SUBROUTINE FLUX(TAIR,PAIR,dt,sig,r,M3g,dM0,dM3) !* Masses flux = Condensation/Evaporation + Thermodynamical equilibrium !* !* Condensation/Evaporation: !* Sulfuric acid drive this process (James 1997): most present in droplets !* more or less 95% !* !* Thermodynamical equilibrium: !* Only water flux here (James 1997) => compare to acid vapor, water !* vapor is most present in the atmosphere !* !* ONLY FOR ONE MODE HERE use free_param use donnees IMPLICIT NONE real, intent(in), dimension(3) :: M3g ! Third moment of the mode real, intent(in) :: TAIR, PAIR, dt ! Temp, timestep, pressure real, intent(in) :: r, sig ! Mean radius and variance of the mode real, intent(out) :: dM3, dM0 ! Tendancy real :: RDSA, RCSA ! Resistance real :: A , B, cste, a1, a2, a3 ! Calculus cstes real :: alpha_k ! Function real :: MSAD ! Mass of sulfuric acid in the droplet, in kg real :: mk3 ! Tendancy real :: gamma ! ----- EQUILIBRIUM ----- CALL WSA_ROSA_NEW(TAIR,PAIR,r,WSAEQ,MSAD) ! Calculation of WSA ! ----- CONDENSATION / EVAPORATION ----- IF (WSAEQ .gt. 0) THEN ! Resistance due to the VAPOR diffusion (s/m2) ! Here, we supposed a Dirac function for the calculation of D (Kn(r) RDSA = (RHOSA*RGAS*TAIR) / (D*MSA*RHOsasat) ! Resistance due to the HEAT diffusion (s/m2) RCSA = (LSA*RHOSA)/(KAIR*TAIR) * ((LSA*MSA)/(RGAS*TAIR)-1.0D0) A = 2.0D0*ST*MSA / (RHOSA*RGAS*TAIR) !m B = exp(A/r) cste = 3.0D0/(RCSA+RDSA) a1 = SH2SO4-B-A*B/r-(r**2)*B*A/2.0D0*(2.0D0*r+A)/(r**4) a2 = A*B/(r**3) * (A+3.0D0*r) !m-1 a3 = (-1.0D0)*A*B * (2.0D0*r+A)/(2.0D0*r**4) !m-2 gamma = (a1 * r**(-2) * alpha_k(1,sig)/alpha_k(3,sig) + & & a2 * r**(-1) * alpha_k(2,sig)/alpha_k(3,sig) + & & a3) * cste mk3 = (1.D0/dt)*((WSA/WSAEQ) - 1.D0)*dt mk3 = mk3 + (gamma/WSAEQ) mk3 = 1.D0 - mk3 mk3 = (1.D0/mk3) * (M3g(1)+M3g(2)+M3g(3)) ! ----- TOTAL FLUX ----- ! dm < 0: evaporation and dm > 0: condensation dM3 = mk3 - (M3g(1) + M3g(2) + M3g(3)) !m3 s dM0 = dM3 / (r**3*alpha_k(3,sig)) ELSE dM3 = 0.D0 dM0 = 0.D0 END IF WSA = WSAEQ RETURN END SUBROUTINE FLUX