
LMD Martian Mesoscale Model [LMD-MMM]

User Manual

A. Spiga

aymeric.spiga@upmc.fr

Laboratoire de Météorologie Dynamique

Université Pierre et Marie Curie, Paris, France

Contents

1	$\mathbf{W}\mathbf{h}$	at is the LMD Martian Mesoscale Model?
	1.1	Dynamical core
	1.2	Martian physics
		1.2.1 Physical parameterizations
		1.2.2 Physical timestep
	1.3	Initial and boundary conditions
		1.3.1 Starting state and horizontal boundaries
		1.3.2 Nesting or single-domain strategy?
		1.3.3 Surface fields
		1.3.4 Vertical interpolation
2	Inst	talling the model 11
	2.1	Prerequisites
		2.1.1 General requirements
		2.1.2 Compiling the terrestrial WRF model
	2.2	Main installation of the model sources
	2.3	Parallel computations (optional)
3	Cor	npiling the model and running a test case 15
	3.1	Basics
		3.1.1 Necessary steps to run a simulation
		3.1.2 Structure of the LMD_MM_MARS directory
	3.2	Main compilation step
		3.2.1 Description of the makemeso script
		3.2.2 Use of the makemeso script
	3.3	Running a simple test case
		•
4		ting simulation parameters 21
	4.1	Dynamical settings
		4.1.1 Description of namelist.input
		4.1.2 Important advice on filling namelist.input
	4.2	Physical settings
5		processing utilities 29
	5.1	9 · · · · · · · · · · · · · · · · · · ·
		5.1.1 Prerequisites
		5.1.2 Compiling preprocessing utilities
		5.1.3 Preparing input static data
		5.1.4 Compiling the GCM for initial and boundary conditions
	5.2	Running the preprocessing utilities
		5.2.1 General overview
		5.2.2 Step 1: Running the GCM and converting data
		5.2.3 Step 2: Interpolation on the regional domain
		5.2.4 Step 3: Vertical interpolation on mesoscale levels

6	A quick guide to running a complete mesoscale simulation	37
	6.1 A summary of the complete set of commands to run a mesoscale simulation	37
	6.2 The runmeso script	38
7	Advanced simulations	41
	7.1 Running nested simulations	41
	7.2 Running simulations with tracers	43
	7.3 Running Large-Eddy Simulations	
	7.4 Running simulations with the new physical parameterizations	
8	Post-processing	49
	8.1 Controlling which fields to output in wrfout files	49
	8.2 Interpolating outputs on altitude and pressure levels	
	8.3 Generating maps for winds and meteorological fields simulated by the model \dots	
9	Frequently Asked Questions, Tips and Troubleshooting	51
	9.1 General questions	51
	9.2 Compilation	
	9.3 Preprocessing steps	
	9.4 Runtime	
	9.5 Specific simulations	
\mathbf{M}	artian calendars	57

FOREWORD

Welcome! This manual describes how to use the Laboratoire de Météorologie Dynamique (LMD) Martian Mesoscale Model. Many thanks for looking forward to using this model which development required countless hours of hard work! A significant part of the model development and validation have been funded by ESA and CNES which are acknowledged for their support.

CONTACT The main contact to reach at LMD to become an user of the model is Aymeric SPIGA (main developper, aymeric.spiga@upmc.fr). Alternative contacts at LMD for mesoscale modeling inquiries are Ehouarn MILLOUR ehouarn.millour@lmd.jussieu.fr or François FOR-GET francois.forget@lmd.jussieu.fr. We are open to questions and suggestions on new scientific collaborations, teaching/outreach actions or contractual proposals.

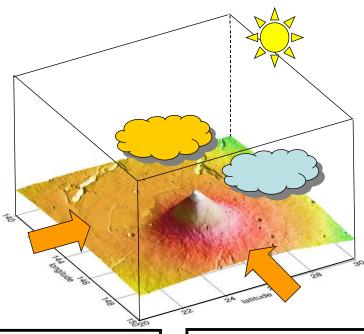
COPYRIGHT (LMD) The LMD Martian Mesoscale Model sources are made available on the condition that we make no representations or warranties regarding the reliability or validity of the model predictions nor the use to which such model predictions should be put, disclaim any and all responsibility for any errors or inaccuracies in the model predictions and bear no responsibility for any use made of this model predictions by any party. The scientific use of already published LMD Martian Mesoscale Model simulations is freely allowed provided that the reference paper Spiga and Forget [2009] is correctly quoted in all publications and that we are kept informed of usage and developments. If your study requires dedicated simulations with the LMD Martian Mesoscale Model, please consider including Aymeric SPIGA as a co-author of your work and asking, if needed, for help with writing the part related to mesoscale modeling. If your study requires additional work on a specific Martian physical parameterization, please consider including other members of the LMD team in addition to Aymeric SPIGA. The LMD Martian Mesoscale Model may not be put to any commercial use without specific authorization.

COPYRIGHT (WRF) Part of the LMD Martian Mesoscale Model is based on the terrestrial model WRF which is in the public domain. If you are an user of the LMD Martian Mesoscale Model, you are therefore an user of the WRF model. Please take a minute to fill in the WRF registration form so that the WRF development team knows about the people using their model: http://www.mmm.ucar.edu/wrf/users/download/wrf-regist.php. WRF was developed at the National Center for Atmospheric Research (NCAR) which is operated by the University Corporation for Atmospheric Research (UCAR). NCAR and UCAR make no proprietary claims, either statutory or otherwise, to this version and release of WRF and consider WRF to be in the public domain for use by any person or entity for any purpose without any fee or charge. UCAR requests that any WRF user include this notice on any partial or full copies of WRF. WRF is provided on an "AS IS" basis and any warranties, either express or implied, including but not limited to implied warranties of non-infringement, originality, merchantability and fitness for a particular purpose, are disclaimed. In no event shall UCAR be liable for any damages, whatsoever, whether direct, indirect, consequential or special, that arise out of or in connection with the access, use or performance of WRF, including infringement actions. WRF is a registered trademark of the University Corporation for Atmospheric Research (UCAR).

Chapter 1

WHAT IS THE LMD MARTIAN MESOSCALE MODEL?

This chapter comprises slightly edited excerpts from *Spiga and Forget* [2009], dedicated to a general scientific and technical description of the LMD Martian Mesoscale Model, of its design and capabilities. Further details can be found in the reference *Spiga and Forget* [2009] paper and subsequent papers about mesoscale applications: e.g., *Spiga and Lewis* [2010] and *Spiga et al.* [2011]. Figure 1.1 summarizes the main points detailed in this introduction. This chapter is intended both for beginners and advanced users of the LMD Martian Mesoscale Model.


1.1 Dynamical core

The numerical integration of the atmospheric fluid dynamic equations is performed in meteorological models by the dynamical core. The LMD Martian Mesoscale Model dynamical core is based on the stable and carefully tested, fully parallellized, Advanced Research Weather Research and Forecasting model (hereinafter referred as ARW-WRF) [Skamarock et al., 2005, 2008], developed for terrestrial applications at NCEP/NCAR (version 2.2.1 - November 2007).

The ARW-WRF mesoscale model integrates the fully compressible non-hydrostatic Navier-Stokes equations in a specific area of interest on the planet. Since the mesoscale models can be employed to resolve meteorological motions less than few kilometers, a scale at which the vertical wind acceleration might become comparable to the acceleration of gravity, hydrostatic balance cannot be assumed, as is usually done in General Circulation Models (GCMs).

Mass, momentum, entropy, and tracer conservation are ensured by an explicitly conservative flux-form formulation of the fundamental equations, based on mass-coupled meteorological variables (winds, potential temperature, tracers). Alternatively, these variables are recast into a reference profile plus a perturbation to reduce truncation errors [Skamarock et al., 2008]. Tracer transport can be computed by an additional forward-in-time scheme based on the Piecewise Parabolic Method [Carpenter et al., 1990], with positive definite and monotonic properties [Skamarock et al., 2006].

In the vertical dimension, the equations are projected, as suggested by Laprise [1992], on terrain-following mass-based coordinates ("eta levels"): $\eta = (\pi - \pi_t)/(\pi_s - \pi_t)$ where π is the hydrostatic component of the pressure, π_s the value at the surface and π_t the (constant) upper boundary value. As shown in Laprise [1992] and Janjic et al. [2001], the choice of such vertical coordinates enables the integration of the ARW-WRF equations either in full non-hydrostatic mode

1. WRF DYNAMICAL CORE

atmospheric flow: conservation of momentum, mass, energy, tracers

2. LMD MARS PHYSICS

radiative transfer, heat transfers

dynamical parameterization (mixing, gravity waves)

microphysics, chemistry, lifting/sedimentation

+ Slope insolation scheme

Topography
Thermal inertia
Albedo

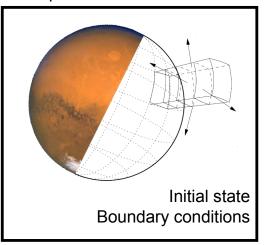


Figure 1.1: An illustration of the LMD Martian Mesoscale Model design and capabilities.

or under the hydrostatic assumption. At the top of the domain, a free relaxation condition to zero vertical velocity is imposed (gravity wave absorbing layers can be defined as well).

In the horizontal dimension, the dynamical solver is available with three possible projections on the planetary sphere: Mercator (suitable for equatorial regions), Lambert Conformal (for midlatitudes), and Polar Stereographic (for high-latitudes). Projections are defined by map scale factors, ensuring a regular computational grid whatever the map projection should be. Polar simulations are therefore devoid of any pole singularity, an usual drawback of the GCMs that requires the use of additional filtering. The spatial discretization is an Arakawa C-grid, where normal velocities are staggered one-half grid length from the thermodynamic variables [Arakawa, 1966].

In the temporal dimension, a third-order Runge-Kutta integration scheme is employed for improved numerical accuracy and stability: the maximum stable Courant Friedrichs Lewy (CFL) numbers for advection are increased by a factor of two compared to the regular leapfrog integration scheme [Skamarock et al., 2008]. A time-splitting integration technique is implemented to prevent the meteorologically insignificant acoustic motions from triggering numerical instabilities [Klemp et al., 2007]. Additional filters for acoustic external and internal modes damp residual instabilities possibly arising in the acoustic step integration.

In the ARW-WRF Runge-Kutta time-integration scheme, while pressure gradient and divergence terms are simply second order and centered, spatial discretizations of the advection terms for momentum, scalars and geopotential are 2nd through 6th order accurate [Wicker and Skamarock, 2002]. Martian simulations are performed with a 5th order discretized advection. One peculiarity of the odd-order advection discretization is the inherent inclusion of a dissipation term [Hundsdorfer et al., 1995] with a coefficient proportional to the Courant number.

However, as was pointed out by Knievel et al. [2007], this odd-ordered implicit scheme is not diffusive enough in low-wind or neutral/unstable stratification, and numerical noise in the wind fields might reach amplitudes comparable to the simulated winds. Such noise was found to be significant in the Martian case under near-surface afternoon superadiabatic conditions. The standard Martian simulations thus include the additional 6th order diffusion scheme developed by Knievel et al., with a removal parameter set for Martian applications to 20% of the $2\Delta x$ noise in one timestep. While reducing the numerical noise near the surface to almost undiscernable amplitudes, the additional Knievel diffusion has little effect on the simulated meteorological fields.

Particular adaptations were required to use the ARW-WRF dynamical solver in the Martian environment. Physical constants, such as the acceleration of gravity and the planetary rotation rate, were converted to the Martian values. Vegetation and ocean-related variables were not used, and replaced with variables more suitable for the Martian applications (e.g., thermal inertia). Martian dates are given by the aerocentric solar longitude L_s , which indicates the position of Mars with respect to the Sun (0, 90, 180, 270 degrees are, respectively, the beginning of the northern hemisphere spring, summer, fall and winter). The terrestrial calendar was thus replaced with the LMD-GCM Martian calendar built on 669 Martian sols split in 12 "aerocentric longitude"-based months (each of them is $L_s = 30^{\circ}$ long, and thus encloses an irregular number of Martian sols due to the high eccentricity of the orbit), and one hour was defined as 1/24 sol.

1.2 Martian Physics

In any meteorological model, the 3D dynamical core is coupled with parameterization schemes (most often 1D) to compute at each grid point of the simulation domain the particular physics of the considered planetary environment: diabatic forcing of the atmospheric circulation (radiative transfer, soil thermal diffusion); sub-grid scale dynamical parameterizations (Planetary Boundary Layer [PBL] diffusion and mixing, convective adjustment); tracer sources and sinks (microphysical processes, chemistry, dust sedimentation and lifting). The LMD-MGCM complete physical parameterizations are interfaced with the adapted ARW-WRF dynamical core, described in the previous section, by a new "driver" that is built on the same principles as the ARW-WRF terrestrial parameterization schemes, which are all switched off for the Martian applications. Thus, the

LMD Martian Mesoscale Model shares the same comprehensive physical parameterizations as the LMD-MGCM, in order to simulate the Martian dust, CO₂, H₂O and photochemistry cycles [Forget et al., 1999; Montmessin et al., 2004; Lefevre et al., 2004].

1.2.1 Physical parameterizations

The radiative transfer in the model accounts for CO₂ gas infrared absorption/emission [Hourdin et al., 1992] and visible and infrared dust absorption, emission and diffusion [Forget et al., 1998, 1999]. Description of the CO₂ condensation processes in the model can be found in Forget et al. [1998b]. Thermal conduction in the soil is simulated by the 11-layer soil model developed by Hourdin et al. [1993] for Mars (soil density and soil specific heat capacity are set as constants). Turbulent closure is based on turbulent viscosity with coefficients calculated from the "2.5-order" scheme by Mellor and Yamada [1982], improved by Galperin et al. [1988]. In the case where vertical mixing is handled in the independent 1D physical packages, the native vertical mixing schemes in the ARW-WRF dynamical core are switched off, and the most appropriate choice for explicit horizontal diffusion is the built-in ARW-WRF scheme based on horizontal deformation [Smagorinsky, 1963].

Recent improvements on the radiative transfer computations [Dufresne et al., 2005], on the slope irradiance estimations [Spiga and Forget, 2008], on the dust lifting and sedimentation [Forget et al., 1999b; Newmann et al., 2002], on the water cycle and water ice clouds [Montmessin et al., 2004], and on the photochemical species [Lefevre et al., 2004], particularly ozone [Lefevre et al., 2008], are also natively included in the LMD Martian Mesoscale Model. The non-local thermodynamic equilibrium (NLTE) parameterizations for thermosphere applications [González-Galindo et al., 2005] as well as estimations of the atmospheric exchanges with the Martian regolith [Böttger et al., 2005], are also available in the model.

Two physical parameterizations of the LMD-MGCM, specifically designed for synoptic-scale meteorological applications, are not used in the mesoscale applications.

Firstly, in the mesoscale domain, the topographical field is described with horizontal resolutions from tens of kilometers to hundreds of meters. The Lott and Miller [1997] subgrid-scale topographical drag parameterization and the Miller et al. [1989] gravity-wave drag scheme can thus be switched off, as the topographical influence on the atmospheric flow is computed by the dynamical core at the chosen mesoscale resolutions.

Secondly, in order to ensure numerical stability, and to account for subgrid-scale mixing processes insufficiently handled in the PBL scheme, it is usually necessary to modify any unstable layer with negative potential temperature gradients (an usual near-surface situation during Martian afternoons) into a neutral equivalent [Hourdin et al., 1993]. As pointed out by Rafkin [2003b], the use of such an artificial convective adjustment scheme might be questionable in Martian atmospheric models, should they be GCMs or mesoscale models. Since numerical stability is ensured in the LMD Martian Mesoscale Model by choosing the appropriate dynamical timestep with respect to the CFL condition, and using the aforementioned ARW-WRF nominal filters and diffusion schemes, the convective adjustment scheme used in the LMD-MGCM can thus be switched off in the LMD Martian Mesoscale Model.

1.2.2 Physical timestep

Invoking physical packages often with respect to the dynamical computations was found to be necessary to accurately account for near-surface friction effects where the wind acceleration is particularly high, typically in regions of strong Martian topographically-driven circulation. In such areas, if the ratio between the physical timestep and the dynamical timestep is above ~ 5 , the model predicts winds spuriously increasing with the chosen ratio and varying with the horizontal resolution. On the contrary, if this ratio is less than ~ 5 , the simulated winds neither vary significantly with the chosen ratio nor with the horizontal resolution.

A ratio equal to 1 is chosen in the standard LMD Martian Mesoscale Model simulations. This choice is in conformity with the strategy adopted in the terrestrial ARW-WRF model. Besides,

computing the physical parameterizations at the same frequency as the dynamical integration is profitable to some physical parameterizations, such as the formation of clouds (which is sensitive to rapid temperature change). Note that radiative transfer computations are usually carried out less often to save computational time.

When the ratio between the physical timestep and the dynamical timestep is superior to 1, two distinct strategies could be adopted. Interestingly, we found that splitting the physical tendency in equal parts and blending it with the dynamical tendency at each dynamical timestep computation is slightly more stable (understand: allows for higher dynamical timesteps) than applying the whole physical tendency when the physical parameterizations are computed, and letting the dynamical core naturally evolve until the next physics call. However, an analysis of the simulated meteorological fields in both cases does not reveal significant differences.

1.3 Initial and boundary conditions

1.3.1 Starting state and horizontal boundaries

Mesoscale simulations can be performed in a limited domain anywhere on the planet. Thus, boundary conditions for the main meteorological fields (horizontal winds, temperature, tracers) have to be provided during the simulations, in addition to an atmospheric starting state. Idealized simulations usually require the use of periodic, symmetric or open boundary conditions, whereas real-case simulations need specified climatologies at the boundaries.

The specified boundary conditions and the atmospheric starting state are derived from previously performed $64 \times 48 \times 25$ (i.e., horizontal resolution of 5.625° in longitude and 3.75° in latitude, model top ~ 80 km altitude) LMD-MGCM simulations which have reached equilibrium, typically after ~ 10 simulated years. GCM results are often used every Martian hour to constrain the mesoscale model at the domain boundaries. Temporal interpolations to each mesoscale timestep and spatial interpolations on the mesoscale domain are performed from the LMD-MGCM inputs. A relaxation zone of a given width (user-defined, usually 5 grid points) is implemented at the boundaries of the ARW-WRF domain to enable both the influence of the large-scale fields on the limited area, and the development of the specific mesoscale circulation inside the domain. The interpolations and the use of a relaxation zone prevent the prescribed meteorological fields at the lateral boundaries from having sharp gradients and from triggering spurious waves or numerical instabilities (the situation where the relaxation zone crosses steep topographical gradients should however be avoided).

1.3.2 Nesting or single-domain strategy?

The model includes one-way and two-way (or "feedback") nesting capabilities. The nested simulations feature two kinds of domains where the meteorological fields are computed: the "parent" domain, with a large geographical extent, a coarse grid resolution, and specified boundary conditions, and the "nested" domains, centered in a particular zone of interest, with a finer grid resolution, and boundary conditions provided by its parent domain.

The nesting capabilities can be used only if deemed necessary, and single-domain simulations may be the primary type of run performed.

Firstly, employing the same physical parameterizations in the mesoscale model computations and in the GCM simulations defining the boundary and initial conditions, ensures a very consistent meteorological forcing at the boundaries of the mesoscale domain. This assumption was not denied by further examination of the performed simulations: mesoscale predictions are not unrealistically departing from the LMD-MGCM prescribed fields at the boundaries, and the mesoscale influence naturally adds to the synoptic (large-scale) tendency communicated at the boundaries.

Secondly, the single-domain approach is appropriate as long as the variations of near-surface winds, pressure and temperature induced by "passing" thermal tides through the east-west boundaries are not unrealistic. This criterion is specific to Martian mesoscale modeling and was described

by Tyler et al. [2002]. In the various simulations performed with the LMD Martian Mesoscale Model, a likely spurious influence of the passing thermal tides was only detected in the near-surface meteorological fields calculated at the ~ 5 near-boundaries grid points. The amplitudes of the departures were negligible ($\delta T \lesssim 3$ K; $\delta u, \delta v \lesssim 5\%$) and did not require the use of domains nested inside one semi-hemispheric parent domain [Tyler et al., 2002]. However, the analysis of the simulated fields at the near-boundaries grid points should be carried out with caution when choosing the single-domain approach. A practical solution to this drawback is to define a large domain, centered on the chosen area of interest, with a sufficient number of grid points (75 × 75 being a minimal requirement).

Thirdly, Dimitrijevic and Laprise [2005] showed, by the so-called "Big Brother" approach, that the single-domain approach yields unbiased results when the boundary forcing involves a minimum of $\sim 8-10$ GCM grid points. Thus, given the resolution of the GCM fields used to constrain the LMD Martian Mesoscale Model, single-domain simulations with, for instance, a horizontal resolution of 20 km shall be performed on at least 133×88 grid points. Antic et al. [2006] found that the "8-10 grid points" limit can be lowered in situations of complex topography, because the dynamical influence of these mesoscale features is responsible for the larger part of the mesoscale circulation in the domain. Such situations are rather common on Mars, and the aforementioned "minimal" grid can be of slightly smaller horizontal extent in areas such as Olympus Mons or Valles Marineris.

Thus the sizes of the simulation grids have to be chosen in order to ensure the applicability of the single-domain approach. The nesting technique is used only when defining a single domain with sufficient geographical extent would have required too many grid points to handle the computations within reasonable CPU time. For instance, with " 64×48 " GCM simulations as boundary conditions, the use of the single-domain strategy to model the Arsia Mons circulation at 5 km resolution imposes a simulation grid of at least 531×354 points. The nesting technique is more suitable for this kind of simulation.

1.3.3 Surface fields

Surface static data intended for the mesoscale domain are extracted from maps derived from recent spacecraft measurements: 64 pixel-per-degree (ppd) MOLA topography [Smith et al., 2001], 8 ppd MGS/Thermal Emission Spectrometer (TES) albedo [Christensen et al., 2001], 20 ppd TES thermal inertia [Putzig and Mellon, 2007]. A smoother composite thermal inertia map derived from Palluconi and Kieffer [1981], Mellon et al. [2000] and Vasavada et al. [2000] can be alternatively used for better continuity with LMD-MGCM simulations. Except for CO_2 ice covered areas, emissivity is set to 0.95. The roughness length z_0 is set to the constant value of 1 cm, but further versions of the model will use spatially-varying z_0 [Hébrard et al., 2007]. Initial values for time-varying surface data, such as CO_2 and H_2O ice on the surface and soil temperatures, are derived from the GCM simulations. The latter initialization reduces the spin-up time for surface temperature to roughly one simulated sol.

The LMD Martian Mesoscale Model has the complete ability to simulate the dust cycle (lifting, sedimentation, transport). However, the high sensitivity of the results to the assumptions made on threshold wind stress and injection rate [Basu et al., 2004] leads us to postpone these issues to future studies. Instead, similarly to the reference LMD-MGCM simulations, dust opacities are prescribed in the mesoscale model from 1999-2001 TES measurements, thought to be representative of Martian atmospheric conditions outside of planet-encircling dust storm events [Montabone et al., 2006]. In the vertical dimension, as described in Forget et al. [1999], and in accordance with the general consensus of well-mixed dust in equilibrium with sedimentation and mixing processes [Conrath, 1975], dust mixing ratio is kept constant from the surface up to a given elevation $z_{\rm max}$ above which it rapidly declines. Both in the nominal GCM and mesoscale simulations, $z_{\rm max}$ as a function of areocentric longitude and latitude is calculated from the "MGS scenario" [Forget et al., 2003].

1.3.4 Vertical interpolation

In the process of initialization and definition of boundary conditions, the vertical interpolation of GCM meteorological fields to the terrain-following mesoscale levels must be treated with caution. While deriving the near-surface meteorological fields from GCM inputs, one may address the problem of underlying topographical structures at fine mesoscale horizontal resolution, e.g., a deep crater that is not resolved in the coarse GCM case.

A crude extrapolation of the near-surface GCM fields to the mesoscale levels is usually acceptable for terrestrial applications. On Mars, owing to the low density and heat capacity of the Martian atmosphere, the surface temperature is to first order controlled by radiative equilibrium, and thus it is left relatively unaffected by variations of topography [e.g. Nayvelt et al., 1997]. A practical consequence, which renders an extrapolation strategy particularly wrong on Mars, is that the near-surface temperature and wind fields vary much more with the distance from the surface than with the absolute altitude above the areoid (or equivalently with the pressure level). Initial tests carried out with the extrapolation strategy showed that differences between temperatures at the boundaries and temperatures computed within the mesoscale domain close to these boundaries often reach 20-30 K near the surface. An interpolation based only on terrain-following principles solves this problem near the surface but was found to lead to numerical instabilities at higher altitudes during the mesoscale integrations.

Therefore, input meteorological data need to be recast on intermediate pressure levels P' with a low level smooth transition from terrain-following levels (for the near-surface environment) to constant pressure levels (for the free atmosphere at higher altitude). We thus have $P'(x,y) = \alpha + \beta P_s(x,y)$, P_s being the surface pressure at the resolution of the GCM simulations. To ensure a realistic low-level transition, the technique described in *Millour et al.* [2008], based on high-resolution GCM results, is employed to calculate the P' levels. The mesoscale surface pressure field p_s is an input parameter of the method, since the near-surface adiabatic cooling over mountains and warming within craters are taken into account. Note that $p_s(x,y)$ is calculated from $P_s(x,y)$ on the basis of the high-resolution topography of the mesoscale domain z(x,y) by

$$p_s(x,y) = P_s(x,y) e^{\frac{g\left[Z(x,y)-z(x,y)\right]}{\operatorname{R}T(x,y)}}$$

where Z(x,y) is the topography at the resolution of the GCM simulations, R the gas law constant, g the acceleration of gravity, and T(x,y) the temperature predicted by the GCM 1 km above the surface (see *Spiga et al.* [2007]). Without reinterpolating the data, the intermediate pressure P' levels are then simply converted into their mesoscale counterparts p' by substituting p_s for P_s in the formula $P'(x,y) = \alpha + \beta P_s(x,y)$. Finally, the built-in ARW-WRF vertical interpolation onto the final mesoscale terrain-following levels can be performed, as the problem of extrapolation is solved by the use of the intermediate pressure levels p'.

The initial atmospheric state obtained through this "hybrid" method ensures low-amplitude adjustments of the meteorological fields by the mesoscale model at the beginning of the performed simulations (i.e., in the first thousands of seconds). Furthermore, the continuity between the large-scale forcing and the mesoscale computations near the limits of the domain, as well as the numerical stability of the simulations, appear as significantly improved compared to methods either based on extrapolation (especially in areas of uneven terrains) or terrain-following interpolation.

CHAPTER 2

Installing the model

This chapter is meant for first time users of the LMD Martian Mesoscale Model. We describe how to install the model on your system. Experience with either the terrestrial WRF mesoscale model or the LMD Martian GCM is not absolutely required, although it would help you getting more easily through the installation process.

2.1 Prerequisites

2.1.1 General requirements

In order to install the LMD Martian Mesoscale Model, please ensure the following prerequisites:

- your computer is connected to the internet;
- o you have 200 Mo free disk space available;
- o your OS is Linux 1 with a decent set of basic commmands (sed, awk, ...);
- o bash, m4 and perl are installed on your computer;
- o at least one of the following Fortran compilers is installed on your computer
 - Portland Group commercial compiler pgf90
 - G95 free compiler ² g95
 - Intel commercial compiler ifort
- o your C compiler is gcc and C development libraries are included;
- o netCDF libraries³ have been compiled on your system with the Fortran compiler suite you aim to use to compile the model. Three environment variables associated with the NETCDF libraries must be defined with the following commands⁴:

```
declare -x NETCDF=/disk/user/netcdf
declare -x NCDFLIB=$NETCDF/lib
declare -x NCDFINC=$NETCDF/include
```

If you want the environment variables to be persistent in your system, copy the declare command lines spread in this user manual in your .bashrc or .bash_profile.

^{1.} The model was also successfully compiled on MacOSX; "howto" information is available upon request but could have become obsolete on recent versions of Apple hardware and software. It is probably possible to compile the model on Windows using Cygwin but this has not been implemented nor tested. This could work, but we recommend instead to install a Linux distribution on your computer (e.g. Ubuntu, Debian, Fedora, ...).

^{2.} Sources and binaries available on http://www.g95.org

^{3.} The outputs from model computations are in netCDF format. This is a convenient self-describing file format widely used in atmospheric science and data analysis. Further information and downloads can be found in http://www.unidata.ucar.edu/software/netcdf.

 $^{4.\,}$ All command lines proposed in this document are defined in ${\tt bash}$ script language

- You might also find useful though not mandatory to install on your system:
 - o ncview⁵: tool to visualize the contents of a netCDF file;
 - o nco⁶: tools to manipulate and modify netCDF files;
 - epd ⁷: the python distribution suite packaged by Enthought, including many librairies for plotting, scientific computations, data analysis...

2.1.2 Compiling the terrestrial WRF model

The LMD Martian Mesoscale Model is based on the terrestrial NCEP/NCAR ARW-WRF Mesoscale Model. As a first step towards the compilation of the Martian version, we advise you to check that the terrestrial model compiles on your computer with either g95 or pgf90 or ifort. On the ARW-WRF website http://www.mmm.ucar.edu/wrf/users/download/get_source.html, you will be allowed to freely download the model after a quick registration process (click on "New users"). Make sure to download the version 2.2 of the WRF model and copy the WRFV2.2.TAR.gz archive to your current working directory. Then please extract the model sources and configure the compilation process:

```
tar xzvf WRFV2.2.TAR.gz
cd WRFV2
./configure
```

The configure script analyzes your architecture and proposes you several possible compilation options. Make sure to choose the "single-threaded, no nesting" option related to either g95 (should be option 13 on a 32 bits Linux PC) or pgf90 (should be option 1 on a 32 bits Linux PC) or ifort. The next step is then to compile the WRF model by choosing the kind of simulations you would like to run. A simple and direct test consists in trying to compile the idealized case of a 2D flow impinging on a small hill:

```
./compile em_hill2d_x > log_compile 2> log_error &
```

In case you encounter problems compiling the ARW-WRF model, please read documentation on the website http://www.mmm.ucar.edu/wrf/users, contact the WRF helpdesk or search the web for your error message. Our team will not be able to offer support for the LMD Martian Mesoscale Model if the ARW-WRF model does not compile and run on your system.

If the compilation is successful, the file log_error should be empty or only reporting few warnings. In the main folder two executables ideal.exe and run.exe should be found, which allows you to run ⁸ the test simulation:

```
cd test/em_hill2d_x
./ideal.exe
./wrf.exe
```

During the simulation, the time taken by the computer to perform integrations at each dynamical timestep is displayed in the standard output. The simulation should end with a message SUCCESS COMPLETE WRF. The model results are stored in a wrfout netCDF data file you might like to browse with a NETCDF-compliant software such as ncview, or read with your favorite graphical software. Once you have checked the WRF terrestrial model compiles and runs well on your system, you can delete all files related to the operations done in this section 2.1.2.

 $^{5. \ \ \, \}texttt{http://meteora.ucsd.edu/~pierce/ncview_home_page.html}$

^{6.} http://nco.sourceforge.net

^{7.} http://www.enthought.com/products/getepd.php. A complete version is available free of charge for students and employees at degree-granting institutions. A limited version with essential librairies is available free of charge for any user (but e.g. cartography and netCDF python packages are not included in this free version).

^{8.} If you compiled the model with g95, ideal.exe will possibly complain about an error reading the namelist. Please move the line non_hydrostatic below the line v_sca_adv_order in the namelist.input file to solve the problem.

2.2 Main installation of the model sources

METHOD 1: YOU WERE GIVEN A LMD_MM_MARS.tar.gz Archive Please set the environment variable \$MESO to point at the directory where you will install the model, and set the environment variable \$MMM as \$MESO/LMD_MM_MARS. Copy the LMD_MM_MARS.tar.gz file in the \$MESO directory and extract the files. Then execute the prepare script that would perform all installation tasks 9:

```
declare -x MESO=/disk/user/MODELS
declare -x MMM=$MESO/LMD_MM_MARS
cp LMD_MMM_MARS.tar.gz $MESO
cd $MESO
tar xzvf LMD_MMMARS.tar.gz
cd $MESO/LMD_MMMMARS
ln -sf ./SRC/SCRIPTS/prepare . ## not needed if script already in LMD_MMMMARS
./prepare
```

If you would like to use several versions of the model in separate folders, remember to change the \$MESO and \$MMM environment variables accordingly.

METHOD 2: YOU WERE GIVEN A SVN LINK THE_LINK You must have Subversion (svn) installed on your system to follow this method. Please use the name of our server repository combined to an svn checkout command to get the model sources ¹⁰. Please also set the environment variables \$MESO and \$MMM as is detailed below. The first download of the model sources could be a bit long. Compared to method 1, this method 2 using svn would allow you to easily get the latest updates and bug fixes done on the LMD Martian Mesoscale Model by the development team ¹¹.

```
svn checkout the_link -N the_name_of_your_local_destination_folder
cd the_name_of_your_local_destination_folder
svn update LMDZ.MARS MESOSCALE
cd MESOSCALE
declare -x MESO=$PWD ## put absolute link in your .bashrc
declare -x MMM=$MESO/LMD_MM_MARS
    ## to get latest updates later on
    cd the_name_of_your_local_destination_folder
    svn update LMDZ.MARS MESOSCALE
    svn log | more
```

2.3 Parallel computations (optional)

Parallel computations with the Message Passing Interface (MPI) standard are supported by the LMD Martian Mesoscale Model. If you want to use this capability, you would have to add the installation of MPICH2 or openMPI as a additional prerequisite. Once the installation is completed, it is required to define the environment variable \$\text{WHERE_MPI}\$ to point in your MPI bin directory, even if you added this directory to your \$\text{PATH}\$ variable.

^{9.} Deflate the various compressed archives contained into LMD_MM_MARS, download the ARW-WRF sources from the web, apply a (significant) "Martian patch" to these sources and build the structure of your LMD_MM_MARS directory 10. At this stage, it is essential to have registered to the WRF website (see foreword) because our server contains some part of the ARW-WRF sources.

^{11.} If you are not interested by this feature, please replace the command line featuring svn checkout by the command line svn export the_link/LMDZ.MARS the_link/MESOSCALE

Chapter 3

COMPILING THE MODEL AND RUNNING A TEST CASE

This chapter is meant for first time users of the LMD Martian Mesoscale Model. We describe how to compile the program and run a test case. We start with important basics about how the model works and how it is organized.

3.1 Basics

3.1.1 Necessary steps to run a simulation

Any simulation that will be carried out with the LMD Martian Mesoscale Model comprises the five following steps. More details are given on these steps in the following chapters, but it is important at this stage to have this structure in mind.

- **Step 0** Compiling the model.
- Step 1 Running the LMD Global Circulation Model (GCM) to provide initial and boundary conditions for the mesoscale model.
- **Step 2** Choosing the mesoscale limited-area domain of simulation. Running preprocessing programs to horizontally interpolate GCM meteorological fields and static data (topography, soil properties) to the chosen simulation domain.
- Step 3 Running preprocessing programs to vertically interpolate GCM meteorological fields and generate the initial and boundary conditions directly used by the mesoscale model.
- Step 4 Running the LMD Martian Mesoscale Model.

In this chapter, the general method to perform steps 0 and 4 is reviewed. Other steps are reviewed in chapter 5; here the model is compiled and run for a test case with precomputed sample files for preprocessing steps 1, 2, 3.

3.1.2 Structure of the LMD_MM_MARS directory

Please take the time to check the contents of the LMD_MM_MARS directories 1 and sub-directories through the following command lines:

ls \$MMM; ls \$MMM/*

^{1.} If you used method 2, you will probably notice that other directories than LMD_MM_MARS are present in \$MESO, but those are not important at this stage.

Contents of LMD_MM_MARS directory:

- o makemeso: this is the bash script to compile the model.
- SRC: this is a directory containing the model sources.
- o SIMU: this is a directory containing scripts and files for an advanced use.
- WPS_GEOG: this is a directory containing static data used in step 2.

Contents of LMD_MM_MARS/SRC subdirectory:

- o SCRIPTS: this is a directory containing useful bash scripts for installation.
- WRFV2: this is a directory containing main model sources (modified WRF dynamics + LMD physics in mars_lmd*).
- PREP_MARS: this is a directory containing sources for the last part of step 1.
- WPS: this is a directory containing sources for step 2.
- POSTPROC: this is a directory containing postprocessing sources.
- LES and LESnophys: these are directories containing sources for Large-Eddy Simulations.

Contents of LMD_MM_MARS/SIMU subdirectory:

- o callphys.def,dustopacity.def, run.def, namelist.input_full, namelist.input_minim, namelist.input_nests, namelist.input_les, namelist.wps_example, namelist.wps_nests, namelist.wps.template: these are useful example and template files to guide you through setting up your own parameters for the LMD Martian Mesoscale Model simulations.
- o calendar: this is a text file containing time management information in the model.
- runmeso: this is a bash script that can be used once the model and preprocessing systems are installed; it prepares and runs a mesoscale simulation by going from step 1 to 4.
- RUN: this is a directory containing various files and scripts useful for advanced simulations.
- o DEF: this is a directory containing many examples of parameter files for simulations.
- In pre-2011 versions of the model, the contents of the various directories listed here might differ. This has probably no impact on your use of the model if you ensure the following files and directories are present in LMD_MM_MARS:
 - o makemeso, prepare, prepare_ini, copy_model
 - o SRC/WRFV2, SRC/PREP_MARS, SRC/WPS
 - o SIMU/runmeso, SIMU/calendar
 - o WPS_GEOG

3.2 Main compilation step

3.2.1 Description of the makemeso script

The bash script which allows you to compile the LMD Martian Mesoscale Model is makemeso. It is an automated script which performs the following serie of tasks:

- o ask the user about compilation settings;
- retrieve some additional information about the system;
- o create a directory \$MESO/LMD_MM_MARS/your_compdir which name depends ² on the kind of compiler you are using, on whether your system is 32 or 64 bits, on whether sequential or parallel computations are planned and on the kind of simulations (idealized or real-case);
- o generate with copy_model a directory your_compdir/WRFV2 with links to SRC/WRFV2 sources 3;
- execute the WRF configure script with the correct options;
- tweak the resulting configure.wrf file to include a link towards the Martian physics and various patches and specific compilation options;
- o calculate the total number of horizontal grid points handled by the LMD physics;
- $\circ\,$ duplicate LMD physical sources if nesting is activated;

^{2.} For example, a your_compdir directory named g95_32_single is created if the user requested a g95 compilation of the code for single-domain simulations on a 32 bits machine.

^{3.} A note to developers: this method ensures that any change to the model sources would be propagated to all the different your_compdir installation folders.

- compile the LMD physical packages with the appropriate makegcm command and collect the compiled objects in the library liblmd.a;
 - This step could be a bit long, especially if you are defining more than one domain. The makemeso script provides you with the full path towards the text file log_compile_phys in which you can check for compilation progress and possible errors. In the end of the process, you might find at the end of log_compile_phys an error message associated to the generation of the final executable. Please do not pay attention to this, as the compilation of the LMD sources is meant to generate a library of compiled objects called liblmd.a instead of an executable.
- o compile the modified Martian ARW-WRF solver and include the liblmd.a library;
 - When it is the first time the model is compiled, this step could be quite long. The makemeso script provides you with a log_compile text file where the progress of the compilation can be checked and a log_error text file listing errors and warnings during compilation. A list of warnings related to grib utilities (not used in the Martian model) may appear and have no impact on the final executables.
- o change the name of the executables in agreement with the settings provided by the user.

3.2.2 Use of the makemeso script

To compile the model, change directory to \$MMM and execute the makemeso command:

cd \$MMM

./makemeso

You are asked a few questions by the makemeso script (see the list below) then it compiles the model for you. The script outputs a text file named last in which your answers to the questions are stored, which allows you to re-run the script without the "questions to the user" step through the makemeso < last command line.

- 1. choice of compiler 4
- 1.bis (mpi-based compilation) number of processors to be used
- 2. number of grid points in longitude ⁵ [61]
- 3. number of grid points in latitude [61]
- 4. number of vertical levels [61]
- 5. number of tracers ⁶ [1]
- 6. number of domains [1]

The answers given in brackets above are the ones you want to use so that you will be able to run the test case proposed in the next section. Otherwise, before proceeding with makemeso, it is good to get used to gather the following information

- On which machine do you want to run the model? (a good practice is to compile on the same machine as the one used to run the model).
- What is the horizontal resolution you want for your simulation? How many domains? How many tracers?
- If parallel computations are employed: Do you have parallel librairies installed on the machine you chose? How much processors you want to use?

^{4.} We advise you to compile the model on the same kind of system (computer + operating system + librairies) as the one you plan to use to run the model.

^{5.} When you use parallel computations, please bear in mind that with 2 (respectively 4, 6, 8, 12, 16, 20, 24, 32, 64, 128) processors the whole domain would be separated into 1 (resp. 2, 2, 2, 3, 4, 4, 4, 4, 8, 8) tiles over the longitude direction and 2 (resp. 2, 3, 4, 4, 4, 5, 6, 8, 8, 16) tiles over the latitude direction. Thus make sure that the number of grid points minus 1 in each direction could be divided by the aforementioned number of tiles over the considered direction. For instance a 82×109 horizontal grid is compliant with the use of 12 processors.

^{6.} The minimum number of tracers is 1 and not 0. Setting to 0 will actually make the script to set tracer number to 1.

A key question that often arises when using the LMD Martian Mesoscale Model is: when does the model has to be recompiled? The set of questions asked by makemeso give some hints about this. Suppose you compiled a version of the model for a given set of parameters 1 to 6 to run a specific compilation. If you would like to run another simulation with at least one of parameters 1 to 6 subject to change, the model needs to be recompiled ⁷ with makemeso (cf. also chapter 4).

Note that the makemeso -h command lists the various options that can be used in the makemeso script. Most options should be used only by advanced users and some of them will be described in the following chapters. At this stage, the only option of makemeso which can be useful to you is -f which forces the model to be recompiled from scratch (this is for instance very useful if a previous compilation ran into problems, or was interrupted by the user). If you already compiled the model successfully, but the model fails to compile a few days later for reasons unrelated to your operations on your system or on the model file, we recommend you to use the -f option in makemeso to try to recompile the model ⁸.

```
[output of makemeso -h]
# Use:
                               ## basic use (real-case configuration)
  makemeso
  makemeso -d
                               ## no compilation, just check the name of the compile folder
  makemeso -c ideal
                               ## idealized mode (convective cell, mountain wave, etc...)
  makemeso -c les
                               ## large-eddy simulations mode based on WRFV3
  makemeso -n
                               ## do not recompile LMD physics (must have been compiled before)
# makemeso < last
                               ## basic use + skip questions [! script must have been executed at least once]
                               ## basic use + skip questions + only known config
## basic use + skip questions + only known config + no LMD phys recompile
  makemeso -r < last
  makemeso -nr < last
                               ## just compile the LMD physics
  makemeso -j
                               ## debug mode
  makemeso -g
                               ## display options
  makemeso -h
  makemeso -p
                               ## with new LMD physics
  makemeso -f
                               ## fresh start [clean -a]
                               ## a specific scenario, you need a corresponding mars_lmd_... (only for newphys)
  makemeso -s storm
                               ## a case with no LMD physics included
# makemeso -x
```

3.3 Running a simple test case

We assume here that you had successfully compiled the model with makemeso at the end of the previous section and you had based your answers to the makemeso script on the indications in brackets. You should then find in the your_compdir directory the real_x61_y61_z61_d1_t1_p1.exe and wrf_x61_y61_z61_d1_t1_p1.exe executables.

In order to test the compiled executables, a ready-to-use test case (with pre-generated initial and boundary conditions) is proposed in the LMD_MM_MARS_TESTCASE.tar.gz archive that you can download in the following FTP site ftp://ftp.lmd.jussieu.fr/pub/aslmd/LMD_MM_MARS_TESTCASE.tar.gz. This test case simulates the hydrostatic atmospheric flow around Arsia Mons (Figure 3.1) during half a sol in springtime with constant thermal inertia, albedo and dust opacity 9.

^{7.} This necessary recompilation each time the number of grid points, tracers and domains is modified is imposed by the LMD physics code. The WRF dynamical core alone is more flexible.

^{8.} A more extreme solution if makemeso -f does not solve your problem is to remove the corresponding your_compdir directory. See chapter 9

^{9.} Though the simulation reproduces some reasonable features of the mesoscale circulation around Arsia Mons (e.g. slope winds), it should not be used for scientific purpose, for the number of grid points is unsufficient for single-domain simulation and the integration time is below the necessary spin-up time.

To launch the test simulation, please type the following commands, replacing the g95_32_single directory with its corresponding value on your system. In the end, the model should run and output the computed meteorological fields in netCDF files named wrfout*. Feel free to browse those files with ncview or your favorite graphical tool to check if the simulated fields look reasonable.

```
cp LMD_MM_MARS_TESTCASE.tar.gz $MMM
tar xzvf LMD_MM_MARS_TESTCASE.tar.gz
cd TESTCASE
ln -sf ../g95_32_single/wrf_x61_y61_z61_d1_t1_p1.exe wrf.exe
nohup wrf.exe > log_wrf &
```

The files contained in TESTCASE prior to launching the simulations with the wrf.exe command illustrate which files are needed to perform step 4, i.e. running a LMD Martian Mesoscale Model simulation ¹⁰.

- namelist.input: text file containing parameters for the dynamical core
- callphys.def: text file containing parameters for the physics parameterizations
- wrf.exe: the model executable (or a link to it) as compiled by makemeso
- wrfinput_d01 and wrfbdy_d01: data files containing initial and boundary conditions

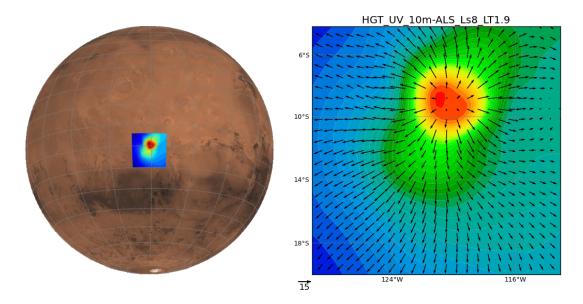


Figure 3.1: [Left plot] Simulation domain defined in the test case proposed as a demonstrator for running the LMD Martian Mesoscale Model. [Right plot] Nighttime winds predicted by the model 10 m above the surface. Both plots have been generated by command-line scripts written in python + numpy + matplotlib (see chapter 8).

If you compiled the model using MPI, the command to launch a simulation is slightly different:

[if several connected machines, create a file mpd.hosts with machine names...] [... and make sure that ssh between machines does not need authentification] mpirun [-f mpd.hosts] -np number_of_processors wrf.exe < /dev/null & tail -20 rsl.out.000? # to check the outputs

^{10.} For the test case presented here, a file named dustopacity.def is needed because for the sake of simplicity of this test case, we set idealized uniform dust opacity. The file namelist.wps is included in the TESTCASE folder for further reference but not needed at this stage.

CHAPTER 4

SETTING SIMULATION PARAMETERS

Here we describe how to set the parameters defining a simulation with the LMD Martian Mesoscale Model. As it was detailed in 3.3, two main parameter files are needed to run the model. Many examples of such files for martian mesoscale simulations can be found in \$MMM/SIMU/DEF:

- 1. The parameters related to the dynamical part of the model (dynamical core) can be set in the file namelist.input according to the ARW-WRF namelist formatting.
- 2. The parameters related to the physical part of the model (physical parameterizations) can be set in the file callphys.def according to the LMD-GCM formatting.

4.1 Dynamical settings

4.1.1 DESCRIPTION OF NAMELIST. INPUT

The file namelist.input controls the behavior of the dynamical core in the LMD Martian Mesoscale Model. This file is organized as a Fortran namelist with explicitly named categories:

- time_control: set simulation start/end time and frequency of outputs;
- o domains: set the extent and grid spacing of the simulation domain(s) in the horizontal and vertical dimension, as well as the timestep for numerical integration;
- o physics: set parameters related to the dynamics / physics interface;
- o dynamics: set parameters controlling dynamical integrations (accuracy, diffusion, filters);
- bdy_control: set parameters related to boundary conditions and relaxation rows between model integrations and boundary conditions;
- o grib2, fdda, namelist_quilt: not relevant for Mars, only present for continuity.

Many parameters in the namelist.input file are optional in the Martian version ¹ and their default values are defined in the file \$MMM/SRC/WRFV2/Registry/Registry.EM ². The only mandatory parameters in namelist.input are within the time_control and domains categories. The minimal version of the namelist.input file corresponds to standard simulations with the model ³:

^{1.} E.g., in the namelist.input file associated to the Arsia Mons test case presented in the previous chapter, the parameter non_hydrostatic is set to false to assume hydrostatic equilibrium, whereas standard simulations are non-hydrostatic. Compared to the file the ARW-WRF users are familiar with (see generic description in \$MMM/SRC/WRFV2/run/README.namelist), typical namelist.input files for LMD Martian Mesoscale Model simulations are much shorter.

^{2.} Changing default values in \$MMM/SRC/WRFV2/Registry/Registry.EM should be avoided even if you are an advanced user.

^{3.} You may find the corresponding file in \$MMM/SIMU/namelist.input_minim.

```
&time_control
                  = 2024.
start_year
start_month
                  = 07,
                 = 01,
start_day
start_hour
                  = 06.
end_year
                  = 2024.
                  = 07,
end month
                  = 02,
end day
end_hour
                 = 06,
                    = 37,
history_interval
frames_per_outfile = 24,
restart
                  = .false.
restart interval = 8880
io_form_history = 2
io_form_restart
io_form_input
io_form_boundary = 2
                 = 0
debug_level
&domains
time_step
dx = 20000,
dy = 20000,
     = 61,
= 61,
e_we
e_sn
e_vert = 61,
p_top_requested = 5
num_metgrid_levels = 33
&physics
&bdy_control
&grib2
&fdda
&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
```

A more detailed description of the namelist.input file is given in what follows ⁴, with all available (mandatory or optional) parameters to be set by the user. Each parameter is commented to understand its impact on the mesoscale simulations. Optional parameters are given with their default values. We have adopted labels to describe the specifics of each parameter with respect to the 5 steps detailed in section 3.1.1 (compilation, preprocessing, run):

- (r) indicates parameters which modifications imply a new compilation ⁵ of the model using makemeso (step 0);
- o (p1), (p2), (p3) mention parameters which modification implies a new processing of initial and boundary conditions (see chapter 5), corresponding respectively to step 1, 2, 3; (p1) means the user has to carry out again steps 1 to 3 before being able to run the model at step 4; (p2) means the user has to carry out again steps 2 to 3 before model run at step 4;
- no label means that once you have modified the parameter, you can simply start directly at step 4 (running the model);
- (*d) denotes dynamical parameters which modification implies non-standard simulations –
 please read \$MMM/SRC/WRFV2/run/README.namelist and use with caution, i.e. if you know
 what you are doing; after modifying those parameters you can simply start at step 4.
- (*) denotes parameters not to be modified;
- o (n) describes parameters involved when nested domains are defined (see chapter 7.1).

^{4.} You may find the corresponding file in \$MMM/SIMU/namelist.input_full.

^{5.} A full recompilation using the option makemeso $\,$ -f is not needed here.

```
&time control
               = 2024,
start_year
                         !! (p1) Start Martian Year (20XX for MY XX)
              = 07,
                         !! (p1) Start Martian Month
start_month
             = 01,
= 06,
= 2024,
start_day
                         !! (p1) Start Martian Day
start_hour
                         !! (p1) Start Martian Hour (at longitude 0)
end_year
                         !! (p1) End Martian Year (20XX for MY XX)
             = 07,
                         !! (p1) End Martian Month
end_month
              = 02,
end_day
                         !! (p1) End Martian Day
end_hour = 06,
                         !! (p1) End Martian Hour (at longitude 0)
history_interval = 37, !! Frequency of outputs (37 --> 3700s = 1 Martian hour)
frames_per_outfile = 24, !! Size of time dimension in files
restart = .false. !! (*) Restart run ?
restart_interval = 8880    !! (*) Frequency of output restart files ?
!!!!! OPTIONAL !!!!!!!!!!!!!!!
input_from_file = T,
                       !! (n)(p2) Initialize a given domain with an input file
&domains
time_step = 30
                          !! Dynamical timestep
dx = 20000,
                          !! (p2) Horizontal resolution
dy = 20000,
                          !! (p2) Horizontal resolution (should be equal to dx)
e_{we} = 61,
                          !! (r)(p2) Number of longitude grid points
e_sn = 61,
                         !! (r)(p2) Number of latitude grid points
e_{vert} = 61,
                         !! (r)(p2) Number of vertical levels
p_top_requested = 5
                         !! (p3) Chosen value of pressure at the top of the model
!!!!! OPTIONAL !!!!!!!!!!!!!!!
time_step_fract_num = 0    !! Additional fraction to time_step: numerator
time_step_fract_den = 1     !! Additional fraction to time_step: denominator
num_metgrid_levels = 26     !! (p1) Number of vertical levels in GCM inputs (+1)
force_sfc_in_vinterp = 8    !! (p3) Number of levels hardwired in the PBL
                         !!
                                 NB: decrease this parameter if low p_top_requested
\max_{dz} = 1500.
                         !! (p3) Maximal interval (m) between vertical levels
eta_levels = -1.
                         !! (p3) Specify a list of e_vert eta levels
max\_dom = 1
                          !! (r)(n)(p2) Total number of domains
grid_id
                    = 1, !! (n)(p2) Identification of the domain
parent_id
                    = 0, !! (n)(p2) Associated parent domain
                    = 0, !! (n)(p2) x-position of the bottom-left nest corner
i_parent_start
                    = 0, !! (n)(p2) x-position of the bottom-left nest corner
j_parent_start
parent_time_step_ratio = 1, !! (n) Ratio of time step parent/nest
               = 0 !! (n) Define one-way nesting [0] or two-way nesting [1]
feedback
                     = 2 !! (n) Smoothing option for parent domain (feedback=1)
smooth_option
                          !!
                                 0: none; 1: 1-2-1 smooth; 2: smooth-desmooth
                    = 5 !! (n) Extent of blending zone for parent/nest boundaries
blend_width
/
&physics
!!!!! OPTIONAL !!!!!!!!!!!!!!!
radt = 1.
                          !! Ratio between physical and dynamical time step
                          !! ... 1 is recommended, >5 is not recommended
mars = 0,
                          !! (r)(p2) Configuration of tracers:
                                    0: no tracers, 1: water vapor + ice, 2: dust
init_TI = 0.,
                         !! Define constant thermal inertia value
```

```
init_AL = 0.,
                            !! Define constant albedo value
init_Z0 = 0.1,
                            !! Define constant roughness length
init_U = 0.,
                            !! (p3) Define constant ini/bdy zonal wind value
init_V = 0.,
                            !! (p3) Define constant ini/bdy meridional wind value
/
&dynamics
!!!!! OPTIONAL !!!!!!!!!!!!!!!!
time_step_sound = 6, !! Ratio of time step dynamic/acoustic integration
                            !! NB: an increase could help solve instabilities
non_hydrostatic = T,
                            !! Integrate in non-hydrostatic/hydrostatic mode
pd_scalar = T,
                            !! Positive-definite advection scheme for tracers
tiso = 140.,
                            !! (p3) Temperature at which base profile is isotherm
!!
ulff_6th_opt = 2,
diff_6th_factor = 0.2,
smdiv = 0.1,
emdiv = 0.01,
epssm = 0.1.
diff_opt = 1
                            !! (*d) Diffusion option [set to 0 if GCM-like]
                            !! (*d) Eddy coefficient option
                            !! (*d) Knievel numerical diffusion
                            !! (*d) Knievel numerical coeff. [set to 0.5 if GCM]
                            !! (*d) Divergence damping [>0 for NH runs]
!! (*d) External-mode filter for mass coord. model [>0 for NH runs]
                           !! (*d) Time off-centering for vertical sound waves [>0 for NH runs]
&bdy_control
!!!!! OPTIONAL !!!!!!!!!!!!!!!!
specified = T,
                           !! (n)(p3) Boundary conditions specified by GCM
nested = F,
                          !! (n)(p3) Boundary conditions from parent domain
                         ... (p3) Periodic boundary conditions over y
!! (p3) Open boundary conditions @ western boundary
!! (p3) Open boundary conditions @ eastern '
!! (p3) Open boundary
                       !! (p3) Periodic boundary conditions over x !! (p3) Periodic boundary conditions over y
periodic_x = F,
periodic_y = F,
open_xs = F,
open_xe = F,
open_ys = F,
                            !! (p3) Open boundary conditions @ southern boundary
                            !! (p3) Open boundary conditions @ northern boundary
open_ye = F,
                            !! (p3) Width of transition zone with specified=T
spec_bdy_width = 5
                            !!
                                    (spec_bdy_width must be equal to relax_zone+1)
relax_zone = 4
                            !! (p3) Width of relaxation zone with specified=T
                                    (possible instabilities if relax_zone < 4)</pre>
                            !!
!!!!! DO NOT MODIFY !!!!!!!!!
&grib2
/
&fdda
&namelist_quilt
                           !! (*)
                           !! (*)
nio_tasks_per_group = 0,
nio_groups = 1,
                             !! (*)
                             !! (*)
!!!!! DO NOT MODIFY !!!!!!!!!
```

4.1.2 IMPORTANT ADVICE ON FILLING NAMELIST. INPUT

TEST CASE An interesting exercise is to analyze comparatively the TESTCASE/namelist.input file (cf. section 3.3) with the reference namelist.input_full given above, so that you could understand which settings are being made in the Arsia Mons test simulation. Then you could try to modify parameters in the namelist.input file and re-run the model to start getting familiar with the various settings. Given that the test case relies on pre-computed initial and boundary conditions, not all parameters can be changed in the namelist.input file at this stage.

SYNTAX Please pay attention to rigorous syntax while editing your personal namelist.input file to avoid reading error. If the model complains about this at runtime, start again with the available template \$MMM/SIMU/namelist.input_full.

TIME MANAGEMENT Usually the user would like to start/end the mesoscale simulation at a given solar aerocentric longitude L_s or a given sol in the Martian year ⁶. In the namelist.input file, start/end time is set in the form year / month / day with each month corresponding to a "slice" of 30° L_s . The file \$MMM/SIMU/calendar (reproduced in appendix) is intended to help the user to perform the conversion prior to filling the namelist.input file. In the above example of namelist.input_minim, the simulation with the LMD Martian Mesoscale Model takes place on month 7 and day 1, which corresponds to $L_s \sim 180^\circ$ according to the calendar file. In the Arsia Mons test case, the simulation with the LMD Martian Mesoscale Model takes place on month 1 and day 17, which corresponds to $L_s \sim 8^\circ$.

4.2 Physical settings

The file callphys.def controls the behavior of the physical parameterizations in the LMD Martian Mesoscale Model. Modifying callphys.def implies to recompile the model only if the number of tracers has changed. This file is organized very similarly to the corresponding file in the LMD Martian GCM, which user manual can be found at http://web.lmd.jussieu.fr/~forget/datagcm/user_manual.pdf. Here are the callphys.def contents with typical mesoscale settings:

```
General options
```

```
tracer
          (Run with or without tracer transport?)
F
diurnal
          (Diurnal cycle ? if diurnal=F, diurnal averaged solar heating)
Τ
          (Seasonal cycle ? if season=F, Ls stays constant like in "start")
season
          (want some more output on the screen ?)
lwrite
          (Saving statistics in file "cumul" ?)
stats
calleofdump (Saving EOF profiles in file "profiles" for Climate Database ?)
Dust scenario. Used if the dust is prescribed (i.e. if tracer=F or active=F)
iaervar (=1 Dust opt.deph read in startfi; =2 Viking scenario; =3 MGS scenario
         (=4 Mars Year 24 from TES assimilation)
        (Dust vertical distribution: =0: old distrib. (Pollack90)
iddist
        (=1: top set by "topdustref"; =2: Viking scenario; =3 MGS scenario )
topdustref (Dust top altitude (km). Matter only if iddist=1)
```

^{6.} Information on Martian calendars: http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html.

```
Physical Parameterizations :
        (call radiative transfer ?)
callrad
callnlte (call NLTE radiative schemes ? matter only if callrad=T)
callnirco2 (call CO2 NIR absorption ? matter only if callrad=T)
calldifv (call turbulent vertical diffusion ?)
calladj (call convective adjustment?)
callcond (call CO2 condensation ?)
callsoil (call thermal conduction in the soil ?)
calllott (call Lott's gravity wave/subgrid topography scheme ?)
Radiative transfer options :
          (the rad.transfer is computed every "iradia" physical timestep)
iradia
          (Output of the exchange coefficient mattrix ? for diagnostic only)
callg2d
rayleigh (Rayleigh scattering : should be =F for now)
Tracer (dust water, ice and/or chemical species) options (use if tracer=T) :
dustbin
          (DUST: Transported dust ? (if >0, uses q(1) to q(dustbin))
           (DUST: Radiatively active dust ? (uses q(1) to q(dustbin))
active
          (DUST: needs dustbin=1, use mass q(1) and nb q(2) mr to predict dust size ?)
doubleq
F
           (DUST: lifted by GCM surface winds ?)
lifting
dustdevil (DUST: lifted by dust devils ?)
scavenging (DUST: Scavenging by CO2 snowfall ?)
sedimentation (DUST/WATERICE: Gravitationnal sedimentation ?)
           (WATERICE: Water cycle includes water ice mixing ratio q(nqmx-1))
iceparty
activice
          (WATERICE: Radiatively active transported atmospheric water ice ?)
           (WATER: Compute water cycle using q(nqmx) )
water
           (WATER: put the current permanent caps at both poles)
caps
photochem (PHOTOCHEMISTRY: chemical species included)
Thermospheric options (relevant if tracer=T) :
callthermos (call thermosphere?)
```

```
thermoswater (WATER: included without cycle only if water=F)

F
callconduct (call thermal conduction ? matter only if callthermos=T)

F
calleuv (call EUV heating ? matter only if callthermos=T)

F
callmolvis (call molecular viscosity ? matter only if callthermos=T)

F
callmoldiff (call molecular diffusion ? matter only if callthermos=T)

F
thermochem (call thermospheric photochemistry ? matter only if callthermos=T)

F
solarcondate (date for solar flux calculation: 1985 < date < 2002))
1993.4 (Solar min=1996.4 ave=1993.4 max=1990.6)
```

- In the provided example, convective adjustment calladj, gravity wave parameterization calllott and non-local thermodynamic equilibrium schemes callnlte are turned off, as is usually the case in typical Martian tropospheric mesoscale simulations (see chapter 1).
- iradia sets the frequency (in dynamical timesteps) at which the radiative computations are performed. To obtain the interval in seconds at which radiative computations are performed, one simply has to multiply iradia to the value of time_step in namelist.input.
- iaervar=4 and iddist=3 defines the standard "Mars Global Surveyor" dust scenario (see chapter 1). It is the recommended choice.

CHAPTER 5

Preprocessing utilities

In this chapter, we describe the installation and use of the preprocessing tools to define the domain of simulation, calculate an initial atmospheric state and prepare the boundary conditions for the chosen simulation season and time of day. This corresponds to steps 1,2,3 as defined in section 3.1.1. These operations would eventually allow you to run your own simulations at the specific season and region you are interested in, with a complete ability to modify any of the parameters in namelist.input, including the ones labelled with (p1), (p2) or (p3).

5.1 Installing the preprocessing utilities

The compilation operations indicated here need to be done only once on a given system with a given compiler.

5.1.1 Prerequisites

First and foremost, since the preprocessing utilities could involve files of quite significant sizes, it is necessary to define a directory where these files would be stored. Such a directory (e.g. /bigdisk/user) must be linked with the name TMPDIR as follows. In addition, three directories GCMINI, WPSFEED, WRFFEED have to be created in \$MESO/TMPDIR as indicated below.

```
ln -sf /bigdisk/user $MESO/TMPDIR
mkdir $MESO/TMPDIR/GCMINI
mkdir $MESO/TMPDIR/WPSFEED
mkdir $MESO/TMPDIR/WRFFEED
```

A second prerequisite to the installation of the preprocessing tools is that the LMD Martian Mesoscale Model was compiled at least once. If this is not the case, please compile the model with the makemeso command described in section 3.2. The compilation process created an installation directory adapted to your particular choice of compiler+machine (what we named your_compdir in section 3.2, which could be for instance g95_32_single). The preprocessing tools will also be installed in this directory. Please type the following commands:

```
cd $MMM/your_compdir
ln -sf ../SRC/SCRIPTS/prepare_ini .
./prepare_ini
```

5.1.2 Compiling preprocessing utilities

The script prepare_ini plays for the preprocessing tools a similar role as the script copy_model for the model sources: files are simply linked to their actual location in the SRC folder. Once you have executed prepare_ini, please check that two folders were generated: PREP_MARS and WPS. In the PREP_MARS directory, please compile the programs create_readmeteo.exe and readmeteo.exe, using the compiler mentioned in the name of the current installation directory. In the WPS directory, please compile the programs geogrid.exe and metgrid.exe. Here are the useful commands:

```
cd your_compdir/PREP_MARS/
./compile_pgf [or] ./compile_g95 [or] ./compile_ifort
ls -lt create_readmeteo.exe readmeteo.exe
cd ..
cd WPS/
clean
./configure  ## select your compiler + 'NO GRIB2' option
./compile
ls -lt geogrid.exe metgrid.exe
```

Apart from the executables just compiled, the preprocessing utilities include real.exe, which was compiled by the makemeso script along with the mesoscale model executable wrf.exe¹ (cf. chapter 3). real.exe should be copied or linked in the simulation directory (e.g. TESTCASE for the Arsia Mons test case) to be at the same level than namelist.input.

```
cp your_compdir/real_*.exe your_simulation_directory/
cp your_compdir/wrf_*.exe your_simulation_directory/
```

5.1.3 Preparing input static data

All the static data (topography, thermal inertia, albedo) needed to initialize the model are included in the \$MMM/WPS_GEOG directory. By default, only coarse-resolution datasets ² are available, but the directory also contains sources and scripts to install finer resolution datasets: 32 and/or 64 pixel-per-degree (ppd) MOLA topography (mola_topo32 and mola_topo64), 8 ppd MGS/Thermal Emission Spectrometer (TES) albedo (albedo_TES), 20 ppd TES thermal inertia (thermal_TES). The role of the build_static script is to automatically download these datasets from the web (namely PDS archives) and convert them to an acceptable format for a future use by the preprocessing utilities:

```
cd $MMM
ln -sf SRC/SCRIPTS/build_static .
./build_static
```

- Please install the octave free software ³ on your system to execute the build_static script ⁴.
- Building the MOLA 64ppd database can be quite long; hence this is not performed by default by the build_static script. If you would like to build this database, please remove the exit command in the script, just above the commands related to the MOLA 64ppd.

^{1.} Even though the name of the executable reads e.g. real_x61_y61_z61_d1_t1_p1.exe, such program is not related to the specific makemeso parameters — contrary to the wrf.exe executable. We just found that renaming the (possibly similar if the model sources were not modified) real.exe executable was a practical way not to confuse between executables compiled at different moments.

^{2.} These coarse-resolution datasets correspond to the fields stored in the file surface.nc known by LMD-MGCM users: http://web.lmd.jussieu.fr/~forget/datagcm/datafile/surface.nc

^{3.} Available at http://www.gnu.org/software/octave

^{4.} Another solution is to browse into each of the directories within WPS_GEOG/res, download the data with the shell scripts and execute the .m scripts with either octave or the commercial software matlab (just replace # by %).

- If you do not manage to execute the build_static script, ready-to-use datafiles can be found in the link ftp://ftp.lmd.jussieu.fr/pub/aslmd and must be extracted in \$MMM/WPS_GEOG.
- The resulting WPS_GEOG directory can reach a size of several hundreds of Mo. You might move such a folder in a place with more disk space available and define a link WPS_GEOG in \$MMM.

5.1.4 Compiling the GCM for initial and boundary conditions

The LMD Martian GCM needs to be run to compute meteorological fields that will be used as initial and boundary conditions each one or two Martian hours by the limited-area LMD Martian Mesoscale Model. Hence the LMD Martian GCM must be compiled in your system (see the LMD-MGCM user manual for further details http://web.lmd.jussieu.fr/~forget/datagcm/user_manual.pdf). If you did not get the model using the svn method, please request us to send you an archive containing the LMD-MGCM named LMDZ.MARS.meso.tar.gz, to be extracted in the \$MESO directory. If you got the model using svn, you do not have to request this file. In the \$MESO/LMDZ.MARS directory, a script named compile can be found and must be used on the system you plan to run the mesoscale model on to compile the GCM. The compile script is actually just a wrapper for the makegcm script which compile the GCM for you; the default makegcm script only works with Portland Group Fortran compiler pgf90 but scripts to compile the model using other Fortran compilers (including g95 or ifort) are also available. The following commands should yield the compilation of two executables newstart.e and gcm.e:

```
cd $MESO/LMDZ.MARS
[edit $MESO/LMDZ.MARS/libf/phymars/datafile.h & fill absolute link $MMM/WPS_GEOG]
[edit compile if needed]
./compile
```

The other necessary operation to prepare the LMD-MGCM for step 1 is to store a set of initial states for the LMD-MGCM to start with, based on previous typical LMD-MGCM runs having reached equilibrium after ten years of integration. A reference database ⁵ can be found in the following online archive ftp://ftp.lmd.jussieu.fr/pub/aslmd/STARTBASE_64_48_32_t2.tar. gz. This archive must be extracted somewhere on a disk that would be accessible to the system you plan to run the mesoscale model on. A link named startbase towards the STARTBASE_64_48_32_t2 directory must be created in the directory \$MESO/LMDZ.MARS/myGCM.

ln -sf where_is_your_startbase/STARTBASE_64_48_32_t2 startbase

It is important to check that the chosen reference database 1. spans the season desired for the mesoscale simulation; 2. includes the right number of tracers and vertical extent; and 3. uses GCM parameterizations that are close to the ones employed in the subsequent mesoscale simulations.

GCM integrations can then be launched in \$MESO/LMDZ.MARS/myGCM using launch_gcm.

5.2 Running the preprocessing utilities

5.2.1 General overview

When you run a simulation with wrf.exe (e.g. section 3.3), the program attempts to read the initial state in wrfinput_d01 and the domain boundary conditions in wrfbdy_d01. The whole chain of data conversion and interpolation needed to generate those files is summarized in the diagram on Figure 5.1. Three distinct preprocessing steps are necessary to generate the final files (steps are numbered 1,2,3 as in section 3.1.1). Figure 5.1 helps to better understand the labels (p1), (p2), (p3) used to describe namelist.input parameters in chapter 4. For instance:

^{5.} If another database is used, compile must be edited; default is $64 \times 48 \times 32$ GCM runs with 2 tracers.

- changing the season of simulation implies to re-run the LMD Mars GCM for this specific season to prepare initial and boundary conditions for the mesoscale model. Hence e.g. start_month is labelled with (p1) because changing this in namelist.input requires a complete reprocessing from step 1 to step 3 to successfully launch the simulation.
- changing the number of horizontal grid points for the mesoscale domain implies to interpolate the static and GCM fields to the new domain, while no new computations on the GCM side are needed. Hence e.g. e_we is labelled with (p2) because changing this in namelist.input requires a reprocessing from step 2 to step 3 to successfully launch the simulation (for this specific parameter recompiling with makemeso is also needed).
- changing the position of model top implies to interpolate initial and boundary conditions to the new vertical levels, while no horizontal re-interpolations are needed. Hence e.g. p_top_requested is labelled with (p3) because changing this requires a reprocessing of step 3.
- changing the timestep for dynamical integration does not require any change in initial and boundary conditions. Hence e.g. time_step is not labelled with (p1), (p2) or (p3).

5.2.2 Step 1: Running the GCM and converting data

Here we assume that the user has chosen a given Martian sol or L_s on which to start the mesoscale simulation. As already mentionned in section 4.1.2, the file \$MMM/SIMU/calendar reproduced in appendix can help with this choice (i.e. $sol \rightarrow L_s \rightarrow mesoscale$ date and vice-versa). In addition, the user has to check in the calendar file which sol is before the one wanted for simulation start and has 99 in the first column: such sols are the ones for which an initial starting file for the GCM is available. Then the number of GCM simulated days nday in \$MESO/LMDZ.MARS/myGCM/run.def must be set accordingly: suppose you want to start a mesoscale simulation at sol 9 during 4 sols, then according to the calendar file, sol 8 is the closest file before sol 9 to be in the database, so nday must be at least 5. For optimal forcing at the boundaries, we advise you to write the meteorological fields to the diagfi.nc file at least each two hours, or ideally each hour 6 , i.e. ecritphy is respectively 80 or 40 in \$MESO/LMDZ.MARS/myGCM/run.def. Eventually the GCM run can be launched using the following commands and should produce a netCDF data file named diagfi.nc:

```
cd $MESO/LMDZ.MARS/myGCM
[edit run.def, in particular to modify nday]
./launch_gcm ## answer: your desired starting sol for the simulations
```

Once the GCM simulations are finished, programs in the PREP_MARS directory allow the user to convert the data from the NETCDF diagfi.nc file into separated binary datafiles ⁷ for each date contained in diagfi.nc and formatted for the preprocessing programs at step 2. These programs can be executed by the following commands; if everything went well with the conversion, the directory \$MESO/TMPDIR/WPSFEED should contain files named LMD:*.

```
cd $MMM/your_install_dir/PREP_MARS
echo 1 | ./create_readmeteo.exe  # drop the "echo 1 |" if you want control
./readmeteo.exe < readmeteo.def</pre>
```

5.2.3 Step 2: Interpolation on the regional domain

STEP 2A In the WPS directory, the geogrid.exe program allows you to define the mesoscale simulation domain, to horizontally interpolate the topography, thermal inertia and albedo fields at the domain resolution and to calculate useful fields such as topographical slopes. Please execute the commands:

^{6.} The parameter interval_seconds in namelist.wps (see section 5.2.3) has to be set accordingly.

^{7.} If the fields emis, co2ice, q01, q02, tsoil are missing in the diagfi.nc file, those are replaced by respective default values 0.95, 0, 0, 0, tsurf.

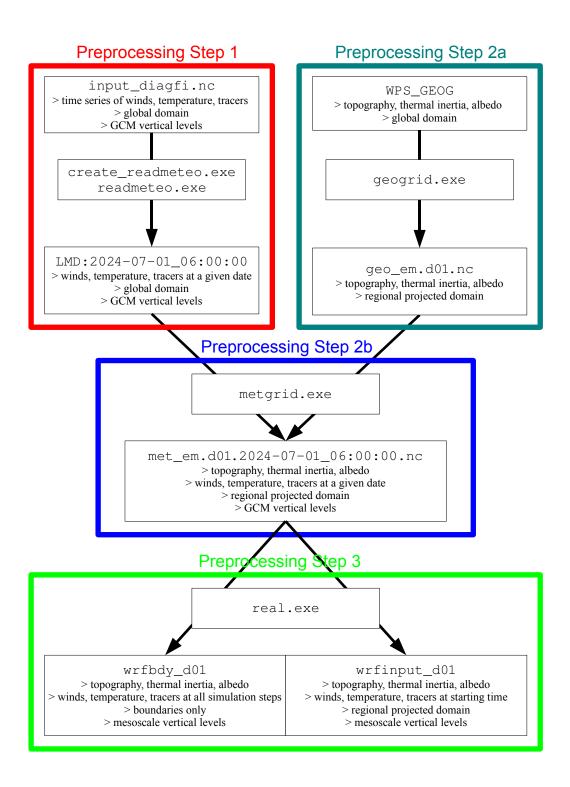


Figure 5.1: The details of preprocessing steps and their related software and inputs/ouputs

```
cd $MMM/your_install_dir/WPS
ln -sf $MMM/TESTCASE/namelist.wps . # test case (or use your customized file)
./geogrid.exe
```

The result of <code>geogrid.exe</code> – and thus the definition of the mesoscale domain – can be checked in the NETCDF file <code>geo_em.d01.nc</code> e.g. with topographical fields <code>HGT_M</code> <code>HGT_U</code> <code>HGT_V</code> (using for instance <code>ncview</code>, or your favorite graphical interface for netCDF files, or python-based scripts as in section 8). If you are unhappy with the results or you want to change the location of the mesoscale domain on the planet, the horizontal resolution, the number of grid points ..., please modify the parameter file <code>namelist.wps</code>, content thereof is reproduced/commented on the next page ⁸, and execute again <code>geogrid.exe</code>.

- No input meteorological data are actually needed to execute geogrid.exe. This step 2a can be done e.g. before step 1. It is probably a good idea to prepare step 2 by choosing the mesoscale simulation domain while GCM computations being performed during step 1.
- More details about the database and more options of interpolation could be found in the file geogrid/GEOGRID.TBL (for advanced users only).
- Two examples of namelist.wps parameters are given in Figure 5.2 with resulting domains.

```
&share
  wrf_core = 'ARW',
                                                                                          [do not modify: choice of dynamical core]
 max_dom = 1,
                                                                               !! number of simulation domains
  start_date = '0000-00-00_00:00:00' !! YYYY-MM-DD_HH:mm:ss start date
  end_date = '1111-11-11_11:11:11' !! YYYY-MM-DD_HH:mm:ss end date
  interval_seconds = 3700
                                                                              !! frequency of GCM updates [1 Mars hour = 3700 s]
  io_form_geogrid = 2,
                                                                            !! [do not modify: choice of NETCDF outputs]
 debug_level = 0,
                                                                               !! verbose level of the programs
  opt_output_from_geogrid_path='./' !! location of the geogrid outputs
&geogrid
                                                          !! number !! ratio between relation of the southwest corners !! y-position of the southwest corners !! y-position of the southwest corners !! number of longitude grid points !! number of latitude grid points !! static data sources: '64ppd','3' !! resolution (meters) in the x-dinamental in the y-dinamental in the y-dinamental
 parent_id
                                                                  !! number identifying the related parent domain
 parent_grid_ratio = 1,
i_parent_start = 1,
                                                                     !! ratio between parent and nested domains
                                                                     !! x-position of the southwest corner of nest
                                    = 1,
  i parent start
                                                                   !! y-position of the southwest corner of nest
                                       = 61,
  e_we
  e_sn
                                       = 61,
 geog_data_res
                                       = 'gcm'
                                                                   !! static data sources: '64ppd', '32ppd', ... cf.GEOGRID.TBL
  dx = 50000,
                                                                     !! resolution (meters) in the x-dimension
  dv = 50000.
                                                                      !! resolution (meters) in the y-dimension
 map_proj = 'mercator',
                                                                     !! map projection: 'mercator', 'lambert' or 'polar'
 ref_lat = -12.,
                                                                     !! north latitude of the center of the domain
  ref_lon
                      = 239.,
                                                                      !! east longitude of the center of the domain
  truelat1 = 0.0,
                                                                     !! (lambert or polar) lat position of projection cone
  truelat2 = 0.0,
                                                                     !!
                                                                                [do not modify]
  stand_lon = 0.0,
                                                                      !! (lambert or polar) lon position of projection cone
  geog_data_path = './WPS_GEOG', !! [do not modify: symbolic link in the WPS folder]
&metgrid
 fg_name = './WPSFEED/LMD'
                                                                                 [do not modify: symbolic link in the WPS folder]
  io_form_metgrid = 2,
                                                                       !!
                                                                                 [do not modify: choice of NETCDF outputs]
  opt_output_from_metgrid_path='./WRFFEED/current' !!
                                                                                                                       [do not modify: symbolic link]
```

The input datasets for topography and soil properties can be set in namelist.wps through the keyword geog_data_res. Possible choices are:

- o 'gcm': coarse-resolution datasets;
- \circ '32ppd': coarse-resolution datasets, but 32ppd MOLA topography;
- o '64ppd': fine-resolution datasets: TES albedo & thermal inertia, 64ppd MOLA topography;
- '64ppd_noHRti': fine-resolution datasets, but coarse-resolution thermal inertia;

^{8.} You may find the corresponding file in \$MMM/SIMU/namelist.wps_example.

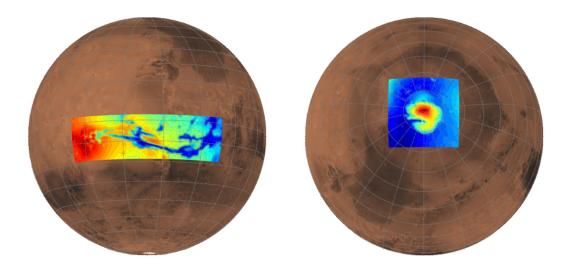


Figure 5.2: (Left plot) An example of mercator domain in the Valles Marineris region as simulated by *Spiga and Forget* [2009, their section 3.3]: relevant parameters in namelist.wps are: e_we = 401, e_we = 121, dx = 12000, dy = 12000, map_proj = 'mercator', ref_lat = -8, ref_lon = -68. (Right plot) An example of north polar domain with stereographical projection: relevant parameters in namelist.wps are: e_we = 117, e_we = 117, dx = 20000, dy = 20000, map_proj = 'polar', ref_lat = 90, ref_lon = 0.1, truelat1 = 90, stand_lon = 0.1.

o '32ppd_HRalb': fine-resolution albedo, coarse-resolution thermal inertia, 32ppd topography. The corresponding dataset must have been built in the WPS_GEOG folder previously (see section 5.1.3).

STEP 2B Once the <code>geo_em</code> file(s) are generated, the <code>metgrid.exe</code> program performs a similar horizontal interpolation of the meteorological fields to the mesoscale domain as the one performed by <code>geogrid.exe</code> for the surface data (interpolation options can be modified by advanced users in <code>metgrid/METGRID.TBL</code>). Then the program writes the results in <code>met_em</code> files and also collects the static fields and domain parameters included in the <code>geo_em</code> file(s). If everything went well with the commands below, the directory <code>\$MESO/TMPDIR/WRFFEED/current</code> should contain <code>met_em.*</code> files.

cd \$MMM/your_install_dir/WPS
mkdir WRFFEED/current
./metgrid.exe

5.2.4 Step 3: Vertical interpolation on mesoscale levels

The last preprocessing step before being able to run the mesoscale simulation at step 4 is to execute real.exe to perform the interpolation from the vertical levels of the GCM to the vertical levels defined in the mesoscale model. This program also prepares the final initial state for the simulation in files named wrfinput and the boundary conditions in files named wrfbdy. To successfully execute real.exe, you need the met_em.* files and the namelist.input file to be in the same directory as real.exe. Parameters in namelist.input which controls the behavior of the vertical interpolation are those labelled with (p3) in the detailed list introduced in chapter 4.

cd \$MMM/TESTCASE ## or anywhere you would like to run the simulation
ln -sf \$MESO/TMPDIR/WRFFEED/current/met_em* .
./real.exe

The final message of the real.exe should claim the success of the processes and you are now ready to launch the integrations of the LMD Martian Mesoscale Model with the wrf.exe command as in section 3.3.

When you modify either namelist.wps or namelist.input, make sure that the common parameters are exactly similar in both files (especially when running nested simulations) otherwise either real.exe or wrf.exe command will exit with an error message. Obviously the dates sent to launch_gcm and set in both namelist.input and namelist.wps should be consistent too.

CHAPTER 6

A QUICK GUIDE TO RUNNING A COMPLETE MESOSCALE SIMULATION

In this chapter, we assume that the user has followed all the installation/compilation steps in the previous chapters. Probably it was a bit of an effort to do so; now the reward is that complete mesoscale simulations, i.e. all steps referred to in section 3.1.1, can be run. This chapter is thus meant to be a permanent reference for users once all tasks described in the previous chapters have been successfully achieved.

6.1 A SUMMARY OF THE COMPLETE SET OF COMMANDS TO RUN A MESOSCALE SIMULATION

It is assumed here that the user is working in a directory named /a_place/MY_SIMU mounted on a disk with enough free space to host the wrfout* output files.

PREREQUISITES Prepare parameter files (copy templates or pre-existing files); Edit those files; Use \$MMM/SIMU/calendar (or cf. appendix) to choose simulation dates and fill the namelists; Pay attention to correspondances between namelist.input and namelist.wps. See 4 and 5.2.3 for further details.

```
cd /a_place/MY_SIMU
cp $MMM/SIMU/namelist.input_minim namelist.input
cp $MMM/SIMU/callphys.def .
```

cp \$MMM/SRC/WPS/wps_mars/namelist.wps_TEST namelist.wps
[edit those three files and set your parameters]

Step 0 Compile the model. See 3.2 for further details.

cd \$MMM

makemeso

[answers to the questions must be compliant with information in namelist.input] [check in your_compdir that executables real.exe and wrf.exe are here] $cd/a_place/MY_SIMU$

ln -sf \$MMM/your_compdir/wrf_suffix_reflecting_your_choices.exe wrf.exe
ln -sf \$MMM/your_compdir/real_suffix_reflecting_your_choices.exe real.exe
[NB: executables can be copied instead of linked]

STEP 1 Run the LMD Global Circulation Model (GCM) to provide initial and boundary conditions for the mesoscale model. See 5.2.2 for further details.

```
cd $MESO/LMDZ.MARS/myGCM
launch_gcm
[answer: sol number corresponding to chosen dates (use $MMM/SIMU/calendar)]
[wait for GCM simulation to end]
cd $MMM/your_compdir/PREP_MARS
[check that the link input_diagfi.nc points toward the GCM output diagfi.nc]
echo 1 | create_readmeteo.exe
readmeteo.exe < readmeteo.def
[check that WPSFEED contains data files which prefix is LMD:]</pre>
```

STEP 2 Create the mesoscale limited-area domain of simulation. Run preprocessing programs to horizontally interpolate GCM meteorological fields and static data (topography, soil properties) to the chosen simulation domain. See 5.2.3 for further details.

```
cd $MMM/your_compdir/WPS
geogrid.exe
[check that geo_em* netCDF files are created in the current directory]
mkdir WRFFEED/current
metgrid.exe
[check that met_em* netCDF files are created in the WRFFEED/current directory]
```

STEP 3 Run preprocessing programs to vertically interpolate GCM meteorological fields and generate the initial and boundary conditions directly used by the mesoscale model. See 5.2.4 for further details.

```
cd /a_place/MY_SIMU
ln -sf $MMM/your_compdir/WPS/WRFFEED/current/met_em* .
real.exe
[check that wrfinput* wrfbdy* netCDF files are created]
```

STEP 4 Run the LMD Martian Mesoscale Model. See 3.3 for further details.

```
cd /a_place/MY_SIMU
wrf.exe [or use a MPI instance for parallel computations]
[check that wrfout* netCDF files are created and filled by simulation results]
[once wrf.exe is running met_em* links can be deleted]
```

6.2 THE RUNMESO SCRIPT

The serie of commands detailed in section 6.1 has to be repeated each time the user would like to run a new simulation with the LMD Martian Mesoscale Model. This is usually simple if the user simply want to change, e.g., the integration timestep, because only the few commands detailed at step 4 have to be used. On the contrary, if the user wants to run a new simulation in which, e.g., both the simulated season and the number of grid points are changed, every step from 0 to 4 have to be repeated (see e.g. section 5.2.1). Not only it can be tedious to type all commands again and again, but there is a quite high probability that the user (even the most experienced one) will face one or several of the following problems, which would waste the user's time, or prevent the simulation from running correctly, from running at all, or from computing reasonable results:

- A parameter labelled (r) in namelist.input (see chapter 4) is changed, but the sources have not been recompiled accordingly;
- The answers to makemeso are not compliant with information in namelist.input;
- The common information in namelist.input and namelist.wps are inconsistent;
- The input sol in launch_gcm does not correspond to the dates in namelist.input and namelist.wps (in accordance with the calendar table, cf. appendix);
- One or several of the various files used as input/output in step 1, 2, 3 are not correctly linked;
- The wrong executable is used because the right model executables are not correctly linked;
- Large domain simulations yield long computations of step 2 and 3, so the user have to wait a long time between each commands to type.

In those circumstances, using the bash script runmeso located in \$MMM/SIMU is probably a good idea when the commands listed in section 6.1 has been successfully followed at least once. The purpose of the runmeso script is to perform all commands and tests about links, executables, etc... described in section 6.1. To put it in a nutshell, after all the efforts made in the previous chapters to install, compile, test the LMD Martian Mesoscale Model and its initialization routines, the user can now rely on runmeso to easily launch a simulation with the LMD Martian Mesoscale Model! The serie of commands listed in the previous section 6.1 is replaced by a simple user-friendly method:

- set a simulation directory containing the parameter files namelist.input and callphys.def;
- edit the namelist.input file with your settings;
- edit the callphys.def file with your settings;
- run the runmeso script in the simulation folder by typing \$MMM/SIMU/runmeso (or only runmeso if you add \$MMM/SIMU in your PATH environment variable);
- o make a choice about which step to start with.

Note that only one instance of runmeso must be run at the same time, otherwise conflicting versions of initial conditions (and simulation outputs) will be obtained. If running several versions of the model are needed, it is recommended to duplicate a runmeso script for each version and modify those to be linked towards the correct model folder.

When executing the runmeso script, useful information about the simulation, and the system in which you plan to run it, are prompted before an invitation appears about the choice of step(s) to process with:

```
**** LMD Martian Mesoscale Model launcher ****
************
            >>> aymeric
** User
** Hostname
                   >>> aymeric-laptop
** Hardware
                    >>> i686
** Processor
                    >>> unknown
*************
** Simulation directory >>> /home/aymeric/Science/MODELES/MESOSCALE/LMD_MM_MARS/TESTCASE
                    >>> 2024-01-17 [sol=16, Ls=8.102209]
** Start date
** End date
                    >>> 2024-01-17 [sol=16, Ls=8.102209]
                    >>> 1
** Domain(s)
** Tracer(s)
                    >>> 1
                    >>> 61 x 61 x 61
** Grid points
** Horizontal resolution >>> 20000
***************
** The runmeso script does it for you !
**************
** Step 0: compile the model if not done yet
** Step 1: run GCM and prepare inputs
** Step 2: interpolate on domain horizontal grid
** Step 3: interpolate on chosen vertical levels
** Step 4: run the model
****** Please make a choice
1 --> Perform steps 0 1 2 3 4 [ -1: step 0 skipped]
2 --> Perform steps 0 2 3 4 [ -2: step 0 skipped]
3 --> Perform steps 0 3 4 [ -3: step 0 skipped]
4 --> Perform steps 0 4
                          [ -4: step 0 skipped]
11 --> Perform steps 0 1 2 3 [-11: step 0 skipped]
12 --> Perform steps 0 2 3
                         [-12: step 0 skipped]
```

- A first test of runmeso can be carried out with the test case of section 3.3. Please create a directory (e.g. test) and copy the files namelist.input, callphys.def and namelist.wps referring to this Arsia Mons test case in this directory. Then run runmeso and make choice 1, i.e. going through all steps detailed in 3.1.1 and 6.1.
- The execution of runmeso stops if an error is encountered: e.g., the environment variable MESO is not defined, one of the two files namelist.input or callphys.def are not present in the working directory, etc...
- If namelist.wps is not present in the simulation directory, the runmeso script will propose to create it and will prompt 4 additional questions about map projection, data source, latitude for center of domain, longitude for center of domain. The remaining information to be set in namelist.wps (cf. section 5.2.3) is then copied from namelist.input to ensure all common parameters between the two files are the same. The program geogrid.exe is then run and, if ncview is installed on your system, this program is prompted so that you can explore the file geo_em.dO1.nc file to check the newly created domain.
- An xeyes session is prompted when the runmeso script has finished processing required steps.
- If runmeso went well through steps 1 and 2, but encountered an error in 3, once the error has been corrected runmeso is not required to perform steps 1 and 2 again and can be started directly at step 3 (by typing 3, see possible choices above).
- The LMD:* files created by a runmeso call which features step 1 are kept in WPSFEED (located in \$MESO/TMPDIR). Those files will be overwritten by subsequent calls to runmeso if you choose to re-run the GCM at similar dates.
- The met_em* files created by a runmeso call which features step 2 are kept in a directory in WRFFEED (located in \$MESO/TMPDIR) which name refers to precise date and time, so that it will not be overwritten by subsequent calls to runmeso for other simulations. In the simulation directory, runmeso creates a met_em directory which contains links towards the met_em* files.
- The contents of directories in \$MESO/TMPDIR (i.e. GCMINI, WPSFEED, WRFFEED) might grow large as you launch more and more simulations with runmeso. It is probably a good idea to clean up from time to time files referring to old obsolete simulations.

CHAPTER 7

ADVANCED SIMULATIONS

In this chapter, advice to perform more sophisticated simulations is provided to advanced users.

7.1 RUNNING NESTED SIMULATIONS

PREPARING NAMELIST.INPUT For simulations with max_dom nested domains, max_dom parameters must be set wherever there is a "," in the namelist.input_full template in chapter 4. Specific parameters for nested simulations are labelled with (n) in this namelist.input template (see e.g. categories &time_control, &domains and &bdy_control). To help you with filling the namelist.input file for a nested simulation, a commented example is given below.

```
&time control
start vear
                    = 2024, 2024, 2024,
                                           !! Any information about dates have to be duplicated for each nest
start_month
                        10,
                                     10,
                                           !! ..
                              10,
                        03,
start_day
                              03,
                                     03,
                       06,
                                    06,
                              06,
start_hour
                   = 2024, 2024, 2024,
end_year
end month
                      10.
                              10.
                                    10.
                                           !! ..
                                     07,
end_day
                        07,
                              07,
end hour
                                     06.
history_interval
                        37,
                              37,
                                     37,
                                           !! Any information about model outputs have to be set for each nest
frames_per_outfile =
                       24,
                              24,
                                    24,
                                           !! ... NB: could be different for each nest
restart
                    = .false.
                  = 8880
restart_interval
                    = 2
io_form_history
io_form_restart
io_form_input
io_form_boundary
                    = 2
debug_level
                    = 0
&domains
time_step
                                     !! This is time_step for the parent nest
p_top_requested
                               10
force_sfc_in_vinterp
                               5
num_metgrid_levels
                               33
                                                  !! Set number of nests here
max dom
                               3
                                                  !! Identify each grid by a number
grid_id
                                                 !! Identify parents for each nested domain
parent_id
                                                  !! ....(two nested domains can have the same parent)
parent_grid_ratio
                               1.
                                       3.
                                             3, !! "Zooming" ratio between nests. 3 is a good choice.
 !! WARNING: parent_grid_ratio must divide e_we - s_we plus 1
                                             3, !! Time step ratio between nests.
parent_time_step_ratio =
                                       2,
                               1,
                                                 !! \ Those subscripts are used to place the nested
!! / domains with respect to their respective parents.
                               0,
                                      40,
i_parent_start
                                            40,
j_parent_start
                                      40,
                                            40,
                             117,
                                    121, 121,
                                                 !! IMPORTANT: e_we[parent domain] = e_we[child domains] - 4
                             117,
                                                 !! IMPORTANT: e_sn[parent domain] = e_sn[child domains] - 4
                                    121,
                                           121.
\verb|!!| WARNING: number of processors must divide e_we minus 1 and e_sn minus 1
                        = 61, 61, 61, !! Vertical levels must be duplicated
= 63000, 21000, 7000, !! Compute dx[child] with parent_grid_ratio and dx[parent]
e_vert
dx
                           63000, 21000, 7000, !! .... (keep 10^-2 accuracy if result of division is not int)
dу
```

```
!! Set 0 for 1-way nesting / 1 for 2-way nesting
feedback
smooth_option
                                               !! We recommend using smooth_option = 2
blend_width
                                               !! We recommend using blend_width = 5
&physics
&fdda
&dynamics
tiso = 100.
non_hydrostatic = F, F, F,
                                    !! We recommend using hydrostatic integration in all nests
                                    !! .... (non-hydrostatic nested runs might be unstable)
&grib2
&bdy_control
                    T, F, F,
                                    !! Only the parent domain has specified GCM boundary conditions
specified
nested
                                    !! ... the child domains are nested within the parent domain
&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
```

PREPARING NAMELIST.WPS As is the case for single-domain simulations, the common parameters in the two files namelist.input and namelist.wps must be exactly similar. Similarly to single-domain simulations, an automated generation of namelist.wps from namelist.input is provided in the runmeso script. If you do not use runmeso to generate the namelist.wps file, please bear in mind that in this file, dates are different for the parent domain and the child domains, since boundary conditions are needed only for the parent domain while initial conditions are needed for all domains. The namelist.wps file associated to the previously described namelist.input file is given below ¹ and corresponds to a nested simulation in the Hellas Planitia region (Figure 7.1). Note that map projection is similar in all nests.

```
&share
                    = 'ARW'
wrf_core
                    = 3
 max_dom
 start_date = '2024-10-03_06:00:00','2024-10-03_06:00:00','2024-10-03_06:00:00'
end_date = '2024-10-07_06:00:00','2024-10-03_06:00:00','2024-10-03_06:00:00'
 interval_seconds = 3700
io_form_geogrid = 2
debug_level = 0
 opt_output_from_geogrid_path='./'
&geogrid
parent_id
                                    1,
                                           2,
 parent_grid_ratio =
                                    3.
                                           3.
                             1.
                                   40,
                                          40,
 i parent start
                             Ο.
 j_parent_start
                             0,
                                   40,
                                          40,
                           117,
                                  121,
                                         121,
 e_sn
                           117,
                                  121,
 dx = 63000,
 dv = 63000.
 geog_data_res
                     = '64ppd', '64ppd', '64ppd'
 map_proj = 'lambert'
 ref_lat = -35.
 ref_lon
           = 50.
 truelat1 = -35.
 truelat2 = 0.0
 stand_lon = 50.
geog_data_path = './WPS_GEOG'
&metgrid
 fg_name = './WPSFEED/LMD'
 io_form_metgrid = 2,
 opt_output_from_metgrid_path='./WRFFEED/current'
```

^{1.} You may find namelist.input_nests and namelist.wps_nests in \$MMM/SIMU.

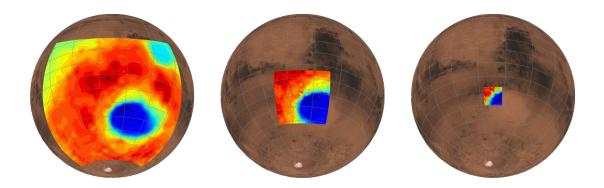


Figure 7.1: Domains for a nested mesoscale simulations in Hella Planitia defined by namelist.wps_nests. From left to right, "parent" domain i.e. nest number 1 (horizontal resolution 63 km), "child" domain i.e. nest number 2 (horizontal resolution 21 km), "grandchild" domain i.e. nest number 3 (horizontal resolution 7 km).

PREPARING CALLPHYS.DEF If you run a simulation with, say, 3 domains, please ensure that you defined three files callphys.def, callphys_d2.def and callphys_d3.def (one per nest). If needed, different settings for physical parameterizations can be made in each nest; usually all settings in these files are similar, except iradia (so that differences in dynamical timesteps between nests can be potentially impacted to callphys*.def in order to synchronize radiative transfer call).

COMPILING Use the command makemeso and specify the number of domains and dimensions set in namelist.input (as far as the horizontal grid is concerned, answers to makemeso shall refer to the values of e_we and e_sn for the parent domain). This is done automatically of course if you use runmeso which reads the information in namelist.input.

RUNNING If grid nesting and parallel computing are used, no more than 4 processors can be used. If the nested simulation is unstable, try a single-domain simulation with the parent domain and choose best parameters for stability (e.g., time_step), then add a first nested domain, and start again stability tests and investigations, etc.

INPUTS/OUTPUTS Defining several domains yield one output per domain: e.g. for three domains geogrid.exe yields geo_em.d01.nc, geo_em.d02.nc, geo_em.d03.nc...; real.exe yields wrfinput_d01, wrfinput_d02, wrfinput_d03, ...; wrf.exe yields wrfout_d01*, wrfout_d02*, wrfout_d03*, ...

USEFUL REMARKS The model presently supports 3 nests, but more nests can be included by adaptating runmeso and the following files:

```
$LMDMOD/LMD_MM_MARS/SRC/WRFV2/call_meso_inifis3.inc
$LMDMOD/LMD_MM_MARS/SRC/WRFV2/call_meso_physiq3.inc
$LMDMOD/LMD_MM_MARS/SRC/WRFV2/mars_lmd/libf/duplicate3
$LMDMOD/LMD_MM_MARS/SRC/WRFV2/mars_lmd/libf/generate3
$LMDMOD/LMD_MM_MARS/SRC/WRFV2/mars_lmd/makegcm* ## search for 'nest'
```

7.2 Running simulations with tracers

PREPARING NAMELIST.INPUT The default behavior of the model is to include no transported tracer by the dynamics. This corresponds to mars=0 in namelist.input (or the absence of param-

eter mars from the user's namelist). To compute the water cycle in the LMD Martian Mesoscale Model, simply set mars=1 in namelist.input (category &physics). This will add one tracer for water vapor and one tracer for water ice in the model's computations and outputs. To compute a mesoscale simulation with one simple transported dust bin (with typical characteristics), set mars=2 in namelist.input.

GCM INPUTS For water cycle simulations (mars=1), the GCM runs used to build initial and boundary conditions for the mesoscale model must also include water tracers. This is done by default in parameter files in \$MESO/LMDZ.MARS/myGCM, compiler wrapper \$MESO/LMDZ.MARS/compile and the database of start files STARTBASE_64_48_32_t2.

PREPARING CALLPHYS.DEF It is important to set callphys.def in accordance with the option chosen for the keyword mars in namelist.input. For instance, for water cycle simulations (mars=1), the following settings must be changed in callphys.def: tracer, sedimentation, iceparty, water shall be T. An example file is \$MMM/SIMU/DEF/REF_ARTICLE/callphys.def.mars1.

COMPILING It is key to recompile the LMD Martian Mesoscale Model with makemeso each time the number of transported tracers has changed, which would most often be the case if you modify mars in namelist.input. The right number of tracers corresponding to the mars case you are setting must be specified when answering questions to the makemeso script. This is of course automatically done if you use runmeso which reads the information in namelist.input.

INPUTS/OUTPUTS Additional fields corresponding to tracer mixing ratios (e.g. QH20 for water vapor) are automatically output in wrfout* files if a different option than 0 is used for the mars keyword. Note that when a large number of tracers is set, output files might grow very large quickly after the mesoscale simulation is launched.

TEST CASE A good test case consists in coming back to the Arsia simulation described in section 3.3 and activate the water cycle. Add mars=1 to namelist.input, change callphys.def as described previously. Launch runmeso and choose 3 (i.e. recompile the model, run real.exe so that initial and boundary conditions for water are included, eventually run wrf.exe). Check for tracer fields in output files wrfout*.

7.3 Running Large-Eddy Simulations

PREREQUISITES Large-Eddy Simulations are very specific applications of the LMD Martian Mesoscale Model which allow the user to simulate boundary layer turbulent convection in idealized conditions at fine spatial and temporal resolution. We recommend to read section 3.4 of *Spiga and Forget* [2009] and the first three sections of *Spiga et al.* [2010].

PREPARING NAMELIST.INPUT A typical parameter file namelist.input_les is given in what follows (and could be found in \$MMM/SIMU). Settings specific to Large-Eddy Simulations are referred to as LES. The main differences with regular mesoscale simulations are the following:

- the duration of simulation is specified in seconds,
- o model top is specified as altitude above surface,
- the dynamical timestep and the spatial resolutions are much smaller,
- an additional isfflx keyword defines surface forcings (1 is recommended),
- o albedo and thermal inertia have to be set with uniform user-defined values,
- o idealized wind profile is assumed,
- o &dynamics keywords are adapted to small-scale diffusion,
- o periodic boundary conditions are set for the horizontal grid.

```
&time_control
run_seconds
                     = 37000 !! Duration of simulation
                                                                                    [LES: !=0]
history_interval_s = 100
                                !! Frequency of outputs in seconds
                                                                                    [LES: !=0]
frames_per_outfile = 37
                                !! Size of time dimension in files
                                                                                    [LES: 9999]
start_year
                     = 9999
                                !! Idealized simulation
end_year
                     = 9999
                                !! Idealized simulation
                                                                                    [LES: 9999]
                     = .false. !! (*) Restart run ?
restart
                              !! (*) Frequency of output restart files ?
restart_interval
                     = 8880
                                 !! (*) Choice of NETCDF for ouputs
io_form_history
io_form_restart
                     = 2
                                 !! (*) Choice of NETCDF for ouputs
                              !! (*) Choice of NETCDF for ouputs
io_form_input
                     = 2
                     = 2
                               !! (*) Choice of NETCDF for ouputs
io_form_boundary
                              !! (*) Verbose level
                     = 0
debug_level
&domains
                     = 12000. !! Altitude above ground of model top
                                                                                   [LES: !=0]
ztop
                    = 0
                                !! Dynamical timestep
time step
time_step_fract_num = 3
                                 !! Additional fraction to time_step: numerator
time_step_fract_den = 4
                                 !! Additional fraction to time_step: denominator
                                 !! (p2) Horizontal resolution
                     = 50
                                 !! (p2) Horizontal resolution (should be equal to dx)
dу
e_we
                     = 145
                                 !! (r)(p2) Number of longitude grid points
e_sn
                     = 145
                                 !! (r)(p2) Number of latitude grid points
                     = 201
                                !! (r)(p2) Number of vertical levels
e_vert
&physics
                     = 1
isfflx
                                !! 0 : UST/HFX from tke_... namelist values
                                \verb|!! 1 : \verb|UST/HFX| from LMD physics|\\
                                 \verb|!! 2 : \verb|UST from LMD| / \verb|HFX from namelist.input|\\
init_TI
                     = 50.
                                                                                    [LES: !=0]
                                !! Define constant thermal inertia value
                                !! Define constant albedo value
init_AL
                      = 0.3
 !! OPTIONAL
!!
radt
                     = 40
                                 !! Ratio between physical and dynamical time step
                     = 0
                                 !! (r)(p2) Configuration of tracers:
!! 0: no tracers, 1: water vapor + ice, 2: dust
mars
                                 !! (p3) Multiply ini & bdy zonal wind by init_U
init_MU
                     = 0.01
init_MV
                     = 0.01
                                !! (p3) Multiply ini & bdy meridional wind by init_V
&dynamics
diff_opt
                                !! (*d) Diffusion option
                                !! (*d) Eddy coefficient option
km_opt
                                                                                    [LES: 2]
diff_6th_opt
                     = 0
                                 !! (*d) Knievel numerical diffusion
mix_full_fields
                     = T
                                !! (*d) Set true if mixing ref + pert profiles
                                                                                    [LES: T]
 !! OPTIONAL
!!
! c_k
                         = 0.10
                                     !! Mixing coefficient constant for km_opt=2 [default: 0.15]
                         = 0.18
                                     !! Mixing coefficient constant for km_opt=3 [default: 0.25]
! c_s
                         = T
 pd_tke
                                     !! Positive definite advection of tke
                                    !! Constant surface thermal flux (H/(rho*cp), K m/s)
!! Constant surface drag coefficient (Cd, dimensionless)
!! Non-dimensional upper limit for diffusion coeffs
! tke_heat_flux
                         = 1.
 tke_drag_coefficient = 0.0025,
mix_upper_bound = 100.
 mix_isotropic
                         = 1
                                     !! O=anistropic vertical/horizontal diffusion coeffs, 1=isotropic
! pert_coriolis
                         = T
                                     !! Coriolis only acts on wind perturbation (idealized)
&bdy_control
                                 !! (p3) Periodic boundary conditions over x
periodic_x
                                                                                    [LES: T]
                                 !! (p3) Periodic boundary conditions over y
periodic_y
&grib2
&fdda
&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
```

PREPARING CALLPHYS.DEF It is essential that calldifv is set to T and calladj is set to F for Large-Eddy Simulations. Generally iaervar is set to 1 so that the (uniform) opacity in the domain can be set by adding a text file named dustopacity.def with the chosen value for opacity in it.

COMPILING The dynamical core used for Martian Large-Eddy Simulations is different than usual mesoscale simulations; it is based on WRF v3 instead of WRF v2. The first time the model is compiled, the user has to install it by typing the following commands:

```
cd $MMM/SRC/LES
./LMD_LES_MARS_install
cd $MMM
```

The compilation of the Large-Eddy Simulations model is carried out through the command:

makemeso -c les

This creates a new compilation folder with prefix les in which the executables can be found once the model is compiled. Answers to makemeso must be compliant with settings in namelist.input.

INPUTS/OUTPUTS Large-Eddy Simulations need four input files input_coord, input_sounding, input_more, input_therm which define initial pressure, temperature, density, winds profiles at the location/season for which simulations are run, along with information about this location/season. Typical files are available upon request, or you might simply build your own profiles using the Mars Climate Database (see the sample scilab script wrf_sounding.sci in \$MMM/SIMU/RUN). Examples for input_* files are provided in \$MMM/SRC/LES/modif_mars/DEF and correspond to the cases run in the study by Spiga et al. [2010].

- o input_coord contains longitude, latitude, L_s and local time;
- o input_sounding contains (first line) near-surface pressure (mbar), potential temperature, a dummy value; and (subsequent lines) altitudes above MOLA zero datum, potential temperatures, dummy value, zonal wind component, meridional wind component;
- input_more contains on the same line altimetry and surface temperature;
- \circ input_therm contains lines with corresponding values for (from left column to right column) R, c_p , pressure, density, temperature.

RUNNING Large-Eddy Simulations are not supported by runmeso. After compiling the model with the command makemeso -c les, please copy the executables ideal.exe and wrf.exe from the compilation directory \$MMM/les* towards your simulation directory where the input_* files are located. Running ideal.exe would generate the initial state wrfbdy_d01 from the profiles provided in the input_* files, then running wrf.exe would launch the model's integrations.

7.4 Running simulations with the New Physical Parameterizations

Using the most recent physical parameterizations means using a version of the LMD Martian Mesoscale Model that is still under development (thus experimental). It is therefore recommended to contact developers to run simulations in this mode. Reference setting files are located in MESOSCALE/LMD_MM_MARS/SIMU/DEF/newphys_THARSIS_WATER.

For advanced users who learnt with the LMD team how to use the new physical parameterizations, here are a few differences with the physical parameterizations natively provided with the LMD Martian Mesoscale Model that must be kept in mind

- a folder LMDZ_MARS containing the latest sources of the Mars LMD GCM must be located in the same repository which contains MESOSCALE (easy to do with SVN)
- GCM runs used to produce initial and boundary conditions for the mesoscale model must be done in MESOSCALE/LMDZ.MARS.new

- makemeso must be used with option -p
- the callphys.def file is different
- modifying the datafile.h is not necessary anymore, this can be done in callphys.def
- an additional run.def file is needed
- in namelist.input, the soil model must set to 18 levels
- in namelist.input, the 6th order small scale diffusion must be set to 0 (i.e. diff_6th_opt = 0) if the resolution is small (< 10 km)
- additional mars modes can be accessed (e.g. for interactive dust or the radiative effect of clouds)
- if init_TI is modified, real.exe must be run again (because of subsurface modeling)
- a varying map for surface roughness z_0 can be used or a constant value can be set with init_Z0 in namelist.input (if there is a problem, the old reference of 1cm is chosen)
- (starting from version r1038) the model does not need to be recompiled if the number of tracers is changed
- (starting from version r1214) the model does not need to be recompiled if the number of horizontal grid points or the number of processors is changed
- (prior to version r1247) the number of scatterers must be given when compiling, standard simulation uses 1 scatterer (2 is used for radiatively active water ice clouds)
- (starting from version r1247) the model does not need to be recompiled if the number of scatterers is changed

For nested runs, all versions posterior to r1027 are broken. However, the interface between the WRF dynamical core and the LMD physical parameterizations has been significantly improved in r1243, which fixes nesting runs and simplifies restart runs. Those improvements remain to be extensively tested more extensively, but getting an operational model with nesting and restart runs will only require now minor adjustments that will be committed in subsequent revisions of the model.

CHAPTER 8

Post-processing

In this chapter, the user is introduced to the principles of choosing the outputs of the LMD Martian Mesoscale Model. Elements about post-processing (interpolation, graphics) are also proposed here, although it is obviously left to the user to choose and develop its own tools to analyze the results of LMD Martian Mesoscale Model computations.

8.1 Controlling which fields to output in wrfout files

All non-local variables communicated within subroutines and functions in the WRF dynamical core are declared in a text file named Registry. EM located in \$MMM/SRC/WRFV2/Registry. In this file, each useful variable is declared through a one-line instance organized as follows:

```
state real PSFC ij misc 1 - i01rh "PSFC" "SFC PRESSURE" "Pa"
```

The fields which appears in wrfout* output files feature an h (which stands for history) in the 8th column. If you do not want the field to appear in wrfout* files, simply remove the letter h from the group of letters in the 8th column. If you want the field to appear in wrfout* files, simply add the letter h in the group of letters in the 8th column.

It is also possible to output fields which are present only in the physical computations, i.e. appearing in \$MMM/SRC/WRFV2/mars_lmd/libf/phymars/physiq.F. The method is simple. Assume you would like to output in the wrfout* files a 3D field named zdtnirco2 and a 2D field named qsurfice in physiq.F with the new names HR_NIR and QSURFICE. All you have to do is add the following lines to Registry.EM (see also examples around lines 75-120). For 2D [3D] files the 4th column must be ij [ikj] and the 12th column #SAVEMARS2 [#SAVEMARS3].

```
state real HR_NIR ikj misc 1 - rhd "HR_NIR" "HEATING RATE nirco2" "K/s" #SAVEMARS3 zdtnirco2
state real QSURFICE ij misc 1 - rhd "QSURFICE" "WATER ICE AT SURFACE" "kg m-2" #SAVEMARS2 qsurfice
```

Each change in Registry.EM must be followed by a complete recompilation because the model variables have changed. Whether you use makemeso or runmeso, use the option -f to force recompiling with a new/updated list of variables.

IMPORTANT: Each compilation directory your_compdir in \$MMM (e.g. g95_32_single) has its own copy of Registry.EM in your_compdir/WRFV2/Registry. This is the file that has to be modified. The file \$MMM/SRC/WRFV2/Registry/Registry.EM should not be modified: it is the reference file that is copied when the compilation directory is built by the copy_model script (cf. section 3.2).

8.2 Interpolating outputs on altitude and pressure levels

The fields output in wrfout* files are given for each grid point and model level. A vertical interpolation has to be performed to get those fields either in altitude or pressure levels. In addition, perturbation potential temperature T, x-component wind U and y-component V are output instead of the more informative (meteorologically-speaking) temperature tk, zonal wind Um and meridional wind Vm. This is why we developed a program named api (Altitude and Pressure Interpolator) which performs the tasks to convert the netCDF wrfout* files into another netCDF file featuring more useful fields to make plots and analyze the Martian mesoscale meteorology.

The source files for api are located in \$MMM/SRC/POSTPROC/. The program api.F90 has to be compiled with the comp_api command (which must be edited first, to uncomment the line corresponding to the Fortran compiler you are used to). Then the user has to fill in the parameter file namelist.api before launching the interpolator through the command api. A commented template for namelist.api is given below (this examples and many others can be found in \$MMM/SRC/POSTPROC/). The calculations might be long if you are requesting many fields and many interpolation levels. In the example below, temperature, meteorological winds and vertical velocity are interpolated at 50 m above the local surface. The results are output in a netCDF file having the same name as the input wrfout* files, with an additional suffix which depends on the chosen interpolation method.

```
path_to_input
                                                      !! where input wrfout* files are located
path_to_output = './'
                                                      !! where output API files will be located
input_name
                = 'wrfout_d01_9999-09-09_09:00:00' !! input file to API (could be wrfout*)
                = 'list'
process
                                                      !! [do not modify]
fields
                  'tk,W,uvmet
                                                         a list of fields to interpolate
                                                         - either fields in wrfout*
                                                         - or tk for temperature
                                                              uvmet for meteorological winds
                                                              tpot for potential temperature
                  . TRUE .
debug
                                                      !! [add this if you want more information on screen]
&interp_in
interp_method = 4
                                                                                                output: wrfout*_p
                                     !! 1 --> INTERPOLATION: PRESSURE [LINEAR in p]
                                     !! 2 --> INTERPOLATION: PRESSURE [LINEAR in log(p)]
                                                                                                output: wrfout*_p
                                     !! 3 --> INTERPOLATION: ALTITUDE ABOVE MOLA AREOID
                                                                                                output: wrfout*_z
                                        4 --> INTERPOLATION: ALTITUDE ABOVE LOCAL SURFACE
                                                                                               output: wrfout* zabg
                                     !! Interpolation levels: - pressure in hPa for interp_method = 1 or 2
!! - altitude in km for interp_method = 3 or 4
interp_levels = 0.050
                                     !!
                                                               - [pressure shall be in decreasing order]
```

8.3 Generating maps for winds and meteorological fields simulated by the model

The model outputs, as well as the results of api interpolations, are written using the netCDF format which can be read by most software with graphical capabilities. For a quick inspection of model results (especially for checking model outputs while the model is running), we recommend using ncview; for simple manipulations of netCDF files (e.g. concatenation, difference, extraction, ...), we recommend using commands from the nco package (see chapter 2 for website links). Graphical routines based on idl, ferret and grads can be made available upon request (as is, i.e. undocumented yet commented scripts). Successful reading/plotting of the LMD Martian Mesoscale Model outputs on matlab, octave, idv are also reported. It is possible to import the model's outputs to Geographical Information System (GIS) such as arcgis 1. Since 2012, we developed our own tool named PLANETOPLOT based on Python. More information can be found here: http://www.lmd.jussieu.fr/~aslmd/planetoplot.

^{1.} idl, matlab and arcgis are neither open-source nor free.

CHAPTER 9

FREQUENTLY ASKED QUESTIONS, TIPS AND TROUBLESHOOTING

Browse this chapter if you encounter problems or issues while using the LMD Martian Mesoscale Model. Before reading what follows, please ensure that:

- \circ you made no errors in using the model;
- o your problem is not addressed in the previous chapters;
- o your operating system and machine are in good health.

You might also read this chapter out of curiosity: it might be useful for your experience as an user.

9.1 General Questions

I don't know anything about mesoscale meteorology. Does that prevent me from becoming an user of your model?

Not really. It is the purpose of this user manual to help you with running simulations with the LMD Martian Mesoscale Model. Now, you will probably not be able to interpret simulation results that easily, but we will then be happy to help you with our expertise on atmospheric science and to advise good books so that you learn more about this topic.

I don't have time, or feeling overwhelmed by learning how to use the model.

There are particular cases in which our team might be able to run the simulation for your study. Or help someone you would hire to do the work with learning about how to use the model and answer to questions. We are open to discussion.

9.2 Compilation

The model compiled yesterday. Now, with no apparent changes, it does not compile.

- This is one of the most frustating situation. Remember though that there is 99% chance that the reason for the problem is either stupid or none of your responsability. Please check that:
 - Disk quota is not exceeded;
 - You are working on the same machine as the day before;
 - No source file has been accidentally modified; no links broken;
 - No updates has been performed on your system during the night;
 - Recompiling with makemeso -f does not solve the problem.

The model is no longer compiling, after I abruptly stopped the makemeso script because I realized that I made a mistake (e.g. I was compiling on the wrong machine).

Recompile the model from scratch by adding the option -f to makemeso.

I am asking for compiling the model on a huge grid (e.g. over $200 \times 200 \times 100$ for a single-processor run). The compilation fails with "relocated fits" errors.

Try to lower the number of grid points (either horizontal or vertical) or consider using parallel computations where computations over the model grid will be split over several processors.

I am afraid I explored a given compilation directory in \$MMM (say g95_32_single) and broke something, e.g. deleted or break some links. The model does not compile anymore.

Delete the corresponding compilation directory. Since it is mostly filled with symbolic links, you will only lose the previously compiled executables and the (possibly modified) Registry.EM file. Save those files prior to deletion of the compilation directory if you would like to keep those. Then run again makemeso for the same combination of compiler/system and a new clean version of the compilation directory will reappear, while the model executables are recompiled from scratch.

I update the model's sources through svn update and the compilation failed with the new version

while developing new capabilities or bug fixes for the model – and commit the changes to the reference version of the model. Please apply the solution proposed in the previous point and the model can be compiled again (because our rule is to commit only versions of the model which could be compiled). Possible problems can be anticipated by having a look to commit log through the command svn log. The vast majority of our commits, and subsequent reference model changes, is perfectly transparent for the user.

I would like to learn more about the interface between the WRF dynamical core and the LMD Martian physical parameterizations.

The program source that is responsible for the interface between the dynamical core and the physical parameterizations is module_lmd_driver.F in \$MMM/SRC/WRFV2/phys/.

WPS does not compile with my favorite compiler (the one I have to use for model integrations) but seems to work with another one

Go to the folder corresponding to your favorite compiler. Remove the WPS folder and link here the WPS folder obtained with the alternate compiler. The runmeso workflow will then work just fine if you select your favorite compiler.

I think I found a bug in the model.

This is not impossible! Please double check then contact us.

9.3 Preprocessing steps

I would like to have smoother surface properties.

Increase the smoothing parameter smooth_passes in the file WPS/geogrid/GEOGRID.TBL for each field you would like to get smoother, then restart at step 2 (execution of geogrid.exe).

I would like to know more about customizing the calculations made by geogrid.exe and metgrid.exe.

You probably want to know more about various settings in WPS/geogrid/GEOGRID.TBL and WPS/geogrid/METGRID.TBL. A detailed description can be found here http://www.mmm.ucar.edu/wrf/users/docs/user_guide/users_guide_chap3.html (some parameters are not relevant for Mars).

To speed up initializations, I would like to define GCM constraints at the domain boundaries each 6 Martian hours, instead of each one or two hours as it is usually done (cf. interval_seconds = 3700).

It is not a good idea. Near-surface atmospheric fields undergo a strong daily cycle on Mars which you will not be able to capture if interval_seconds is higher than 7400 seconds (i.e. two Martian hours).

real.exe is sometimes crashing with certain (low) values of p_top_requested.

The program real.exe attempts to come up with nice equally-spaced-in-altitude vertical levels above the boundary layer up to the model top. This is done by an iterating algorithm integrating the hydrostatic equation, which sometimes does not converge if the model top is too high (typically for values of p_top_requested below 5 Pa). Try to lower force_sfc_in_vinterp, increase max_dz, or modify tiso to help the algorithm to converge. An alternate solution to set values for p_top_requested below 5 Pa is to prescribe your own vertical levels (see next point).

I would like to define my own vertical levels.

Create a file levels with all your mass-based model levels (see chapter 1) in it then add the optional setting in &domains in namelist.input

```
eta_levels = 1.000000,
0.000000
```

You might also want to use eta_levels to prescribe directly in namelist.input the list of your custom model levels. Please ensure that the lowermost model level is 1, the uppermost is 0 and vertical resolution is refined in the boundary layer (~ 8 vertical levels above surface).

9.4 Runtime

I would like to know how long my simulation will last.

Check the log information while wrf.exe is running. The effective time to realize each integrating or writing step is indicated. Hence you can extrapolate and predict the total simulation time. If you use parallel computations, have a look in rsl.error.0000 to get this information.

With default settings, I have one wrfout* file per simulated day, each one of those containing fields hour by hour. I want to change this.

If you want to have an output frequency higher [lower] than one per hour, decrease [increase] the parameter history_interval in namelist.input (remember that each unit of history_interval is 100 seconds). If you want to have more [less] data in each individual file, increase [decrease] the parameter frames_per_outfile in namelist.input.

Looks like in the model (cf. namelist.input), a Martian hour is 3700 seconds. The reality is closer to 3699 seconds.

This is true, though obviously the 3700 figure is much more convenient and choosing this instead of 3699 has no impact whatsoever on simulations which last typically less than one month, and most often only a few days.

I want to know the local time for a given model output.

Time management in the model, which includes the way output files are named, relates to UTC time, i.e. local time at longitude 0°. The time given in the name of each wrfout* file refers to the first frame written in the file – using history_interval allows you to infer universal time for all frames in the file. Another method is to look at the variable Times in wrfout*. Once you know about universal time, you can check the domain longitudes in XLONG to calculate local time at any location.

The executable wrf.exe crashes a few seconds after launching and I don't know why.

Please check all outputs from wrf.exe: wrfout* files and information log (note that the model can be made more verbose by setting debug_level = 200 in namelist.input). It is usually possible to find hints about the problem(s) which make the model become unstable or crash. Sometimes it is just one file that is missing. If cfl warnings are reported in information log, it is probably a good idea to lower the timestep, but this will not fix the problem all the time especially if there are wrong settings and subsequent physical inconsistencies. If everything looks fine in the information log, try to lower history_interval to 1 in namelist.input so that much frequent outputs can be obtained in the wrfout* files and the problem can be further diagnosed through analyzing simulated meteorological fields.

I don't know which timestep should I choose to prevent the model from crashing.

The answer depends on the horizontal resolution according to the CFL condition – and whether the dynamical core is used in hydrostatic or non-hydrostatic mode, plus other factors (e.g. slopes, temperature gradients, etc...). Please refer to the table in *Spiga and Forget* [2009] for guidelines about timestep; or check examples in \$MMM/SIMU/DEF. A rule-of-thumb to start with is to set time_step to the value of dx in kilometers; this value can be sometimes raised to get faster integrations. If the time_step parameter is too large for the horizontal resolution dx and violates the CFL criterion, wrf.exe usually issues warnings about CFL violation in the first integration steps.

Looks like wrf.exe is crashing because there are dynamical instabilities on the lateral boundaries apparently close to a topographical obstacle.

Check that no steep slope (mountain, crater) is located at the domain boundaries. Otherwise, change the domain's center so that no major topographical gradient is located close to the domain boundaries (in the relaxation zone). This is also true for nested simulations at the boundary between parent and nested domains.

I compiled the model with ifort. At runtime it stops after a few integration steps because a segmentation fault appeared.

The model uses a lot of memory, especially when large domains or nests are requested. Try the command ulimit -s unlimited. If this does not solve the problem, try other solutions listed in this chapter.

The model seems not being able to produce outputs although the log files indicate writing files has been done. This is the case especially when I increased the number of grid points.

Set the environment variable WRFIO_NCD_LARGE_FILE_SUPPORT to 1

declare -x WRFIO_NCD_LARGE_FILE_SUPPORT=1

and recompile the model from scratch. Your model will be able then to produce very large files (especially restart files).

9.5 Specific simulations

It seems difficult to me to find a number of horizontal grid points for parallel nested simulations that is compliant with all constraints mentioned in section 7.1.

- Here is a tip that allows to easily choose the number of horizontal grid points for parallel nested simulations. Let e_we minus 1 be nn. The three following conditions must be verified
 - 1. the number of processors (usually 4) must divide nn for the mother domain
 - 2. same condition for nn + 4 in the nested domains
 - 3. grid_ratio (usually 3) must divide nn + 4 for the nested domains

With a standard number of 4 processors for nested runs, the second condition is verified if the first one is. The first and third conditions are verified if we make nn+4 be a multiple of 12. Hence a very simple way to set the number of horizontal grid points e_w and e_s in a nested simulation is to set the number of horizontal grid points in the nested domains as a multiple of 12 plus 1. The mother domain would then have this number of horizontal grid points minus 4. Examples: 117,121,121; 177,181,181; 57,61,61...

Martian calendars

init	GCM sol	GCM ls	LMD Martian Mesoscale Model
0	0	0.000000	2024-01-01_00:00:00
0	1	0.5125165	2024-01-02_00:00:00
99	2	1.024138	2024-01-03_00:00:00
0	3	1.534933	2024-01-04_00:00:00
0	4	2.044906	2024-01-05_00:00:00
99	5	2.554062	2024-01-06_00:00:00
0	6	3.062404	2024-01-07_00:00:00
0	7	3.569939	2024-01-08_00:00:00
99	8	4.076671	2024-01-09_00:00:00
0	9	4.582605	2024-01-10_00:00:00
0	10	5.087745	2024-01-11_00:00:00
99	11	5.592097	2024-01-12_00:00:00
0	12	6.095666	2024-01-13_00:00:00
0	13	6.598457	2024-01-14_00:00:00
99	14	7.100474	2024-01-15_00:00:00
0	15	7.601723	2024-01-16_00:00:00
0	16	8.102209	2024-01-17_00:00:00
99	17	8.601937	2024-01-18_00:00:00
0	18	9.100911	2024-01-19_00:00:00
99	19 20	9.599138 10.09662	2024-01-20_00:00:00 2024-01-21_00:00:00
0	21	10.59337	2024-01-22_00:00:00
0	22	11.08938	2024-01-23_00:00:00
99	23	11.58467	2024-01-24_00:00:00
0	24	12.07924	2024-01-25_00:00:00
0	25	12.57309	2024-01-26_00:00:00
99	26	13.06623	2024-01-27_00:00:00
0	27	13.55866	2024-01-28_00:00:00
0	28	14.05039	2024-01-29_00:00:00
99	29	14.54143	2024-01-30_00:00:00
0	30	15.03177	2024-01-31_00:00:00
0	31	15.52144	2024-01-32_00:00:00
99	32	16.01042	2024-01-33_00:00:00
0	33	16.49873	2024-01-34_00:00:00
0	34	16.98637	2024-01-35_00:00:00
99	35	17.47335	2024-01-36_00:00:00
0	36	17.95967	2024-01-37_00:00:00
0	37	18.44534	2024-01-38_00:00:00
99	38	18.93036	2024-01-39_00:00:00
0	39 40	19.41475 19.89849	2024-01-40_00:00:00 2024-01-41_00:00:00
99	41	20.38161	2024-01-42_00:00:00
0	42	20.86410	2024-01-43_00:00:00
0	43	21.34598	2024-01-44_00:00:00
99	44	21.82724	2024-01-45_00:00:00
0	45	22.30789	2024-01-46_00:00:00
0	46	22.78794	2024-01-47_00:00:00
99	47	23.26740	2024-01-48_00:00:00
0	48	23.74626	2024-01-49_00:00:00
0	49	24.22454	2024-01-50_00:00:00
99	50	24.70224	2024-01-51_00:00:00
0	51	25.17936	2024-01-52_00:00:00
0	52	25.65592	2024-01-53_00:00:00
99	53	26.13191	2024-01-54_00:00:00
0	54	26.60734	2024-01-55_00:00:00
0	55	27.08223	2024-01-56_00:00:00
99	56	27.55657	2024-01-57_00:00:00
0	57	28.03036	2024-01-58_00:00:00
0	58 50	28.50362	2024-01-59_00:00:00
99 0	59 60	28.97636 29.44857	2024-01-60_00:00:00 2024-01-61_00:00:00
0	61	29.92026	2024-01-61_00:00:00
99	62	30.39144	2024-02-01_00:00:00
0	63	30.86211	2024-02-03_00:00:00
-			

0	64	31.33229	2024-02-04_00:00:00
99	65	31.80197	2024-02-05_00:00:00
0	66	32.27115	2024-02-06_00:00:00
	67	32.73986	
0			2024-02-07_00:00:00
99	68	33.20808	2024-02-08_00:00:00
0	69	33.67584	2024-02-09_00:00:00
0	70	34.14313	2024-02-10_00:00:00
99	71	34.60995	2024-02-11_00:00:00
	72		
0		35.07632	2024-02-12_00:00:00
0	73	35.54224	2024-02-13_00:00:00
99	74	36.00772	2024-02-14_00:00:00
0	75	36.47276	2024-02-15_00:00:00
0	76	36.93737	2024-02-16_00:00:00
99	77	37.40155	
			2024-02-17_00:00:00
0	78	37.86531	2024-02-18_00:00:00
0	79	38.32866	2024-02-19_00:00:00
99	80	38.79159	2024-02-20_00:00:00
0	81	39.25412	2024-02-21_00:00:00
0	82	39.71626	2024-02-22_00:00:00
99	83	40.17799	2024-02-23_00:00:00
0	84	40.63935	2024-02-24_00:00:00
0	85	41.10032	2024-02-25_00:00:00
99	86	41.56092	2024-02-26_00:00:00
0	87	42.02114	2024-02-27_00:00:00
0	88	42.48101	2024-02-28_00:00:00
99	89	42.94051	2024-02-29_00:00:00
0	90	43.39967	2024-02-30_00:00:00
0	91	43.85847	2024-02-31_00:00:00
99	92	44.31694	2024-02-32_00:00:00
0	93	44.77507	2024-02-33_00:00:00
0	94	45.23287	2024-02-34_00:00:00
99	95	45.69034	2024-02-35_00:00:00
0	96	46.14750	2024-02-36_00:00:00
0	97	46.60434	2024-02-37_00:00:00
99	98	47.06088	2024-02-38_00:00:00
0	99	47.51712	2024-02-39_00:00:00
0	100	47.97306	2024-02-40_00:00:00
99	101	48.42871	2024-02-41_00:00:00
0	102	48.88408	2024-02-42_00:00:00
0	103	49.33917	2024-02-43_00:00:00
99	104	49.79399	2024-02-44_00:00:00
0	105	50.24854	2024-02-45_00:00:00
0	106	50.70282	2024-02-46_00:00:00
99	107	51.15686	2024-02-47_00:00:00
0	108	51.61064	2024-02-48_00:00:00
0	109	52.06418	2024-02-49_00:00:00
99	110	52.51748	2024-02-50_00:00:00
0	111	52.97055	2024-02-51_00:00:00
0	112	53.42339	2024-02-52_00:00:00
99	113	53.87601	2024-02-53_00:00:00
0	114	54.32841	2024-02-54_00:00:00
0	115	54.78061	2024-02-55_00:00:00
99	116	55.23259	2024-02-56_00:00:00
0	117	55.68438	2024-02-57_00:00:00
0	118	56.13598	2024-02-58_00:00:00
99	119	56.58739	2024-02-59_00:00:00
0	120	57.03862	2024-02-60_00:00:00
0	121	57.48968	2024-02-61_00:00:00
99	122	57.94056	2024-02-62_00:00:00
0	123	58.39127	2024-02-63_00:00:00
0	124	58.84184	2024-02-64_00:00:00
99	125	59.29224	2024-02-65_00:00:00
0	126	59.74250	2024-02-66_00:00:00
0	127	60.19262	2024-03-01_00:00:00
99	128	60.64259	2024-03-02_00:00:00
0	129	61.09244	2024-03-03_00:00:00
0	130	61.54217	2024-03-04_00:00:00
99	131	61.99178	2024-03-05_00:00:00
0	132	62.44127	2024-03-06_00:00:00
0	133	62.89066	2024-03-07_00:00:00
99	134	63.33993	2024-03-08_00:00:00
0	135	63.78912	2024-03-09_00:00:00
0	136	64.23822	2024-03-10_00:00:00
99	137	64.68722	2024-03-11_00:00:00
0	138	65.13615	2024-03-12_00:00:00
0	139	65.58501	2024-03-13_00:00:00
99	140	66.03380	2024-03-14_00:00:00
0	141	66.48252	2024-03-15_00:00:00
•			2024-03-15_00:00:00
		66 02110	
0	142	66.93119	
0 99	142 143	67.37981	2024-03-17_00:00:00
0	142		
0 99 0	142 143 144	67.37981 67.82838	2024-03-17_00:00:00 2024-03-18_00:00:00
0 99	142 143	67.37981	2024-03-17_00:00:00

0	147	69.17387	2024-03-21_00:00:00
0	148	69.62232	2024-03-22_00:00:00
99	149	70.07076	2024-03-23_00:00:00
0	150	70.51917	2024-03-24_00:00:00
0	151	70.96758	2024-03-25_00:00:00
99	152	71.41599	2024-03-26_00:00:00
0	153	71.86441	2024-03-27_00:00:00
0	154	72.31285	2024-03-28_00:00:00
99	155	72.76130	2024-03-29_00:00:00
0	156	73.20976	2024-03-30_00:00:00
0	157	73.65823	2024-03-31_00:00:00
99	158	74.10679	2024-03-32_00:00:00
0	159	74.55534	2024-03-33_00:00:00
0	160	75.00394	2024-03-34_00:00:00
99	161	75.45261	2024-03-35_00:00:00
0	162	75.90135	2024-03-36_00:00:00
0	163	76.35012	2024-03-37_00:00:00
99	164	76.79897	2024-03-38_00:00:00
0	165	77.24789	2024-03-39_00:00:00
0	166	77.69690	_
			2024-03-40_00:00:00
99	167	78.14597	2024-03-41_00:00:00
0	168	78.59515	2024-03-42_00:00:00
0	169	79.04441	2024-03-43_00:00:00
99	170	79.49381	2024-03-44_00:00:00
0	171	79.94329	2024-03-45_00:00:00
0	172	80.39288	2024-03-46_00:00:00
99	173	80.84258	2024-03-47_00:00:00
0	174	81.29242	2024-03-48_00:00:00
0	175	81.74239	2024-03-49_00:00:00
99	176	82.19250	2024-03-50_00:00:00
0	177	82.64275	2024-03-51_00:00:00
0	178	83.09313	2024-03-52_00:00:00
99	179	83.54368	2024-03-53_00:00:00
0	180	83.99436	2024-03-54_00:00:00
0	181	84.44524	2024-03-55_00:00:00
99	182	84.89627	2024-03-56_00:00:00
0	183	85.34747	2024-03-57_00:00:00
0	184	85.79887	2024-03-58_00:00:00
99	185	86.25046	2024-03-59_00:00:00
0	186	86.70223	2024-03-60_00:00:00
0	187	87.15420	2024-03-61_00:00:00
99	188	87.60635	2024-03-62_00:00:00
0	189	88.05876	2024-03-63_00:00:00
0	190	88.51136	2024-03-64_00:00:00
99	191	88.96417	2024-03-65_00:00:00
0	192	89.41721	2024-03-66_00:00:00
0	193	89.87048	2024-04-01_00:00:00
99	194	90.32401	2024-04-02_00:00:00
0	195	90.77775	2024-04-03_00:00:00
0	196	91.23177	2024-04-04_00:00:00
99	197	91.68603	2024-04-05_00:00:00
0	198	92.14056	2024-04-06_00:00:00
			_
0	199	92.59534	2024-04-07_00:00:00
99	200	93.05040	2024-04-08_00:00:00
0	201	93.50575	2024-04-09_00:00:00
0	202	93.96138	2024-04-10_00:00:00
99	203	94.41728	2024-04-11_00:00:00
0	204	94.87349	2024-04-12_00:00:00
0	205	95.32999	2024-04-13_00:00:00
			2024-04-13_00:00:00
99	206	95.78682	
0	207	96.24395	2024-04-15_00:00:00
0	208	96.70139	2024-04-16_00:00:00
99	209	97.15914	2024-04-17_00:00:00
0	210	97.61726	2024-04-18_00:00:00
0	211	98.07567	2024-04-19_00:00:00
99	212	98.53444	2024-04-20_00:00:00
			2024-04-21_00:00:00
0	213	98.99357	
0	214	99.45305	2024-04-22_00:00:00
99	215	99.91286	2024-04-23_00:00:00
0	216	100.3730	2024-04-24_00:00:00
0	217	100.8336	2024-04-25_00:00:00
99	218	101.2945	2024-04-26_00:00:00
0	219	101.7559	2024-04-27_00:00:00
			_
0	220	102.2176	2024-04-28_00:00:00
99	221	102.6797	2024-04-29_00:00:00
0	222	103.1421	2024-04-30_00:00:00
0	223	103.6050	2024-04-31_00:00:00
99	224	104.0683	2024-04-32_00:00:00
0	225	104.5321	2024-04-33_00:00:00
0	226	104.9962	2024-04-34_00:00:00
99	227	105.4608	2024-04-35_00:00:00
0	228	105.9258	2024-04-36_00:00:00
0	229	106.3912	2024-04-37_00:00:00

99	230	106.8571	2024-04-38_00:00:00
0	231	107.3234	2024-04-39_00:00:00
0	232	107.7902	2024-04-40_00:00:00
99	233	108.2574	2024-04-41_00:00:00
0	234	108.7251	2024-04-42_00:00:00
0	235	109.1933	2024-04-43_00:00:00
99	236	109.6620	2024-04-44_00:00:00
0	237	110.1311	2024-04-45_00:00:00
0	238	110.1311	2024-04-46_00:00:00
99	239	111.0709	2024-04-47_00:00:00
0	240	111.5415	2024-04-48_00:00:00
0	241	112.0126	2024-04-49_00:00:00
99	242	112.4843	2024-04-50_00:00:00
0	243	112.9564	2024-04-51_00:00:00
0	244	113.4291	2024-04-52_00:00:00
99	245	113.9023	2024-04-53_00:00:00
0	246	114.3761	2024-04-54_00:00:00
0	247	114.8503	2024-04-55_00:00:00
99	248	115.3251	2024-04-56_00:00:00
0	249	115.8005	2024-04-57_00:00:00
0	250	116.2765	2024-04-58_00:00:00
99	251	116.7530	2024-04-59_00:00:00
0	252	117.2300	2024-04-60_00:00:00
0	253	117.7077	2024-04-61_00:00:00
99	254	118.1859	2024-04-62_00:00:00
0	255	118.6647	2024-04-63_00:00:00
0	256	119.1441	2024-04-64_00:00:00
99	257	119.6241	2024-04-65_00:00:00
0	258	120.1047	2024-05-01_00:00:00
Ö	259	120.5859	2024-05-02_00:00:00
99	260	121.0677	2024-05-03_00:00:00
0	261	121.5501	2024-05-04-00:00:00
0	262	122.0332	
99	263		2024-05-05_00:00:00 2024-05-06_00:00:00
		122.5169	_
0	264	123.0012	2024-05-07_00:00:00
0	265	123.4861	2024-05-08_00:00:00
99	266	123.9717	2024-05-09_00:00:00
0	267	124.4580	2024-05-10_00:00:00
0	268	124.9449	2024-05-11_00:00:00
99	269	125.4325	2024-05-12_00:00:00
0	270	125.9207	2024-05-13_00:00:00
0	271	126.4096	2024-05-14_00:00:00
99	272	126.8992	2024-05-15_00:00:00
0	273	127.3895	2024-05-16_00:00:00
0	274	127.8805	2024-05-17_00:00:00
99	275	128.3721	2024-05-18_00:00:00
0	276	128.8645	2024-05-19_00:00:00
0	277	129.3576	2024-05-20_00:00:00
99	278	129.8513	2024-05-21_00:00:00
0	279	130.3459	2024-05-22_00:00:00
0	280	130.8411	2024-05-23_00:00:00
99	281	131.3370	2024-05-24_00:00:00
0	282	131.8337	2024-05-25_00:00:00
0	283	132.3311	2024-05-26_00:00:00
99	284	132.8292	2024-05-27_00:00:00
0	285	133.3282	2024-05-28_00:00:00
0	286	133.8278	2024-05-29_00:00:00
99	287	134.3282	2024-05-30_00:00:00
0	288	134.8294	2024-05-31_00:00:00
0	289	135.3313	2024-05-32_00:00:00
99	290	135.8340	2024-05-33_00:00:00
0	291	136.3375	2024-05-34_00:00:00
0	292	136.8418	2024-05-35_00:00:00
99	293	137.3468	2024-05-36_00:00:00
0	294	137.8527	2024-05-37_00:00:00
Ö	295	138.3594	2024-05-38_00:00:00
99	296	138.8668	2024-05-39_00:00:00
0	297	139.3751	2024-05-40_00:00:00
0	298	139.8841	2024-05-41_00:00:00
99	299	140.3940	2024-05-42_00:00:00
0	300	140.3940	2024-05-43_00:00:00
0	301	141.4163	2024-05-44_00:00:00
99	301	141.4103	2024-05-45_00:00:00
0	302	141.9287	
			2024-05-46_00:00:00
0	304	142.9559	2024-05-47_00:00:00
99	305	143.4708	2024-05-48_00:00:00
0	306	143.9866	2024-05-49_00:00:00
0	307	144.5031	2024-05-50_00:00:00
99	308	145.0206	2024-05-51_00:00:00
0	309	145.5389	2024-05-52_00:00:00
0	310	146.0581	2024-05-53_00:00:00
99	311	146.5782	2024-05-54_00:00:00
0	312	147.0991	2024-05-55_00:00:00

0	313	147.6209	2024-05-56_00:00:00
99	314	148.1436	2024-05-57_00:00:00
0	315	148.6672	2024-05-58_00:00:00
0	316	149.1917	2024-05-59_00:00:00
99	317	149.7170	2024-05-60_00:00:00
0	318	150.2433	2024-06-01_00:00:00
0	319	150.7705	2024-06-02_00:00:00
99	320	151.2986	2024-06-03_00:00:00
0	321	151.8276	2024-06-04_00:00:00
0	322	152.3575	2024-06-05_00:00:00
99	323	152.8883	2024-06-06_00:00:00
0	324	153.4201	2024-06-07_00:00:00
			-
0	325	153.9527	2024-06-08_00:00:00
99	326	154.4864	2024-06-09_00:00:00
0	327	155.0209	2024-06-10_00:00:00
0	328	155.5564	2024-06-11_00:00:00
99	329	156.0928	2024-06-12_00:00:00
0	330	156.6302	2024-06-13_00:00:00
0	331	157.1685	2024-06-14_00:00:00
99	332	157.7078	2024-06-15_00:00:00
0	333	158.2480	2024-06-16_00:00:00
0	334	158.7892	2024-06-17_00:00:00
99	335	159.3313	2024-06-18_00:00:00
0	336	159.8744	2024-06-19_00:00:00
0	337	160.4185	2024-06-20_00:00:00
99	338	160.9635	2024-06-21_00:00:00
0	339	161.5095	2024-06-22_00:00:00
0	340	162.0565	2024-06-23_00:00:00
99	341	162.6044	2024-06-24_00:00:00
0	342	163.1533	2024-06-25_00:00:00
0	343	163.7032	2024-06-26_00:00:00
99	344	164.2541	2024-06-27_00:00:00
0	345	164.8060	2024-06-28_00:00:00
0	346	165.3589	2024-06-29_00:00:00
99	347	165.9127	2024-06-30_00:00:00
0	348	166.4675	2024-06-31_00:00:00
0	349	167.0234	2024-06-32_00:00:00
99	350	167.5802	2024-06-33_00:00:00
0	351	168.1380	2024-06-34_00:00:00
0	352	168.6968	2024-06-35_00:00:00
99	353	169.2566	2024-06-36_00:00:00
99	333		
0	354	169.8175	2024-06-37_00:00:00
0			2024-06-38_00:00:00
	355	170.3793	
99	356	170.9421	2024-06-39_00:00:00
0	357	171.5059	2024-06-40_00:00:00
0	358	172.0707	2024-06-41_00:00:00
99	359	172.6366	2024-06-42_00:00:00
0	360	173.2034	2024-06-43_00:00:00
0	361	173.7712	2024-06-44_00:00:00
99	362	174.3401	2024-06-45_00:00:00
0	363	174.9099	2024-06-46_00:00:00
0	364	175.4808	2024-06-47_00:00:00
99	365	176.0526	2024-06-48_00:00:00
0	366	176.6255	2024-06-49_00:00:00
0	367	177.1994	2024-06-50_00:00:00
			2024-06-51_00:00:00
99	368	177.7742	
0	369	178.3501	2024-06-52_00:00:00
0	370	178.9270	2024-06-53_00:00:00
99	371	179.5049	2024-06-54_00:00:00
0	372	180.0838	2024-07-01_00:00:00
0	373	180.6638	2024-07-02_00:00:00
99	374	181.2447	2024-07-03_00:00:00
0	375	181.8266	2024-07-04_00:00:00
0	376	182.4095	2024-07-05_00:00:00
99	377	182.9934	2024-07-06_00:00:00
0	378	183.5783	2024-07-07_00:00:00
0	379	184.1642	2024-07-08_00:00:00
99	380	184.7511	2024-07-09_00:00:00
0	381	185.3390	2024-07-10_00:00:00
0	382	185.9279	2024-07-11_00:00:00
99	383	186.5178	2024-07-12_00:00:00
0	384	187.1086	2024-07-13_00:00:00
0	385	187.7005	2024-07-14_00:00:00
			-
99	386	188.2933	2024-07-15_00:00:00
0	387	188.8871	2024-07-16_00:00:00
0	388	189.4819	2024-07-17_00:00:00
99	389	190.0776	2024-07-18_00:00:00
0	390	190.6743	2024-07-19_00:00:00
0	391	191.2720	2024-07-20_00:00:00
	091		
99	000		2024-07-21_00:00:00
	392	191.8707	2024 01 21_00.00.00
0			
0	393	192.4702	2024-07-22_00:00:00
0 0			2024-07-22_00:00:00 2024-07-23_00:00:00
	393	192.4702	2024-07-22_00:00:00

•	200	101 0710	0004 07 05 00 00 00
0	396	194.2748	2024-07-25_00:00:00
0	397	194.8782	2024-07-26_00:00:00
99	398	195.4825	2024-07-27_00:00:00
0	399	196.0878	2024-07-28_00:00:00
0	400	196.6939	2024-07-29_00:00:00
99	401	197.3011	2024-07-30_00:00:00
0	402	197.9091	2024-07-31_00:00:00
0	403	198.5181	2024-07-32_00:00:00
99	404	199.1279	2024-07-33_00:00:00
	405		
0		199.7387	2024-07-34_00:00:00
0	406	200.3503	2024-07-35_00:00:00
99	407	200.9629	2024-07-36_00:00:00
0	408	201.5763	2024-07-37_00:00:00
0	409	202.1906	2024-07-38_00:00:00
99	410	202.8058	2024-07-39_00:00:00
0	411	203.4219	2024-07-40_00:00:00
0	412	204.0388	2024-07-41_00:00:00
99	413	204.6566	2024-07-42_00:00:00
	414	205.2752	2024-07-43_00:00:00
0			
0	415	205.8947	2024-07-44_00:00:00
99	416	206.5150	2024-07-45_00:00:00
0	417	207.1361	2024-07-46_00:00:00
0	418	207.7580	2024-07-47_00:00:00
			_
99	419	208.3807	2024-07-48_00:00:00
0	420	209.0043	2024-07-49_00:00:00
0	421	209.6286	2024-07-50_00:00:00
99	422	210.2538	2024-08-01_00:00:00
0	423	210.8797	2024-08-02_00:00:00
0	424	211.5063	2024-08-03_00:00:00
99	425	212.1338	2024-08-04_00:00:00
0	426	212.7619	2024-08-05_00:00:00
0	427	213.3909	2024-08-06_00:00:00
99	428	214.0205	
			2024-08-07_00:00:00
0	429	214.6509	2024-08-08_00:00:00
0	430	215.2820	2024-08-09_00:00:00
99	431	215.9138	2024-08-10_00:00:00
0	432	216.5463	2024-08-11_00:00:00
0	433	217.1795	2024-08-12_00:00:00
99	434	217.8133	2024-08-13_00:00:00
0	435	218.4479	2024-08-14_00:00:00
0	436	219.0831	2024-08-15_00:00:00
99	437	219.7189	2024-08-16_00:00:00
0	438	220.3553	2024-08-17_00:00:00
0	439	220.9924	2024-08-18_00:00:00
99	440	221.6301	2024-08-19_00:00:00
0	441	222.2684	2024-08-20_00:00:00
0	442	222.9073	2024-08-21_00:00:00
99	443	223.5468	2024-08-22_00:00:00
0	444	224.1868	2024-08-23_00:00:00
0	445	224.8274	2024-08-24_00:00:00
99	446	225.4685	2024-08-25_00:00:00
0	447	226.1102	2024-08-26_00:00:00
0	448	226.7524	2024-08-27_00:00:00
99	449	227.3951	2024-08-28_00:00:00
0	450	228.0383	2024-08-29_00:00:00
Ö	451	228.6820	2024-08-30_00:00:00
99	452	229.3261	2024-08-31_00:00:00
0	453	229.9707	2024-08-32_00:00:00
0	454	230.6158	2024-08-33_00:00:00
99	455	231.2613	2024-08-34_00:00:00
0	456	231.9072	2024-08-35_00:00:00
0	457	232.5535	2024-08-36_00:00:00
99	458	233.2003	2024-08-37_00:00:00
0	459	233.8474	2024-08-38_00:00:00
0	460	234.4948	2024-08-39_00:00:00
99	461	235.1427	2024-08-40_00:00:00
0	462	235.7908	2024-08-41_00:00:00
0	463	236.4393	2024-08-42_00:00:00
99	464	237.0882	2024-08-43_00:00:00
0	465	237.7372	2024-08-44_00:00:00
0	466	238.3867	2024-08-45_00:00:00
99	467	239.0363	2024-08-46_00:00:00
0	468	239.6863	2024-09-01_00:00:00
0	469	240.3365	2024-09-02_00:00:00
99	470	240.9869	2024-09-03_00:00:00
0	471	241.6376	2024-09-04_00:00:00
0	472	242.2884	2024-09-05_00:00:00
99	473	242.9395	2024-09-06_00:00:00
0	474	243.5907	2024-09-07_00:00:00
Ö	475	244.2421	2024-09-08_00:00:00
99	476	244.8936	2024-09-09_00:00:00
0	477	245.5453	2024-09-10_00:00:00
	478	246.1971	2024-09-11_00:00:00
0			

99	479	246.8489	2024-09-12_00:00:00
0	480	247.5009	2024-09-13_00:00:00
0	481	248.1530	2024-09-14_00:00:00
		248.8051	
99	482		2024-09-15_00:00:00
0	483	249.4573	2024-09-16_00:00:00
0	484	250.1095	2024-09-17_00:00:00
99	485	250.7617	2024-09-18_00:00:00
0	486	251.4140	2024-09-19_00:00:00
	487	252.0662	
0			2024-09-20_00:00:00
99	488	252.7184	2024-09-21_00:00:00
0	489	253.3705	2024-09-22_00:00:00
0	490	254.0227	2024-09-23_00:00:00
99	491	254.6747	2024-09-24_00:00:00
0	492	255.3267	_
			2024-09-25_00:00:00
0	493	255.9785	2024-09-26_00:00:00
99	494	256.6302	2024-09-27_00:00:00
0	495	257.2819	2024-09-28_00:00:00
0	496	257.9334	2024-09-29_00:00:00
99	497	258.5847	2024-09-30_00:00:00
0	498	259.2359	_
			2024-09-31_00:00:00
0	499	259.8869	2024-09-32_00:00:00
99	500	260.5377	2024-09-33_00:00:00
0	501	261.1882	2024-09-34_00:00:00
0	502	261.8386	2024-09-35_00:00:00
99	503	262.4887	2024-09-36_00:00:00
0	504	263.1386	2024-09-37_00:00:00
0	505	263.7882	2024-09-38_00:00:00
99	506	264.4375	2024-09-39_00:00:00
0	507	265.0865	2024-09-40_00:00:00
0	508	265.7353	2024-09-41_00:00:00
99	509	266.3837	
			2024-09-42_00:00:00
0	510	267.0318	2024-09-43_00:00:00
0	511	267.6795	2024-09-44_00:00:00
99	512	268.3268	2024-09-45_00:00:00
0	513	268.9738	2024-09-46_00:00:00
0	514	269.6204	2024-09-47_00:00:00
99	515	270.2667	2024-10-01_00:00:00
0	516	270.9124	2024-10-02_00:00:00
0	517	271.5578	2024-10-03_00:00:00
99	518	272.2027	2024-10-04_00:00:00
0	519	272.8472	2024-10-05_00:00:00
0	520	273.4912	2024-10-06_00:00:00
99		274.1348	2024-10-07_00:00:00
	521		
0	522	274.7778	2024-10-08_00:00:00
0	523	275.4203	2024-10-09_00:00:00
99	524	276.0624	2024-10-10_00:00:00
0	525	276.7039	2024-10-11_00:00:00
0	526	277.3448	2024-10-12_00:00:00
99	527	277.9853	2024-10-13_00:00:00
			_
0	528	278.6252	2024-10-14_00:00:00
0	529	279.2644	2024-10-15_00:00:00
99	530	279.9032	2024-10-16_00:00:00
0	531	280.5413	2024-10-17_00:00:00
0	532	281.1788	2024-10-18_00:00:00
99	533	281.8157	2024-10-19_00:00:00
0	534	282.4520	2024-10-20_00:00:00
0	535	283.0876	2024-10-21_00:00:00
99	536	283.7226	2024-10-22_00:00:00
0	537	284.3569	2024-10-23_00:00:00
0	538	284.9906	2024-10-24_00:00:00
99	539	285.6235	2024-10-25_00:00:00
0	540	286.2558	2024-10-26_00:00:00
0	541	286.8874	2024-10-20_00:00:00
99	542	287.5183	2024-10-28_00:00:00
0	543	288.1485	2024-10-29_00:00:00
0	544	288.7779	2024-10-30_00:00:00
99	545	289.4066	2024-10-31_00:00:00
0	546	290.0346	2024-10-32_00:00:00
0	547	290.6618	2024-10-33_00:00:00
			2024-10-33_00:00:00
99	548	291.2882	
0	549	291.9139	2024-10-35_00:00:00
0	550	292.5388	2024-10-36_00:00:00
99	551	293.1629	2024-10-37_00:00:00
0	552	293.7862	2024-10-38_00:00:00
Ö	553	294.4087	2024-10-39_00:00:00
99	554	295.0304	2024-10-30_00:00:00
0	555	295.6512	2024-10-41_00:00:00
0	556	296.2713	2024-10-42_00:00:00
99	557	296.8905	2024-10-43_00:00:00
0	558	297.5089	2024-10-44_00:00:00
0	559	298.1264	2024-10-45_00:00:00
99	560	298.7430	2024-10-46_00:00:00
0	561	299.3588	2024-10-47_00:00:00

0	562	299.9738	2024-11-01_00:00:00
99	563	300.5878	2024-11-02_00:00:00
0	564	301.2010	2024-11-03_00:00:00
0	565	301.8133	2024-11-04_00:00:00
99	566	302.4247	2024-11-05_00:00:00
0	567	303.0352	2024-11-06_00:00:00
0	568	303.6447	2024-11-07_00:00:00
99	569	304.2534	2024-11-08_00:00:00
0	570	304.8612	2024-11-09_00:00:00
0	571	305.4680	2024-11-10_00:00:00
99	572	306.0739	2024-11-11_00:00:00
	573	306.6789	
0			2024-11-12_00:00:00
0	574	307.2830	2024-11-13_00:00:00
99	575	307.8861	2024-11-14_00:00:00
0	576	308.4883	2024-11-15_00:00:00
0	577	309.0895	2024-11-16_00:00:00
99	578	309.6898	2024-11-17_00:00:00
0	579	310.2891	2024-11-18_00:00:00
0	580	310.8874	2024-11-19_00:00:00
99	581	311.4848	2024-11-20_00:00:00
0	582	312.0812	2024-11-21_00:00:00
0	583	312.6767	2024-11-22_00:00:00
99	584	313.2712	2024-11-23_00:00:00
0	585	313.8647	2024-11-24_00:00:00
0	586	314.4572	2024-11-25_00:00:00
99	587	315.0488	2024-11-26_00:00:00
0	588	315.6393	2024-11-27_00:00:00
0	589	316.2289	2024-11-28_00:00:00
99	590	316.8175	2024-11-29_00:00:00
0	591	317.4051	2024-11-30_00:00:00
0	592	317.9917	2024-11-31_00:00:00
99	593	318.5773	2024-11-32_00:00:00
0	594	319.1619	2024-11-33_00:00:00
0	595	319.7455	2024-11-34_00:00:00
99	596	320.3281	2024-11-35_00:00:00
0	597	320.9097	2024-11-36_00:00:00
			_
0	598	321.4904	2024-11-37_00:00:00
99	599	322.0699	2024-11-38_00:00:00
0	600	322.6486	2024-11-39_00:00:00
0	601	323.2261	2024-11-40_00:00:00
99	602	323.8027	2024-11-41_00:00:00
0	603	324.3783	2024-11-42_00:00:00
0	604	324.9529	2024-11-43_00:00:00
99		325.5265	2024-11-44_00:00:00
	605		
0	606	326.0991	2024-11-45_00:00:00
0	607	326.6706	2024-11-46_00:00:00
99	608	327.2412	2024-11-47_00:00:00
0	609	327.8107	2024-11-48_00:00:00
0	610	328.3793	2024-11-49_00:00:00
99	611	328.9468	2024-11-50_00:00:00
0	612	329.5133	2024-11-51_00:00:00
0	613	330.0789	2024-12-01_00:00:00
99	614	330.6434	2024-12-02_00:00:00
0	615	331.2069	2024-12-03_00:00:00
			_
0	616	331.7694	2024-12-04_00:00:00
99	617	332.3309	2024-12-05_00:00:00
0	618	332.8914	2024-12-06_00:00:00
0	619	333.4510	2024-12-07_00:00:00
99	620	334.0095	2024-12-08_00:00:00
0	621	334.5670	2024-12-09_00:00:00
0	622	335.1235	2024-12-10_00:00:00
99	623	335.6790	2024-12-11_00:00:00
0	624	336.2336	2024-12-12_00:00:00
0	024		
	COE	226 7071	2024-12-12 00.00.00
	625	336.7871	2024-12-13_00:00:00
99	626	337.3397	2024-12-14_00:00:00
99 0	626 627	337.3397 337.8913	2024-12-14_00:00:00 2024-12-15_00:00:00
99 0 0	626	337.3397 337.8913 338.4419	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00
99 0	626 627	337.3397 337.8913 338.4419 338.9915	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00 2024-12-17_00:00:00
99 0 0	626 627 628	337.3397 337.8913 338.4419	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00
99 0 0 99	626 627 628 629	337.3397 337.8913 338.4419 338.9915	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00 2024-12-17_00:00:00
99 0 0 99 0	626 627 628 629 630 631	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00 2024-12-17_00:00:00 2024-12-18_00:00:00 2024-12-19_00:00:00
99 0 0 99 0 0	626 627 628 629 630 631 632	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00 2024-12-17_00:00:00 2024-12-18_00:00:00 2024-12-19_00:00:00 2024-12-20_00:00:00
99 0 0 99 0 0 99	626 627 628 629 630 631 632 633	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00 2024-12-17_00:00:00 2024-12-18_00:00:00 2024-12-19_00:00:00 2024-12-20_00:00:00 2024-12-21_00:00:00
99 0 0 99 0 0 99 0	626 627 628 629 630 631 632 633 634	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249	2024-12-14_00:00:00 2024-12-15_00:00:00 2024-12-16_00:00:00 2024-12-17_00:00:00 2024-12-18_00:00:00 2024-12-19_00:00:00 2024-12-20_00:00:00 2024-12-21_00:00:00 2024-12-21_00:00:00
99 0 0 99 0 0 99 0	626 627 628 629 630 631 632 633 634 635	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-22_00:00:00 \\ 2024-12-22_00:00:00 \\ 2024-12-23_00:00:00 \end{array}$
99 0 0 99 0 0 99 0 0	626 627 628 629 630 631 632 633 634 635 636	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687 342.8115	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-24_00:00:00 \\ 2024-12-24_00:00:00 \end{array}$
99 0 0 99 0 0 99 0 0 99	626 627 628 629 630 631 632 633 634 635 636	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687 342.8115 343.3533	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-22_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-24_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \end{array}$
99 0 0 99 0 0 99 0 0	626 627 628 629 630 631 632 633 634 635 636	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687 342.8115	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-24_00:00:00 \\ 2024-12-24_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-26_00:00:00 \\ 2024-12-26_00:00:00 \\ 2024-12-26_00:00:00 \\ \end{array}$
99 0 0 99 0 0 99 0 0 99	626 627 628 629 630 631 632 633 634 635 636	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687 342.8115 343.3533	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-22_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-24_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \end{array}$
99 0 0 99 0 0 99 0 0 99	626 627 628 629 630 631 632 633 634 635 636 637 638	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687 342.8115 343.3533 343.8942	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-24_00:00:00 \\ 2024-12-24_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-26_00:00:00 \\ 2024-12-26_00:00:00 \\ 2024-12-26_00:00:00 \\ \end{array}$
99 0 0 99 0 0 99 0 0 99 0	626 627 628 629 630 631 632 633 634 635 636 637 638 639 640	337.3397 337.8913 338.4419 338.9915 339.5401 340.6345 341.1802 341.7249 342.2687 342.8115 343.3533 343.8942 344.4341 344.9731	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-21_00:00:00 \\ 2024-12-22_00:00:00 \\ 2024-12-22_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-27_00:00:00 \\ 2024-12-27_00:00:00 \\ 2024-12-27_00:00:00 \\ 2024-12-28_00:00:00 \\ \end{array}$
99 0 0 99 0 0 99 0 0 99 0 0 99	626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687 342.8115 343.3533 343.8942 344.4341 344.9731 345.5112	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-27_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-29_00:00:00 \\ \end{array}$
99 0 99 0 0 99 0 0 99 0 0 99 0	626 627 628 629 630 631 632 633 634 635 636 637 638 640 641 642	337.3397 337.8913 338.4419 338.9915 339.5401 340.6345 341.1802 341.7249 342.2687 342.8115 343.3533 343.8942 344.4341 344.9731 345.5112 346.0482	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-22_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-26_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-29_00:00:00 \\ 2024-12-30_00:00:00 \\ 2024-12-30_00:00:00 \\ \end{array}$
99 0 0 99 0 0 99 0 0 99 0 0 99	626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641	337.3397 337.8913 338.4419 338.9915 339.5401 340.0878 340.6345 341.1802 341.7249 342.2687 342.8115 343.3533 343.8942 344.4341 344.9731 345.5112	$\begin{array}{c} 2024-12-14_00:00:00 \\ 2024-12-15_00:00:00 \\ 2024-12-16_00:00:00 \\ 2024-12-17_00:00:00 \\ 2024-12-18_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-19_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-20_00:00:00 \\ 2024-12-23_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-25_00:00:00 \\ 2024-12-27_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-28_00:00:00 \\ 2024-12-29_00:00:00 \\ \end{array}$

0	645	347.6538	2024-12-33_00:00:00
0	646	348.1872	2024-12-34_00:00:00
99	647	348.7196	2024-12-35_00:00:00
0	648	349.2511	2024-12-36_00:00:00
0	649	349.7816	2024-12-37_00:00:00
99	650	350.3113	2024-12-38_00:00:00
0	651	350.8400	2024-12-39_00:00:00
0	652	351.3678	2024-12-40_00:00:00
99	653	351.8947	2024-12-41_00:00:00
0	654	352.4207	2024-12-42_00:00:00
0	655	352.9458	2024-12-43_00:00:00
99	656	353.4700	2024-12-44_00:00:00
0	657	353.9933	2024-12-45_00:00:00
0	658	354.5158	2024-12-46_00:00:00
99	659	355.0373	2024-12-47_00:00:00
0	660	355.5580	2024-12-48_00:00:00
0	661	356.0778	2024-12-49_00:00:00
99	662	356.5967	2024-12-50_00:00:00
0	663	357.1147	2024-12-51_00:00:00
0	664	357.6320	2024-12-52_00:00:00
99	665	358.1483	2024-12-53_00:00:00
0	666	358.6638	2024-12-54_00:00:00
0	667	359.1784	2024-12-55_00:00:00
99	668	359.6922	2024-12-56_00:00:00

BIBLIOGRAPHY

[Antic 06]	S. Antic, R. Laprise, B. Denis & R. de Elía. Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Climate Dynamics, vol. 26, no. 2, pages 305–325, 2006.
[Arakawa 66]	A. Arakawa. Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow. Part I. Journal of Computational Physics, vol. 1, pages 119–+, 1966.
[Basu 04]	S. Basu, M. I. Richardson & R. J. Wilson. Simulation of the Martian dust cycle with the GFDL Mars GCM. Journal of Geophysical Research (Planets), vol. 109, no. E18, page 11006, 2004.
[Böttger 05]	H. M. Böttger, S. R. Lewis, P. L. Read & F. Forget. The effects of the martian regolith on GCM water cycle simulations. Icarus, vol. 177, pages 174–189, 2005.
[Carpenter 90]	R. L. Carpenter, K. K. Droegemeier, P. R. Woodward & C. E. Hane. <i>Application of the Piecewise Parabolic Method (PPM) to meteorological modeling</i> . Mon. Wea. Rev., vol. 118, pages 586–612, 1990.
[Christensen 01]	P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Malin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, M. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman & M. Greenfield. <i>Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results.</i> J. Geophys. Res., vol. 111, pages 23823–23872, 2001.
[Conrath 75]	B. J. Conrath. Thermal structure of the Martian atmosphere during the dissipation of dust storm of 1971. Icarus, vol. 24, pages 36–46, 1975.
[Dimitrijevic 05]	M. Dimitrijevic & R. Laprise. Validation of the nesting technique in a regional climate model and sensitivity tests to the resolution of the lateral boundary conditions during summer. Climate Dynamics, vol. 25, pages 555–580, 2005.
[Dufresne 05]	JL. Dufresne, R. Fournier, C. Hourdin & F. Hourdin. Net Exchange Reformulation of Radiative Transfer in the CO_2 15- μm Band on Mars. Journal of Atmospheric Sciences, vol. 62, pages 3303–3319, 2005.
[Forget 98a]	F. Forget. Improved optical properties of the Martian atmospheric dust for radiative transfer calculations in the infrared. Geophys. Res. Lett., vol. 25, pages 1105–1109, 1998.
[Forget 98b]	F. Forget, F. Hourdin & O. Talagrand. CO_2 snow fall on Mars: Simulation with a general circulation model. Icarus, vol. 131, pages 302–316, 1998.
[Forget 99]	F. Forget, F. Hourdin, C. Hourdin & O. Talagrand. Simulations of the Martian Seasonal Dust Cycle with a General Circulation Model. In The Fifth International Conference on Mars, pages 6206—+, 1999.
[Forget 03]	F. Forget, R. M. Haberle, F. Montmessin, S. Cha, E. Marcq, J. Schaeffer & Y. Wanherdrick. 3D Simulations of the Early Mars Climate with a General Circulation Model. In S. Clifford, P. Doran, D. Fisher & C. Herd, editeurs, Third International Conference on Mars Polar Science and Exploration, page 8070, 2003.
[Galperin 88]	B. A. Galperin, L. H. Kantha, S. Hassid & A. Rosati. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., vol. 45, pages $55-62$, 1988 .
[González-Galindo 05]	F. González-Galindo, M. A. López-Valverde, M. Angelats i Coll & F. Forget. Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. Journal of Geophysical Research (Planets), vol. 110, no. E9, page 9008, 2005.
[Hébrard 07]	E. Hébrard, P. Coll, F. Montmessin, B. Marticorena & G. Bergametti. <i>Modelling the Aeolian Erosion Thresholds on Mars.</i> LPI Contributions, vol. 1353, pages 3144—+, 2007.
[Hourdin 92]	Frédéric Hourdin. A new representation of the CO_2 15 μm band for a Martian General Circulation Model. J. Geophys. Res., vol. 97, no. E11, pages 18,319–18,335, 1992.
[Hourdin 93]	F. Hourdin, Phu Le Van, F. Forget & O. Talagrand. <i>Meteorological variability and the annual surface pressure cycle on Mars.</i> J. Atmos. Sci., vol. 50, pages 3625–3640, 1993.
[Hundsdorfer 95]	W. Hundsdorfer. A Positive Finite-Difference Advection Scheme. Journal of Computational Physics, vol. 117, pages 35–46, 1995.

[Janjic 01] Z. I. Janjic, J. P. Gerrity Jr & S. Nickovic. An alternative approach to nonhydrostatic modeling. Mon. Wea. Rev., vol. 129, pages 1129–1178, 2001.

[Klemp 07] J. B. Klemp, W. C. Skamarock & J. Dudhia. Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations. Monthly Weather Review, vol. 135, pages 2897—+, 2007.

[Knievel 07] J. C. Knievel, G. H. Bryan & J. P. Hacker. Explicit Numerical Diffusion in the WRF Model. Monthly Weather Review, vol. 135, pages 3808—+, 2007.

[Laprise 92] R Laprise. The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable. Mon. Wea. Rev., vol. 120, pages 197–207, 1992.

[Lefèvre 04] S. Lefèvre, S. Lebonnois, F. Montmessin & F. Forget. Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research (Planets), vol. 109, page E07004, 2004.

[Lefèvre 08] F. Lefèvre, J.-L. Bertaux, R. T. Clancy, T. Encrenaz, K. Fast, F. Forget, S. Lebonnois, F. Montmessin & S. Perrier. Heterogeneous chemistry in the atmosphere of Mars. Nature, vol. 454, pages 971–975, 2008.

[Lott 97] F. Lott & M. Miller. A new sub-grid scale orographic drag parametrization: its formulation and testing. Q. J. R. Meteorol. Soc., vol. 123, pages 101–128, 1997.

[Mellon 00] M. T. Mellon, B. M. Jakosky, H. H. Kieffer & P. R. Christensen. High resolution Thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus, vol. 148, pages 437–455, 2000.

[Mellor 82] George L. Mellor & Tetsuji Yamada. Development of a turbulence closure model for geophysical fluid problems. Rev. of Geophys., vol. 20, no. 4, pages 851–875, November 1982.

[Miller 89] M. J. Miller, P. M. Palmer & R. Swinbank. Parametrisation and influence of sub-grid scale orography in general circulation and numerical weather prediction models. Meteorol. Atmos. Phys., vol. 40, pages 84–109, 1989.

[Millour 08] E. Millour, F. Forget & S. R. Lewis. Mars Climate Database v4.3 Detailed Design Document, available on http://web.lmd.jussieu.fr/forget/dvd/docs, 2008.

[Montabone 06] L. Montabone, S. R. Lewis, P. L. Read & D. P. Hinson. Validation of martian meteorological data assimilation for MGS/TES using radio occultation measurements. Icarus, vol. 185, pages 113–132, 2006.

[Montmessin 04] F. Montmessin, F. Forget, P. Rannou, M. Cabane & R. M. Haberle. Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. Journal of Geophysical Research (Planets), vol. 109, no. E18, page 10004, 2004.

[Nayvelt 97] L. Nayvelt, P. J. Gierasch & K. H. Cook. Modeling and observations of Martian stationary waves. Journal of Atmospheric Sciences, vol. 54, pages 986–1013, 1997.

[Newman 02] C. E. Newman, S. R. Lewis, P. L. Read & F. Forget. Modeling the Martian dust cycle, 1. Representations of dust transport processes. Journal of Geophysical Research (Planets), vol. 107, pages 6–1, 2002.

[Palluconi 81] F. D. Palluconi & H. H. Kieffer. Thermal inertia mapping of Mars from 60°S to 60°N. Icarus, vol. 45, pages 415–426, 1981.

[Putzig 07] N. E. Putzig & M. T. Mellon. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, vol. 191, pages 68–94, 2007.

[Rafkin 03] S. C. R. Rafkin. The Effect of Convective Adjustment on the Global Circulation of Mars as Simulated by a General Circulation Model. In A. Albee, editeur, Sixth International Conference on Mars, pages 3059-+, 2003.

[Skamarock 05] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang & J. G. Powers. A description of the Advanced Research WRF, version 2., 2005.

[Skamarock 06] W. C. Skamarock. Positive-Definite and Monotonic Limiters for Unrestricted-Time-Step Transport Schemes. Monthly Weather Review, vol. 134, pages 2241-+, 2006.

[Skamarock 08] W. C. Skamarock & J. B. Klemp. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, vol. 227, pages 3465–3485, 2008.

[Smagorinsky 63] J. Smagorinsky. General Circulation Experiments with the Primitive Equations. I. The Basic Experiment. Mon. Weather Rev., vol. 91, pages 99–164, 1963.

[Smith 01]
D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, T. C. Duxbury, M. P. Golombek, F. G. Lemoine, G. A. Neumann, D. D. Rowlands, O. Aharonson, P. G. Ford, A. B. Ivanov, C. L. Johnson, P. J. McGovern, J. B. Abshire, R. S. Afzal & X. Sun. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res., vol. 106, pages 23689–23722, 2001.

[Spiga 07] A. Spiga, F. Forget, B. Dolla, S. Vinatier, R. Melchiorri, P. Drossart, A. Gendrin, J.-P. Bibring, Y. Langevin & B. Gondet. Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. Journal of Geophysical Research (Planets), vol. 112, no. E11, pages 8-+, 2007.

[Spiga 08]	A. Spiga & F. Forget. Fast and accurate estimation of solar irradiance on Martian slopes. Geophys. Res. Lett., vol. 35, page L15201, 2008.
[Spiga 09]	A. Spiga & F. Forget. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. Journal of Geophysical Research (Planets), vol. 114, page E02009, 2009.
[Spiga 10a]	A. Spiga, F. Forget, S. R. Lewis & D. P. Hinson. Structure and Dynamics of the Convective Boundary Layer on Mars as Inferred from Large-Eddy Simulations and Remote-Sensing Measurements. Quarterly Journal of the Royal Meteorological Society, vol. 136, pages 414–428, 2010.
[Spiga 10b]	A. Spiga & S.R. Lewis. Mesoscale and microscale wind variability of relevance for dust lifting. Mars, vol. 5, pages 146–158, 2010.
[Spiga 11]	A. Spiga, F. Forget, JB. Madeleine, L. Montabone, S. R. Lewis & E. Millour. The impact of Martian mesoscale winds on surface temperature and on the determination of thermal inertia. Icarus, vol. 212, pages 504–519, 2011.
[Vasavada 00]	A. R. Vasavada, JP. Williams, D. A. Paige, K. E. Herkenhoff, N. T. Bridges, R. Greeley, B. C. Murray, D. S. Bass & K. S. McBride. Surface properties of Mars' polar layered deposits and polar landing sites. J. Geophys. Res., vol. 105, pages 6961–6970, 2000.
[Wicker 02]	L. J. Wicker & W. C. Skamarock. Time-Splitting Methods for Elastic Models Using Forward Time Schemes. Monthly Weather Review, vol. 130, pages 2088–+, 2002.