flux to surface"
fluxsurf_sw:units = "W.m-2"
float fluxsurf_sw_sd(Time, latitude, longitude) ;
fluxsurf_sw_sd:title = "Solar radiative flux to surface total st
andard deviation over the season" ;
fluxsurf_sw_sd:units = "W.m-2"
float fluxtop_lw(Time, latitude, longitude) ;
fluxtop_lw:title = "Thermal IR radiative flux to space"
fluxtop_lw:units = "W.m-2" ;
float fluxtop_lw_sd(Time, latitude, longitude) ;
fluxtop_lw_sd:title = "Thermal IR radiative flux to space total
standard deviation over the season"
fluxtop_lw_sd:units = "W.m-2" ;
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float fluxtop_sw(Time, latitude, longitude) ;
fluxtop_sw:title = "Solar radiative flux to space"
fluxtop_sw:units = "W.m-2" ;
float fluxtop_sw_sd(Time, latitude, longitude) ;
fluxtop_sw_sd:title = "Solar radiative flux to space total stand
ard deviation over the season"
fluxtop_sw_sd:units = "W.m-2" ;
float dod(Time, latitude, longitude) ;
dod:title = "Dust optical depth"
dod:units = ""
float dod_sd(Time, latitude, longitude) ;
dod_sd:title = "Dust optical depth total standard deviation over
the season”
dod_sd:units = ""
float temp(Time, altitude, latitude, longitude) ;

temp:title = "Atmospheric temperature"
temp:units = "K"
float temp_sd(Time, altitude, latitude, longitude) ;
temp_sd:title = "Atmospheric temperature total standard deviatio
n over the season"
temp_sd:units = "K"
float u(Time, altitude, latitude, longitude) ;
u:title = "Zonal (East-West) wind"
uzunits = "m.s-1"
float u_sd(Time, altitude, latitude, longitude) ;
u_sd:title = "Zonal (East-West) wind total standard deviation ov
er the season"
u_sd:units = "m.s-1"
float v(Time, altitude, latitude, longitude) ;
v:title = "Meridional (North-South) wind" ;
v:units = "m.s-1"
float v_sd(Time, altitude, latitude, longitude) ;
v_sd:title = "Meridional (North-South) wind total standard devia
tion over the season"
v_sd:units = "m.s-1"
float w(Time, altitude, latitude, longitude) ;
w:title = "Vertical (down-up) wind"
w:units = "m.s-1"
float w_sd(Time, altitude, latitude, longitude) ;
w_sd:title = "Vertical (down-up) wind total standard deviation o
ver the season"
w_sd:units = "m.s-1"
float rho(Time, altitude, latitude, longitude) ;
rho:title = "Atmospheric density"
rho:units = "none" ;
float rho_sd(Time, altitude, latitude, longitude) ;
rho_sd:title = "Atmospheric density total standard deviation ove
r the season" ;
rho_sd:units = "none"
float g2 (Time, altitude, latitude, longitude) ;
g2:title = "Boundary layer eddy kinetic energy"
g2:units = "m2.s-2" ;
float g2_sd(Time, altitude, latitude, longitude) ;
g2_sd:title = "Boundary layer eddy kinetic energy total standard
deviation over the season" ;
g2_sd:units = "m2.s-2" ;
float vmr_h2ovapor (Time, altitude, latitude, longitude) ;
vmr_h2ovapor:title = "H20 vapor volume mixing ratio"
vmr_h2ovapor:units = "mol/mol" ;
float vmr_h2ovapor_sd(Time, altitude, latitude, longitude) ;
vmr_h2ovapor_sd:title = "H20 vapor volume mixing ratio total sta
ndard deviation over the season"
vmr_h2ovapor_sd:units = "mol/mol"
float vmr_h2oice(Time, altitude, latitude, longitude) ;
vmr_h2oice:title = "H20 ice volume mixing ratio" ;
vmr_h2o0ice:units = "mol/mol"

float vmr_h2oice_sd(Time, altitude, latitude, longitude) ;
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vmmr_h2oice_sd:title = "H20 ice volume mixing ratio total standar
d deviation over the season"
vmr_h2o0ice_sd:units = "mol/mol"
float mtot (Time, latitude, longitude) ;
mtot:title = "total mass of water vapor"
mtot:units = "kg/m2"
float mtot_sd(Time, latitude, longitude) ;
mtot_sd:title = "total mass of water vapor total standard deviat
ion over the season"
mtot_sd:units = "kg/m2"
float icetot (Time, latitude, longitude) ;
icetot:title = "total mass of water ice" ;
icetot:units = "kg/m2"
float icetot_sd(Time, latitude, longitude) ;
icetot_sd:title = "total mass of water ice total standard deviat
ion over the season"
icetot_sd:units = "kg/m2"

}

The structure of the file is simillar to the diagfi.nc file, except that, as stated before,
the average of variables are given for 12 times of the day and that RMS standard deviation
are also provided.
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Chapter 8

Water Cycle Simulation

To simulate the water cycle with the LMD Generic Model:

e In callphys.def, set tracer to true: tracer=.true.. In the radiative trans-
fer sub-section, chose an appropriate correlated-k database that includes the effect
of water vapour (e.g. corrkdir=CO2H20var), and set varactive=.true.,
varfixed=.false.. In the water cycle sub-section you can chose various pa-
rameters - see below for a standard example.

## Orbit / general options

#4 oo

# Run with or without tracer transport ?

tracer = .true.

# Diurnal cycle ? if diurnal=false, diurnally averaged solar heating

diurnal = .true.

# Seasonal cycle ? if season=false, Ls stays constant, to value set in "start"
season = .true.

# Tidally resonant orbit ? must have diurnal=false, correct rotation rate in newstart
tlocked = .false.

# Tidal resonance ratio ? ratio T_orbit to T_rotation

nres =10

# Write some more output on the screen ?

lwrite = .false.

# Save statistics in file "stats.nc" ?

callstats = .true.

# Test energy conservation of model physics ?

enertest = .true.

## Radiative transfer options

7

# call radiative transfer?

callrad = .true.

# the rad. transfer is computed every "iradia" physical timestep
iradia = 4

# call multilayer correlated-k radiative transfer ?

corrk = .true.

# folder in which correlated-k data is stored ?

corrkdir = CO2_H20var

# call visible gaseous absorption in radiative transfer ?
callgasvis = .true.

# Include Rayleigh scattering in the visible ?

rayleigh = .true.

# Characteristic planetary equilibrium (black body) temperature
# This is used only in the aerosol radiative transfer setup. (see aerave.F)
tplanet = 215.

# Output spectral OLR in 1D/3D?

specOLR = .false.

# Output global radiative balance in file ’rad_bal.out’ - slow for 1D!!
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meanOLR = .true.
# Variable gas species: Radiatively active ?

varactive = .true.
# Variable gas species: Fixed vertical distribution ?
varfixed = .false.

# Variable gas species: Saturation percentage value at ground ?
satval = 0.0

## Star type

D e e R P T E PP
# The choices are:

#

# startype = 1 Sol (G2V-class main sequence)

# startype = 2 Ad Leo (M-class, synthetic)

# startype = 3 GJ644

# startype = 4 HD128167

TS

# Stellar flux at 1 AU. Examples:

# 1366.0 W m-2 Sol today

# 1024.5 W m-2 Sol today x 0.75 = weak early Sun
# 18.462 W m-2 The feeble G1581

# 19.960 W m-2 G1581 with e=0.38 orbital average
FatlAU = 1024.5

## Tracer and aerosol options

575

# Gravitational sedimentation of tracers (just H20 ice for now) ?
sedimentation = .false.

## Other physics options

## ~ToToToToTmTmTm T

# call turbulent vertical diffusion 2
calldifv = .true.

# call convective adjustment ?

calladj = .true.

# call thermal conduction in the soil ?
callsoil = .true.

FHAFH R H A AR A A R R R R R R R
## extra non-standard definitions for Early Mars
(fdddddtssdsdtdsddsdsstsdsdstdtssddddttssddsttssdddsdttatddtittaddddddddidi

## Tracer and aerosol options

5 7

# Fixed aerosol distributions?

aerofixed = .false.

# Varying H20 cloud fraction?

CLFvarying = .false.

# H20 cloud fraction?

CLFfixval =1.0

# number mixing ratio of CO2 ice particles
Nmix_co2 = 100000.

# number mixing ratio of water ice particles
Nmix_h2o = 100000.

## Water options

#4 ~ToTTToTmTmn

# Model water cycle

water = .true.

# Model water cloud formation

watercond = .true.

# Model water precipitation (including coagulation etc.)
waterrain = .true.

# WATER: Precipitation threshold (simple scheme only) ?
rainthreshold = 0.0011
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# Include hydrology ?

hydrology = .true.

# H20 snow (and ice) albedo ?

albedosnow = 0.5

# Maximum sea ice thickness ?

maxicethick = 0.05

# Freezing point of seawater (degrees C) ?
Tsaldiff = 0.0

# Evolve surface water sources ?
sourceevol = .true.

#4# CO2 options

#¢ "o

# gas is non-ideal CO2 ?

nonideal = .false.

# call CO2 condensation ?

co2cond = .true.

# Set initial temperature profile to 1 K above CO2 condensation everywhere?
nearco2cond = .false.

You need to compile with at least 2 tracers. If you don’t have CO2 clouds, dust or
other tracers, compilation is done with the command lines:

makegcm —-d 64x48x20 -t 2 -p std -b 32x36 newstart
makegcm -d 64x48x20 -t 2 -p std -b 32x36 gcm

Of course, you will also need an appropriate t raceur . def file indicating you will
use tracers h2o_vap and h2o_ice; if you only run with 2 tracers, then the contents
of the traceur.def file should be:

2
h2o_ice
h2o_vap

Note that the order in which tracers are set in the t raceur . def file is not impor-
tant.

Run
Same as usual. Just make sure that your start files contains the initial states for

water, with an initial state for water vapour / ice in the atmosphere and ice / liquid on
the surface.
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Chapter 9

1D version of the generic model

The physical part of the model can be used to run 1D radiative-convective simulations (one
atmospheric column / globally averaged climate). In practice, the simulation is controlled
from a main program called rcmld.F which, after initialization, then calls the master
subroutine of the physics physiqg.F90 described in the previous chapters.

9.1 Compilation

- For example, to compile the generic model in 1D with 25 layers, type (in compliance with
the makegcm function manual described in section 6.4)

makegcm -d 25 -t 1 -b 32x36 -p std rcmld

You can find executable rem1d.e (the compiled model) in the directory from which you
ran the makegcm command.

9.2 1-D runs and input files

The 1D model does not use an initial state file (the simulation must be long enough to
obtain a balanced state). Thus, to generate a simulation simply type:

> rcmld.e

The following example files are available in the deftank directory (copy them into
your working directory first):

- callphys.def : controls the options in the physics, just like for the 3D GCM.

- z2sig.def : controls the vertical discretization (no change needed, in general), func-
tions as with the 3D GCM.

- traceur.def : controls the tracer names (this file may not be present, as long as you
run without tracers (option t racer=. false. in callphys.def)

- run.def : controls the 1D run parameters and initializations (this is actually file
run.def.1d the deftank directory, which must be renamed run.def to be read by
the program).

The last file is different from the 3D GCM’s run . def input file, as it contains options
specific to the 1D model, as shown in the example below:
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#### Time integration parameters

#

# Initial date (in martian sols ; =0 at Ls=0)
day0=0

# Initial local time (in hours, between 0 and 24)
time=0

# Number of time steps per sol
day_step=48

# Number of sols to run

ndt =400

#### Physical parameters

#

# Surface pressure (Pa)
psurf=7000.

# Gravity (ms"-2)
g=3.72

# Molar mass of atmosphere (g)
mugaz=43.49

# Specific heat capacity of atmosphere?
cpp=744.5

# latitude (in degrees)

latitude=0.0

# orbital distance at perihelion (AU)
periastr=1.558

# orbital distance at aphelion (AU)
apoastr=1.558

# obliquity (degrees)

obliquit=0.0

# Solar zenith angle (degrees)
szangle=60.0

# Albedo of bare ground

albedo=0.2

# Emissivity of bare ground

emis=1.0

# Soil thermal inertia (SI)

inertia=400

# zonal eastward component of the geostrophic wind (m/s)

u=10.

# meridional northward component of the geostrophic wind (m/s)
v=0.

# Initial CO2 ice on the surface (kg.m-2)

co2ice=0

# hybrid vertical coordinate ? (.true. for hybrid and .false. for sigma levels)
hybrid=.false.

# autocompute vertical discretisation? (useful for exoplanet runs)
autozlevs=.false.

% pressure ceiling

pceil=40.0

#####4# Initial atmospheric temperature profile

#

# Type of initial temperature profile

# ichoice=1 Constant Temperature: T=tref

# ichoice=2 Savidjari profile (as Seiff but with dT/dz=cte)
# ichoice=3 Lindner (polar profile)

# ichoice=4 inversion

# ichoice=5 Seiff (standard profile, based on Viking entry)
# ichoice=6 constant T + gaussian perturbation (levels)

# ichoice=7 constant T + gaussian perturbation (km)

# ichoice=8 Read in an ascii file "profile"

ichoice=5

# Reference temperature tref (K)

tref=200

# Add a perturbation to profile if isin=1
isin=0
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# peak of gaussian perturbation (for ichoice=6 or 7)
pic=26.522

# width of the gaussian perturbation (for ichoice=6 or 7)
largeur=10

# height of the gaussian perturbation (for ichoice=6 or 7)
hauteur=30.

# some definitions for the physics, in file ’'callphys.def’
INCLUDEDEF=callphys.def

Note that, just as for the 3D GCM run . def file, input parameters may be given in any
order, or even not given at all (in which case default values are used by the program).

9.3 Output data

During the entire 1D simulation, you can obtain output data for any variable from any phys-
ical subroutine by using subroutine writegld. This subroutine creates file gld.nc
that can be read by GRADS. This subroutine is typically called at the end of subroutine

physiqg .

Example of a call to subroutine writegld requesting temperature output: ( ngrid
horizontal point, nlayer layers, variable pt called “T” in K units):

CALL writegld(ngrid,nlayer,pt,’T’,’K")
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Chapter 10

Z.oomed simulations

The LMD GCM can use a zoom to enhance the resolution locally. In practice, one can
increase the latitudinal resolution on the one hand, and the longitudinal resolution on the
other hand.

10.1 To define the zoomed area
The zoom is defined in run. def. Here are the variables that you want to set:

e East longitude (in degrees) of zoom center clon
e latitude (in degrees) of zoom center clat

e zooming factors, along longitude grossismx. Typically 1.5, 2 or even 3 (see be-
low)

e zooming factors, along latitude grossismy. Typically 1.5, 2 or even 3 (see below)
e fxyhypb: must be set to ”’T” for a zoom, whereas it must be F otherwise

e extention in longitude of zoomed area dzoomx. This is the total longitudinal exten-
sion of the zoomed region (degree).
It is recommended that grossismx X dzoomx < 200°

e extention in latitude of the zoomed region dzoomy. This is the total latitudinal
extension of the zoomed region (degree).
It is recommended that grossismy X dzoomy < 100°

o stiffness of the zoom along longitudes taux. 2 is for a smooth transition in longi-
tude, more means sharper transition.

o stiffness of the zoom along latitudes taux. 2 is for a smooth transition in latitude,
more means sharper transition.

10.2 Making a zoomed initial state

One must start from an initial state archive start_archive.nc obtained from a previ-
ous simulation (see section 5.9) Then compile and run newstart . e using the run.def
file designed for the zoom.

After running newstart.e. The zoomed grid may be visualized using grads, for
instance. Here is a grads script that can be used to map the grid above a topography map:
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set mpdraw off

set grid off

sdfopen restart.nc

set gxout grid

set digsiz O

set lon -180 180

d ps

close 1

*xx replace the path to surface.nc in the following line:
sdfopen /u/forget/WWW/datagcm/datafile/surface.nc
set lon -180 180

set gxout contour

set clab off

set cint 3

d zMOL

10.3 Running a zoomed simulation and stability issue

e dynamical timestep Because of their higher resolution, zoomed simulation requires
a higher timestep. Therefore in run . de f, the number of dynamical timestep per day
day_step must be increased by more than grossismx or grossismy (twice
that if necessary). However, you can keep the same physical timestep (48/sol) and
thus increase iphysiq accordingly (iphysig = day.-step/48).

e It has been found that when zooming in longitude, on must set ngroup=1 indyn3d/groupeun.F.
Otherwise the run is less stable.

e The very first initial state made with newstart .e can be noisy and dynamically
unstable. It may be necessary to strongly increase the intensity of the dissipation and
increase day_step in run.def for 1 to 3 sols, and then use less strict values.

e If the run remains very unstable and requires too much dissipation or a too small
timestep, a good tip to help stabilize the model is to decrease the vertical extension of
your run and the number of layer (one generally zoom to study near-surface process,
s0 20 to 22 layers and a vertical extension up to 60 or 80 km is usually enough).
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Chapter 11

Changing the radiative transfer
properties

One of the key advantages of the LMD generic model is the ability to work with arbi-
trary gas and aerosol mixtures in the radiative transfer. In this chapter we describe how to
produce new correlated-k absorption coefficients and implement them in the GCM.

11.1 Producing the high-resolution data

We use the open-source software kspectrum to produce line-by-line (LBL) absorption
coefficients. Kspectrum is freely available online at

http://code.google.com/p/kspectrum/

See its user manual for general information on installation and basic usage.

To produce LBL data on a grid of pressure and temperature suitable for the GCM,
the program make_composition.F90 is used (available in the utilities folder of
the main GCM directory). This may be compiled with the script compile in the same
folder. Once this has been done, the two scripts prekspectrum and postkspectrum
are used to feed kspectrum the correct inputs and convert the LBL data to correlated-
k coefficients afterward. These scripts require three environment variables to be defined:
DWORK_DIR, KSPEC_DIR and BANDS_DIR.

In the following example, we create a database with a mixed CO5 / HoO atmosphere
where CO- is the dominant gas. First, the three environment variables are set as

DWORK_DIR=/san/home/rdword/corrk_data/C02_H20var
KSPEC_DIR=/san/home/rdword/kspectrum/kspec_1
BANDS_DIR=32x36

We then create a directory that includes files 0.dat, p.dat and T.dat to define
the number of gaseous species and pressure and temperature gridpoints. For each file the
first number gives the number of points / species. See the folder corrk_example in
utilities for the example we will describe here.

Typing prekspect rum results in the following prompt:

Name of atmosphere / planet:

The planet name is for reference only and does not affect the results. After this, the
values of the temperature, pressure and variable gas (H20) grids are displayed, and you are
asked for the CO2 mixing ratio:
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Correlated-k temperature grid:
100.0 K

150.
200.
250.
300.
350.
400.
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Correlated-k pressure grid (mBar):

1. 1 x 10 "-3 mBar
2. 1 x 10 "-2 mBar
3. 1 x 10 "-1 mBar
4. 1 x 10 © 0 mBar
5.1 x 10 ~ 1 mBar
6. 1 x 10 ~ 2 mBar
7. 1 x 10 © 3 mBar
8. 1 x 10 ~ 4 mBar
9. 1 x 10 ~ 5 mBar
nmolec= 2

Temperature layers:

Pressure layers:

Mixing ratio layers:

Total: 44

P 3w J

Please enter vmr of CO2

We chose 1. 0 as there are no other gases (the mixing ratio is automatically changed to
take into account the variable gas). After prekspect rum exits, we can view the resulting
composition. in file stored in the data/ directory of kspect rum:

Atmospheric composition input data file for planet: Zarmina
Number of atmospheric levels: 441
Number of molecules: 2

z (km) / P (atm) /T (K) /  x[CO2] /  x[H20]

0.000000000E+00 0.986923267E-06 0.100E+03 0.99999E+00 0.10000E-06
0.000000000E+00 0.986923267E-06 0.150E+03 0.99999E+00 0.10000E-06
0.000000000E+00 0.986923267E-06 0.200E+03 0.99999E+00 0.10000E-06

Typing run_kspectrumin the kspectrum directory then submits the process as a
batch job. Beware: calculating LBL coefficients for multiple gases and several hundred p,
T values can take several weeks at current processing speeds!

11.2 Performing the correlated-k conversion

Once the LBL data is calculated, it’s time to convert it to correlated-k format. We do this
using a program generate_kmatrix.F90 which is also stored in the utilities
folder and is called by postkspect rum. In addition to the data generated by kspect rum
and the original .dat files, it requires definition of the spectral bands to be used in the
GCM. In this example we use a folder 32x36, containing files narrowbands_VI.in
and narrowbands_IR. in. These files define the number and widths all all bands in the

60



visible and infrared, respectively. They can of course be modified depending on blackbody
temperatures and the tradeoff required between model speed and accuracy - the examples
given provide accurate results for planets around Sun-like or M-class stars with surface
temperatures in the 200-350 K range. postkspectrum moves the LBL database to the
DWORK_DIR directory along with the script run_kmatrix. When run_kmatrix is
submitted in batch mode, it calls generate_kmatrix.exe automatically for both the
visible and the infrared. Correlated-k conversion is much quicker than the LBL calculation
- for this database on current (2011) systems it should take only a few hours.

11.3 Implementing the absorption data in the GCM

To use our new correlated-k coefficients, we symbolically link the correlated-k folder to
the datagcm directory defined in the GCM file phystd/datafile.h (it’s best to
avoid copying the data directly due to space considerations). All that is left is to change
corrkdir in callphys.def to the correct name (CO2_H2Ovar in this example).
Provided that we compile the GCM with the correct number of bands, e.g.

makegcm —-d 32x32x20 -t 1 -b 32x36 -p std gcm

it will run automatically with the new radiative transfer. The GCM checks the radiative
transfer data on initialization vs. the values given in gases.def, to verify that thermo-
dynamic values (e.g. ftgqs, Cp) match the correlated-k data in the model.
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