!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Fast scheme for NLTE cooling rates at 15um by CO2 in a Martian GCM ! ! Version dlvr11_03. 2012. ! ! Software written and provided by IAA/CSIC, Granada, Spain, ! ! under ESA contract "Mars Climate Database and Physical Models" ! ! Person of contact: Miguel Angel Lopez Valverde valverde@iaa.es ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! c********************************************************************** c Includes the following old 1-D model files/subroutines c -MZTCRSUB_dlvr11.f c *dinterconnection c *planckd c *leetvt c -MZTFSUB_dlvr11_02.f c *initial c *intershphunt c *interstrhunt c *intzhunt c *intzhunt_cts c *rhist c *we_clean c *mztf_correccion c *mzescape_normaliz c *mzescape_normaliz_02 c -interdpESCTVCISO_dlvr11.f c -hunt_cts.f c -huntdp.f c -hunt.f c -interdp_limits.f c -interhunt2veces.f c -interhunt5veces.f c -interhuntdp3veces.f c -interhuntdp4veces.f c -interhuntdp.f c -interhunt.f c -interhuntlimits2veces.f c -interhuntlimits5veces.f c -interhuntlimits.f c -lubksb_dp.f c -ludcmp_dp.f c -LUdec.f c -mat_oper.f c *unit c *diago c *invdiag c *samem c *mulmv c *trucodiag c *trucommvv c *sypvmv c *mulmm c *resmm c *sumvv c *sypvvv c *zerom c *zero4m c *zero3m c *zero2m c *zerov c *zero4v c *zero3v c *zero2v c -suaviza.f c********************************************************************** c *** Old MZTCRSUB_dlvr11.f *** !************************************************************************ ! subroutine dinterconnection ( v, vt ) ************************************************************************ ! implicit none !#include "nlte_paramdef.h" c argumentos ! real*8 vt(nl), v(nl) c local variables ! integer i c ************* ! ! do i=1,nl ! v(i) = vt(i) ! end do ! return ! end c*********************************************************************** function planckdp(tp,xnu) c*********************************************************************** implicit none #include "nlte_paramdef.h" real*8 planckdp real*8 xnu real tp planckdp = gamma*xnu**3.0d0 / exp( ee*xnu/dble(tp) ) !erg cm-2.sr-1/cm-1. c end return end c*********************************************************************** subroutine leetvt c*********************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c local variables integer i real*8 zld(nl), zyd(nzy) real*8 xvt11(nzy), xvt21(nzy), xvt31(nzy), xvt41(nzy) c*********************************************************************** do i=1,nzy zyd(i) = dble(zy(i)) xvt11(i)= dble( ty(i) ) xvt21(i)= dble( ty(i) ) xvt31(i)= dble( ty(i) ) xvt41(i)= dble( ty(i) ) end do do i=1,nl zld(i) = dble( zl(i) ) enddo call interhuntdp4veces ( v626t1,v628t1,v636t1,v627t1, zld,nl, $ xvt11, xvt21, xvt31, xvt41, zyd,nzy, 1 ) c end return end c *** MZTFSUB_dlvr11_02.f *** c **************************************************************** subroutine initial c **************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c local variables integer i c *************** eqw = 0.0d00 aa = 0.0d00 cc = 0.0d00 dd = 0.0d00 do i=1,nbox ccbox(i) = 0.0d0 ddbox(i) = 0.0d0 end do return end c ********************************************************************** subroutine intershphunt (i, alsx,adx,xtemp) c ********************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c arguments real*8 alsx(nbox_max),adx(nbox_max) ! Output real*8 xtemp(nbox_max) ! Input integer i ! I , O c local variables integer k real*8 factor real*8 temperatura ! para evitar valores ligeramnt out of limits c *********** do 1, k=1,nbox temperatura = xtemp(k) if (abs(xtemp(k)-thist(1)).le.0.01d0) then temperatura=thist(1) elseif (abs(xtemp(k)-thist(nhist)).le.0.01d0) then temperatura=thist(nhist) elseif (xtemp(k).lt.thist(1)) then temperatura=thist(1) c write (*,*) ' WARNING intershphunt/ Too low atmosph Tk:' c write (*,*) ' WARNING k,xtemp = ', k,xtemp(k) c write (*,*) ' Minimum Tk in histogram used : ', thist(1) elseif (xtemp(k).gt.thist(nhist)) then temperatura=thist(nhist) c write (*,*) ' WARNING intershphunt/ Very high atmosph Tk:' c write (*,*) ' WARNING k,xtemp = ', k,xtemp(k) c write (*,*) ' Max Tk in histogram used : ', thist(nhist) endif call huntdp ( thist,nhist, temperatura, i ) if ( i.eq.0 .or. i.eq.nhist ) then c write (*,*) ' HUNT/ Limits input grid:', c @ thist(1),thist(nhist) c write (*,*) ' HUNT/ location in grid:', xtemp(k) stop ' INTERSHP/ Interpolation error. T out of Histogram.' endif factor = 1.d0 / (thist(i+1)-thist(i)) alsx(k) = (( xls1(i,k)*(thist(i+1)-xtemp(k)) + @ xls1(i+1,k)*(xtemp(k)-thist(i)) )) * factor adx(k) = (( xld1(i,k)*(thist(i+1)-xtemp(k)) + @ xld1(i+1,k)*(xtemp(k)-thist(i)) )) * factor 1 continue return end c ********************************************************************** subroutine interstrhunt (i, stx, ts, sx, xtemp ) c ********************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c arguments real*8 stx ! output, total band strength real*8 ts ! input, temp for stx real*8 sx(nbox_max) ! output, strength for each box real*8 xtemp(nbox_max) ! input, temp for sx integer i c local variables integer k real*8 factor real*8 temperatura c *********** do 1, k=1,nbox temperatura = xtemp(k) if (abs(xtemp(k)-thist(1)).le.0.01d0) then temperatura=thist(1) elseif (abs(xtemp(k)-thist(nhist)).le.0.01d0) then temperatura=thist(nhist) elseif (xtemp(k).lt.thist(1)) then temperatura=thist(1) c write (*,*) ' WARNING interstrhunt/ Too low atmosph Tk:' c write (*,*) ' WARNING k,xtemp(k) = ', k,xtemp(k) c write (*,*) ' Minimum Tk in histogram used : ', thist(1) elseif (xtemp(k).gt.thist(nhist)) then temperatura=thist(nhist) c write (*,*) ' WARNING interstrhunt/ Very high atmosph Tk:' c write (*,*) ' WARNING k,xtemp(k) = ', k,xtemp(k) c write (*,*) ' Max Tk in histogram used : ', thist(nhist) endif call huntdp ( thist,nhist, temperatura, i ) if ( i.eq.0 .or. i.eq.nhist ) then c write(*,*)'HUNT/ Limits input grid:', c $ thist(1),thist(nhist) c write(*,*)'HUNT/ location in grid:',xtemp(k) stop'INTERSTR/1/ Interpolation error. T out of Histogram.' endif factor = 1.d0 / (thist(i+1)-thist(i)) sx(k) = ( sk1(i,k) * (thist(i+1)-xtemp(k)) @ + sk1(i+1,k) * (xtemp(k)-thist(i)) ) * factor 1 continue temperatura = ts if (abs(ts-thist(1)).le.0.01d0) then temperatura=thist(1) elseif (abs(ts-thist(nhist)).le.0.01d0) then temperatura=thist(nhist) elseif (ts.lt.thist(1)) then temperatura=thist(1) c write (*,*) ' WARNING interstrhunt/ Too low atmosph Tk:' c write (*,*) ' WARNING ts = ', temperatura c write (*,*) ' Minimum Tk in histogram used : ', thist(1) elseif (ts.gt.thist(nhist)) then temperatura=thist(nhist) c write (*,*) ' WARNING interstrhunt/ Very high atmosph Tk:' c write (*,*) ' WARNING ts = ', temperatura c write (*,*) ' Max Tk in histogram used : ', thist(nhist) endif call huntdp ( thist,nhist, temperatura, i ) if ( i.eq.0 .or. i.eq.nhist ) then c write (*,*) ' HUNT/ Limits input grid:', c @ thist(1),thist(nhist) c write (*,*) ' HUNT/ location in grid:', ts stop ' INTERSTR/2/ Interpolat error. T out of Histogram.' endif factor = 1.d0 / (thist(i+1)-thist(i)) stx = 0.d0 do k=1,nbox stx = stx + no(k) * ( sk1(i,k)*(thist(i+1)-ts) + @ sk1(i+1,k)*(ts-thist(i)) ) * factor end do return end c ********************************************************************** subroutine intzhunt (k, h, aco2,ap,amr,at, con) c k lleva la posicion de la ultima llamada a intz , necesario para c que esto represente una aceleracion real. c ********************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c arguments real h ! i real*8 con(nzy) ! i real*8 aco2, ap, at, amr ! o integer k ! i c local variables real factor c ************ call hunt ( zy,nzy, h, k ) factor = (h-zy(k)) / (zy(k+1)-zy(k)) ap = dble( exp( log(py(k)) + log(py(k+1)/py(k)) * factor ) ) aco2 = dlog(con(k)) + dlog( con(k+1)/con(k) ) * dble(factor) aco2 = exp( aco2 ) at = dble( ty(k) + (ty(k+1)-ty(k)) * factor ) amr = dble( mr(k) + (mr(k+1)-mr(k)) * factor ) return end c ********************************************************************** subroutine intzhunt_cts (k, h, nzy_cts_real, @ aco2,ap,amr,at, con) c k lleva la posicion de la ultima llamada a intz , necesario para c que esto represente una aceleracion real. c ********************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c arguments real h ! i real*8 con(nzy_cts) ! i real*8 aco2, ap, at, amr ! o integer k ! i integer nzy_cts_real ! i c local variables real factor c ************ call hunt_cts ( zy_cts,nzy_cts, nzy_cts_real, h, k ) factor = (h-zy_cts(k)) / (zy_cts(k+1)-zy_cts(k)) ap = dble( exp( log(py_cts(k)) + @ log(py_cts(k+1)/py_cts(k)) * factor ) ) aco2 = dlog(con(k)) + dlog( con(k+1)/con(k) ) * dble(factor) aco2 = exp( aco2 ) at = dble( ty_cts(k) + (ty_cts(k+1)-ty_cts(k)) * factor ) amr = dble( mr_cts(k) + (mr_cts(k+1)-mr_cts(k)) * factor ) return end c ********************************************************************** real*8 function we_clean ( y,pl, xalsa, xalda ) c ********************************************************************** implicit none #include "nlte_paramdef.h" c arguments real*8 y ! I. path's absorber amount * strength real*8 pl ! I. path's partial pressure of CO2 real*8 xalsa ! I. Self lorentz linewidth for 1 isot & 1 box real*8 xalda ! I. Doppler linewidth " " c local variables integer i real*8 x,wl,wd,wvoigt real*8 cn(0:7),dn(0:7) real*8 factor, denom real*8 pi, pi2, sqrtpi c data blocks data cn/9.99998291698d-1,-3.53508187098d-1,9.60267807976d-2, @ -2.04969011013d-2,3.43927368627d-3,-4.27593051557d-4, @ 3.42209457833d-5,-1.28380804108d-6/ data dn/1.99999898289,5.774919878d-1,-5.05367549898d-1, @ 8.21896973657d-1,-2.5222672453,6.1007027481, @ -8.51001627836,4.6535116765/ c *********** pi = 3.141592 pi2= 6.28318531 sqrtpi = 1.77245385 x=y / ( pi2 * xalsa*pl ) c Lorentz wl=y/sqrt(1.0d0+pi*x/2.0d0) c Doppler x = y / (xalda*sqrtpi) if (x .lt. 5.0d0) then wd = cn(0) factor = 1.d0 do i=1,7 factor = factor * x wd = wd + cn(i) * factor end do wd = xalda * x * sqrtpi * wd else wd = dn(0) factor = 1.d0 / log(x) denom = 1.d0 do i=1,7 denom = denom * factor wd = wd + dn(i) * denom end do wd = xalda * sqrt(log(x)) * wd end if c Voigt wvoigt = wl*wl + wd*wd - (wd*wl/y)*(wd*wl/y) if ( wvoigt .lt. 0.0d0 ) then write (*,*) ' Subroutine WE/ Error in Voift EQS calculation' write (*,*) ' WL, WD, X, Y = ', wl, wd, x, y stop ' ERROR : Imaginary EQW. Revise spectral data. ' endif we_clean = sqrt( wvoigt ) return end c *********************************************************************** subroutine mztf_correccion (coninf, con, ib ) c *********************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c arguments integer ib real*8 con(nzy), coninf ! local variables integer i, isot real*8 tvt0(nzy), tvtbs(nzy), zld(nl),zyd(nzy) real*8 xqv, xes, xlower, xfactor c ********* isot = 1 nu11 = dble( nu(1,1) ) do i=1,nzy zyd(i) = dble(zy(i)) enddo do i=1,nl zld(i) = dble( zl(i) ) end do ! tvtbs call interhuntdp (tvtbs,zyd,nzy, v626t1,zld,nl, 1 ) ! tvt0 if (ib.eq.2 .or. ib.eq.3 .or. ib.eq.4) then call interhuntdp (tvt0,zyd,nzy, v626t1,zld,nl, 1 ) else do i=1,nzy tvt0(i) = dble( ty(i) ) end do end if c factor do i=1,nzy xlower = exp( ee*dble(elow(isot,ib)) * @ ( 1.d0/dble(ty(i))-1.d0/tvt0(i) ) ) xes = 1.0d0 xqv = ( 1.d0-exp( -ee*nu11/tvtbs(i) ) ) / @ (1.d0-exp( -ee*nu11/dble(ty(i)) )) xfactor = xlower * xqv**2.d0 * xes con(i) = con(i) * xfactor if (i.eq.nzy) coninf = coninf * xfactor end do return end c *********************************************************************** subroutine mzescape_normaliz ( taustar, istyle ) c *********************************************************************** implicit none #include "nlte_paramdef.h" c arguments real*8 taustar(nl) ! o integer istyle ! i c local variables and constants integer i, imaximum real*8 maximum c *************** taustar(nl) = taustar(nl-1) if ( istyle .eq. 1 ) then imaximum = nl maximum = taustar(nl) do i=1,nl-1 if (taustar(i).gt.maximum) taustar(i) = taustar(nl) enddo elseif ( istyle .eq. 2 ) then imaximum = nl maximum = taustar(nl) do i=nl-1,1,-1 if (taustar(i).gt.maximum) then maximum = taustar(i) imaximum = i endif enddo do i=imaximum,nl if (taustar(i).lt.maximum) taustar(i) = maximum enddo endif do i=1,nl taustar(i) = taustar(i) / maximum enddo c end return end c *********************************************************************** subroutine mzescape_normaliz_02 ( taustar, nn, istyle ) c *********************************************************************** implicit none c arguments real*8 taustar(nn) ! i,o integer istyle ! i integer nn ! i c local variables and constants integer i, imaximum real*8 maximum c *************** taustar(nn) = taustar(nn-1) if ( istyle .eq. 1 ) then imaximum = nn maximum = taustar(nn) do i=1,nn-1 if (taustar(i).gt.maximum) taustar(i) = taustar(nn) enddo elseif ( istyle .eq. 2 ) then imaximum = nn maximum = taustar(nn) do i=nn-1,1,-1 if (taustar(i).gt.maximum) then maximum = taustar(i) imaximum = i endif enddo do i=imaximum,nn if (taustar(i).lt.maximum) taustar(i) = maximum enddo endif do i=1,nn taustar(i) = taustar(i) / maximum enddo c end return end c *** interdp_ESCTVCISO_dlvr11.f *** c*********************************************************************** subroutine interdp_ESCTVCISO c*********************************************************************** implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c local variables integer i real*8 lnpnb(nl) c*********************************************************************** c Use pressure in the NLTE grid but in log and in nb do i=1,nl lnpnb(i) = log( dble( pl(i) * 1013.25 * 1.e6) ) enddo c Interpolations call interhuntdp3veces @ ( taustar21,taustar31,taustar41, lnpnb, nl, @ tstar21tab,tstar31tab,tstar41tab, lnpnbtab, nztabul, @ 1 ) call interhuntdp3veces ( vc210,vc310,vc410, lnpnb, nl, @ vc210tab,vc310tab,vc410tab, lnpnbtab, nztabul, 2 ) c end return end c *** hunt_cts.f *** cccc SUBROUTINE hunt_cts(xx,n,n_cts,x,jlo) c c La dif con hunt es el uso de un indice superior (n_cts) mas bajito que (n) c c Arguments INTEGER jlo ! O INTEGER n ! I INTEGER n_cts ! I REAL xx(n) ! I REAL x ! I c Local variables INTEGER inc,jhi,jm LOGICAL ascnd c cccc c ascnd=xx(n_cts).ge.xx(1) if(jlo.le.0.or.jlo.gt.n_cts)then jlo=0 jhi=n_cts+1 goto 3 endif inc=1 if(x.ge.xx(jlo).eqv.ascnd)then 1 jhi=jlo+inc ! write (*,*) jlo if(jhi.gt.n_cts)then jhi=n_cts+1 ! write (*,*) jhi-1 else if(x.ge.xx(jhi).eqv.ascnd)then jlo=jhi inc=inc+inc ! write (*,*) jlo goto 1 endif else jhi=jlo 2 jlo=jhi-inc ! write (*,*) jlo if(jlo.lt.1)then jlo=0 else if(x.lt.xx(jlo).eqv.ascnd)then jhi=jlo inc=inc+inc goto 2 endif endif 3 if(jhi-jlo.eq.1)then if(x.eq.xx(n_cts))jlo=n_cts-1 if(x.eq.xx(1))jlo=1 ! write (*,*) jlo return endif jm=(jhi+jlo)/2 if(x.ge.xx(jm).eqv.ascnd)then jlo=jm else jhi=jm endif ! write (*,*) jhi-1 goto 3 c END c *** huntdp.f *** cccc SUBROUTINE huntdp(xx,n,x,jlo) c c Arguments INTEGER jlo ! O INTEGER n ! I REAL*8 xx(n) ! I REAL*8 x ! I c Local variables INTEGER inc,jhi,jm LOGICAL ascnd c cccc c ascnd=xx(n).ge.xx(1) if(jlo.le.0.or.jlo.gt.n)then jlo=0 jhi=n+1 goto 3 endif inc=1 if(x.ge.xx(jlo).eqv.ascnd)then 1 jhi=jlo+inc if(jhi.gt.n)then jhi=n+1 else if(x.ge.xx(jhi).eqv.ascnd)then jlo=jhi inc=inc+inc goto 1 endif else jhi=jlo 2 jlo=jhi-inc if(jlo.lt.1)then jlo=0 else if(x.lt.xx(jlo).eqv.ascnd)then jhi=jlo inc=inc+inc goto 2 endif endif 3 if(jhi-jlo.eq.1)then if(x.eq.xx(n))jlo=n-1 if(x.eq.xx(1))jlo=1 return endif jm=(jhi+jlo)/2 if(x.ge.xx(jm).eqv.ascnd)then jlo=jm else jhi=jm endif goto 3 c END c *** hunt.f *** cccc SUBROUTINE hunt(xx,n,x,jlo) c c Arguments INTEGER jlo ! O INTEGER n ! I REAL xx(n) ! I REAL x ! I c Local variables INTEGER inc,jhi,jm LOGICAL ascnd c cccc c ascnd=xx(n).ge.xx(1) if(jlo.le.0.or.jlo.gt.n)then jlo=0 jhi=n+1 goto 3 endif inc=1 if(x.ge.xx(jlo).eqv.ascnd)then 1 jhi=jlo+inc ! write (*,*) jlo if(jhi.gt.n)then jhi=n+1 ! write (*,*) jhi-1 else if(x.ge.xx(jhi).eqv.ascnd)then jlo=jhi inc=inc+inc ! write (*,*) jlo goto 1 endif else jhi=jlo 2 jlo=jhi-inc ! write (*,*) jlo if(jlo.lt.1)then jlo=0 else if(x.lt.xx(jlo).eqv.ascnd)then jhi=jlo inc=inc+inc goto 2 endif endif 3 if(jhi-jlo.eq.1)then if(x.eq.xx(n))jlo=n-1 if(x.eq.xx(1))jlo=1 ! write (*,*) jlo return endif jm=(jhi+jlo)/2 if(x.ge.xx(jm).eqv.ascnd)then jlo=jm else jhi=jm endif ! write (*,*) jhi-1 goto 3 c END c *** interdp_limits.f *** c *********************************************************************** subroutine interdp_limits ( yy, zz, m, i1,i2, @ y, z, n, j1,j2, opt) c Interpolation soubroutine. c Returns values between indexes i1 & i2, donde 1 =< i1 =< i2 =< m c Solo usan los indices de los inputs entre j1,j2, 1 =< j1 =< j2 =< n c Input values: y(n) , z(n) (solo se usarann los valores entre j1,j2) c zz(m) (solo se necesita entre i1,i2) c Output values: yy(m) (solo se calculan entre i1,i2) c Options: opt=1 -> lineal ,, opt=2 -> logarithmic c Difference with interdp: c here interpolation proceeds between indexes i1,i2 only c if i1=1 & i2=m, both subroutines are exactly the same c thus previous calls to interdp or interdp2 could be easily replaced c JAN 98 MALV Version for mz1d c *********************************************************************** implicit none ! Arguments integer n,m ! I. Dimensions integer i1, i2, j1, j2, opt ! I real*8 zz(m) ! I real*8 yy(m) ! O real*8 z(n),y(n) ! I ! Local variables integer i,j real*8 zmin,zzmin,zmax,zzmax c ******************************* ! write (*,*) ' d interpolating ' ! call mindp_limits (z,n,zmin, j1,j2) ! call mindp_limits (zz,m,zzmin, i1,i2) ! call maxdp_limits (z,n,zmax, j1,j2) ! call maxdp_limits (zz,m,zzmax, i1,i2) zmin=minval(z(j1:j2)) zzmin=minval(zz(i1:i2)) zmax=maxval(z(j1:j2)) zzmax=maxval(zz(i1:i2)) if(zzmin.lt.zmin)then write (*,*) 'from d interp: new variable out of limits' write (*,*) zzmin,'must be .ge. ',zmin stop ! elseif(zzmax.gt.zmax)then ! type *,'from interp: new variable out of limits' ! type *,zzmax, 'must be .le. ',zmax ! stop end if do 1,i=i1,i2 do 2,j=j1,j2-1 if(zz(i).ge.z(j).and.zz(i).lt.z(j+1)) goto 3 2 continue c in this case (zz(i2).eq.z(j2)) and j leaves the loop with j=j2-1+1=j2 if(opt.eq.1)then yy(i)=y(j2-1)+(y(j2)-y(j2-1))*(zz(i)-z(j2-1))/ $ (z(j2)-z(j2-1)) elseif(opt.eq.2)then if(y(j2).eq.0.0d0.or.y(j2-1).eq.0.0d0)then yy(i)=0.0d0 else yy(i)=exp(log(y(j2-1))+log(y(j2)/y(j2-1))* @ (zz(i)-z(j2-1))/(z(j2)-z(j2-1))) end if else write (*,*) ' d interp : opt must be 1 or 2, opt= ',opt end if goto 1 3 continue if(opt.eq.1)then yy(i)=y(j)+(y(j+1)-y(j))*(zz(i)-z(j))/(z(j+1)-z(j)) ! type *, ' ' ! type *, ' z(j),z(j+1) =', z(j),z(j+1) ! type *, ' t(j),t(j+1) =', y(j),y(j+1) ! type *, ' zz, tt = ', zz(i), yy(i) elseif(opt.eq.2)then if(y(j+1).eq.0.0d0.or.y(j).eq.0.0d0)then yy(i)=0.0d0 else yy(i)=exp(log(y(j))+log(y(j+1)/y(j))* @ (zz(i)-z(j))/(z(j+1)-z(j))) end if else write (*,*) ' interp : opt must be 1 or 2, opt= ',opt end if 1 continue return end c *** interhunt2veces.f *** c *********************************************************************** subroutine interhunt2veces ( y1,y2, zz,m, @ x1,x2, z,n, opt) c interpolation soubroutine basada en Numerical Recipes HUNT.FOR c input values: y(n) at z(n) c output values: yy(m) at zz(m) c options: 1 -> lineal c 2 -> logarithmic c *********************************************************************** implicit none ! Arguments integer n,m,opt ! I real zz(m),z(n) ! I real y1(m),y2(m) ! O real x1(n),x2(n) ! I ! Local variables integer i, j real factor real zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=1,m ! ! Busca indice j donde ocurre q zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01) then zaux=z(n) endif call hunt ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' interhunt2/ Interpolat error. zz out of limits.' endif ! Perform interpolation factor = (zz(i)-z(j))/(z(j+1)-z(j)) if (opt.eq.1) then y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor else y1(i) = exp( log(x1(j)) + log(x1(j+1)/x1(j)) * factor ) y2(i) = exp( log(x2(j)) + log(x2(j+1)/x2(j)) * factor ) end if 1 continue return end c *** interhunt5veces.f *** c *********************************************************************** subroutine interhunt5veces ( y1,y2,y3,y4,y5, zz,m, @ x1,x2,x3,x4,x5, z,n, opt) c interpolation soubroutine basada en Numerical Recipes HUNT.FOR c input values: y(n) at z(n) c output values: yy(m) at zz(m) c options: 1 -> lineal c 2 -> logarithmic c *********************************************************************** implicit none ! Arguments integer n,m,opt ! I real zz(m),z(n) ! I real y1(m),y2(m),y3(m),y4(m),y5(m) ! O real x1(n),x2(n),x3(n),x4(n),x5(n) ! I ! Local variables integer i, j real factor real zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=1,m ! ! Busca indice j donde ocurre q zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01) then zaux=z(n) endif call hunt ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' interhunt5/ Interpolat error. zz out of limits.' endif ! Perform interpolation factor = (zz(i)-z(j))/(z(j+1)-z(j)) if (opt.eq.1) then y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor y3(i) = x3(j) + (x3(j+1)-x3(j)) * factor y4(i) = x4(j) + (x4(j+1)-x4(j)) * factor y5(i) = x5(j) + (x5(j+1)-x5(j)) * factor else y1(i) = exp( log(x1(j)) + log(x1(j+1)/x1(j)) * factor ) y2(i) = exp( log(x2(j)) + log(x2(j+1)/x2(j)) * factor ) y3(i) = exp( log(x3(j)) + log(x3(j+1)/x3(j)) * factor ) y4(i) = exp( log(x4(j)) + log(x4(j+1)/x4(j)) * factor ) y5(i) = exp( log(x5(j)) + log(x5(j+1)/x5(j)) * factor ) end if 1 continue return end c *** interhuntdp3veces.f *** c *********************************************************************** subroutine interhuntdp3veces ( y1,y2,y3, zz,m, @ x1,x2,x3, z,n, opt) c interpolation soubroutine basada en Numerical Recipes HUNT.FOR c input values: x(n) at z(n) c output values: y(m) at zz(m) c options: opt = 1 -> lineal c opt=/=1 -> logarithmic c *********************************************************************** ! Arguments integer n,m,opt ! I real*8 zz(m),z(n) ! I real*8 y1(m),y2(m),y3(m) ! O real*8 x1(n),x2(n),x3(n) ! I ! Local variables integer i, j real*8 factor real*8 zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=1,m ! ! Busca indice j donde ocurre q zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01d0) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01d0) then zaux=z(n) endif call huntdp ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' INTERHUNTDP3/ Interpolat error. zz out of limits.' endif ! Perform interpolation factor = (zz(i)-z(j))/(z(j+1)-z(j)) if (opt.eq.1) then y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor y3(i) = x3(j) + (x3(j+1)-x3(j)) * factor else y1(i) = dexp( dlog(x1(j)) + dlog(x1(j+1)/x1(j)) * factor ) y2(i) = dexp( dlog(x2(j)) + dlog(x2(j+1)/x2(j)) * factor ) y3(i) = dexp( dlog(x3(j)) + dlog(x3(j+1)/x3(j)) * factor ) end if 1 continue return end c *** interhuntdp4veces.f *** c *********************************************************************** subroutine interhuntdp4veces ( y1,y2,y3,y4, zz,m, @ x1,x2,x3,x4, z,n, opt) c interpolation soubroutine basada en Numerical Recipes HUNT.FOR c input values: x1(n),x2(n),x3(n),x4(n) at z(n) c output values: y1(m),y2(m),y3(m),y4(m) at zz(m) c options: 1 -> lineal c 2 -> logarithmic c *********************************************************************** implicit none ! Arguments integer n,m,opt ! I real*8 zz(m),z(n) ! I real*8 y1(m),y2(m),y3(m),y4(m) ! O real*8 x1(n),x2(n),x3(n),x4(n) ! I ! Local variables integer i, j real*8 factor real*8 zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=1,m ! ! Caza del indice j donde ocurre que zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01d0) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01d0) then zaux=z(n) endif call huntdp ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' INTERHUNTDP4/ Interpolat error. zz out of limits.' endif ! Perform interpolation factor = (zz(i)-z(j))/(z(j+1)-z(j)) if (opt.eq.1) then y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor y3(i) = x3(j) + (x3(j+1)-x3(j)) * factor y4(i) = x4(j) + (x4(j+1)-x4(j)) * factor else y1(i) = dexp( dlog(x1(j)) + dlog(x1(j+1)/x1(j)) * factor ) y2(i) = dexp( dlog(x2(j)) + dlog(x2(j+1)/x2(j)) * factor ) y3(i) = dexp( dlog(x3(j)) + dlog(x3(j+1)/x3(j)) * factor ) y4(i) = dexp( dlog(x4(j)) + dlog(x4(j+1)/x4(j)) * factor ) end if 1 continue return end c *** interhuntdp.f *** c *********************************************************************** subroutine interhuntdp ( y1, zz,m, @ x1, z,n, opt) c interpolation soubroutine basada en Numerical Recipes HUNT.FOR c input values: x1(n) at z(n) c output values: y1(m) at zz(m) c options: 1 -> lineal c 2 -> logarithmic c *********************************************************************** implicit none ! Arguments integer n,m,opt ! I real*8 zz(m),z(n) ! I real*8 y1(m) ! O real*8 x1(n) ! I ! Local variables integer i, j real*8 factor real*8 zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=1,m ! ! Caza del indice j donde ocurre que zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01d0) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01d0) then zaux=z(n) endif call huntdp ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' INTERHUNT/ Interpolat error. zz out of limits.' endif ! Perform interpolation factor = (zz(i)-z(j))/(z(j+1)-z(j)) if (opt.eq.1) then y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor else y1(i) = dexp( dlog(x1(j)) + dlog(x1(j+1)/x1(j)) * factor ) end if 1 continue return end c *** interhunt.f *** c*********************************************************************** subroutine interhunt ( y1, zz,m, @ x1, z,n, opt) c interpolation soubroutine basada en Numerical Recipes HUNT.FOR c input values: x1(n) at z(n) c output values: y1(m) at zz(m) c options: 1 -> lineal c 2 -> logarithmic c*********************************************************************** implicit none ! Arguments integer n,m,opt ! I real zz(m),z(n) ! I real y1(m) ! O real x1(n) ! I ! Local variables integer i, j real factor real zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=1,m ! ! Busca indice j donde ocurre q zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01) then zaux=z(n) endif call hunt ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' interhunt/ Interpolat error. z out of limits.' endif ! Perform interpolation factor = (zz(i)-z(j))/(z(j+1)-z(j)) if (opt.eq.1) then y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor else y1(i) = exp( log(x1(j)) + log(x1(j+1)/x1(j)) * factor ) end if 1 continue return end c *** interhuntlimits2veces.f *** c*********************************************************************** subroutine interhuntlimits2veces @ ( y1,y2, zz,m, limite1,limite2, @ x1,x2, z,n, opt) c Interpolation soubroutine basada en Numerical Recipes HUNT.FOR c Input values: x1,x2(n) at z(n) c Output values: c y1,y2(m) at zz(m) pero solo entre los indices de zz c siguientes: [limite1,limite2] c Options: 1 -> linear in z and linear in x c 2 -> linear in z and logarithmic in x c 3 -> logarithmic in z and linear in x c 4 -> logarithmic in z and logaritmic in x c c NOTAS: Esta subrutina extiende y generaliza la usual c "interhunt5veces" en 2 direcciones: c - la condicion en los limites es que zz(limite1:limite2) c esté dentro de los limites de z (pero quizas no todo zz) c - se han añadido 3 opciones mas al caso de interpolacion c logaritmica, ahora se hace en log de z, de x o de ambos. c Notese que esta subrutina engloba a la interhunt5veces c ( esta es reproducible haciendo limite1=1 y limite2=m c y usando una de las 2 primeras opciones opt=1,2 ) c*********************************************************************** implicit none ! Arguments integer n,m,opt, limite1,limite2 ! I real zz(m),z(n) ! I real y1(m),y2(m) ! O real x1(n),x2(n) ! I ! Local variables integer i, j real factor real zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=limite1,limite2 ! Busca indice j donde ocurre q zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01) then zaux=z(n) endif call hunt ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' interhuntlimits/ Interpolat error. z out of limits.' endif ! Perform interpolation if (opt.eq.1) then factor = (zz(i)-z(j))/(z(j+1)-z(j)) y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor elseif (opt.eq.2) then factor = (zz(i)-z(j))/(z(j+1)-z(j)) y1(i) = exp( log(x1(j)) + log(x1(j+1)/x1(j)) * factor ) y2(i) = exp( log(x2(j)) + log(x2(j+1)/x2(j)) * factor ) elseif (opt.eq.3) then factor = (log(zz(i))-log(z(j)))/(log(z(j+1))-log(z(j))) y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor elseif (opt.eq.4) then factor = (log(zz(i))-log(z(j)))/(log(z(j+1))-log(z(j))) y1(i) = exp( log(x1(j)) + log(x1(j+1)/x1(j)) * factor ) y2(i) = exp( log(x2(j)) + log(x2(j+1)/x2(j)) * factor ) end if 1 continue return end c *** interhuntlimits5veces.f *** c*********************************************************************** subroutine interhuntlimits5veces @ ( y1,y2,y3,y4,y5, zz,m, limite1,limite2, @ x1,x2,x3,x4,x5, z,n, opt) c Interpolation soubroutine basada en Numerical Recipes HUNT.FOR c Input values: x1,x2,..,x5(n) at z(n) c Output values: c y1,y2,...,y5(m) at zz(m) pero solo entre los indices de zz c siguientes: [limite1,limite2] c Options: 1 -> linear in z and linear in x c 2 -> linear in z and logarithmic in x c 3 -> logarithmic in z and linear in x c 4 -> logarithmic in z and logaritmic in x c c NOTAS: Esta subrutina extiende y generaliza la usual c "interhunt5veces" en 2 direcciones: c - la condicion en los limites es que zz(limite1:limite2) c esté dentro de los limites de z (pero quizas no todo zz) c - se han añadido 3 opciones mas al caso de interpolacion c logaritmica, ahora se hace en log de z, de x o de ambos. c Notese que esta subrutina engloba a la interhunt5veces c ( esta es reproducible haciendo limite1=1 y limite2=m c y usando una de las 2 primeras opciones opt=1,2 ) c*********************************************************************** implicit none ! Arguments integer n,m,opt, limite1,limite2 ! I real zz(m),z(n) ! I real y1(m),y2(m),y3(m),y4(m),y5(m) ! O real x1(n),x2(n),x3(n),x4(n),x5(n) ! I ! Local variables integer i, j real factor real zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=limite1,limite2 ! Busca indice j donde ocurre q zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01) then zaux=z(n) endif call hunt ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' interhuntlimits/ Interpolat error. z out of limits.' endif ! Perform interpolation if (opt.eq.1) then factor = (zz(i)-z(j))/(z(j+1)-z(j)) y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor y3(i) = x3(j) + (x3(j+1)-x3(j)) * factor y4(i) = x4(j) + (x4(j+1)-x4(j)) * factor y5(i) = x5(j) + (x5(j+1)-x5(j)) * factor elseif (opt.eq.2) then factor = (zz(i)-z(j))/(z(j+1)-z(j)) y1(i) = exp( log(x1(j)) + log(x1(j+1)/x1(j)) * factor ) y2(i) = exp( log(x2(j)) + log(x2(j+1)/x2(j)) * factor ) y3(i) = exp( log(x3(j)) + log(x3(j+1)/x3(j)) * factor ) y4(i) = exp( log(x4(j)) + log(x4(j+1)/x4(j)) * factor ) y5(i) = exp( log(x5(j)) + log(x5(j+1)/x5(j)) * factor ) elseif (opt.eq.3) then factor = (log(zz(i))-log(z(j)))/(log(z(j+1))-log(z(j))) y1(i) = x1(j) + (x1(j+1)-x1(j)) * factor y2(i) = x2(j) + (x2(j+1)-x2(j)) * factor y3(i) = x3(j) + (x3(j+1)-x3(j)) * factor y4(i) = x4(j) + (x4(j+1)-x4(j)) * factor y5(i) = x5(j) + (x5(j+1)-x5(j)) * factor elseif (opt.eq.4) then factor = (log(zz(i))-log(z(j)))/(log(z(j+1))-log(z(j))) y1(i) = exp( log(x1(j)) + log(x1(j+1)/x1(j)) * factor ) y2(i) = exp( log(x2(j)) + log(x2(j+1)/x2(j)) * factor ) y3(i) = exp( log(x3(j)) + log(x3(j+1)/x3(j)) * factor ) y4(i) = exp( log(x4(j)) + log(x4(j+1)/x4(j)) * factor ) y5(i) = exp( log(x5(j)) + log(x5(j+1)/x5(j)) * factor ) end if 1 continue return end c *** interhuntlimits.f *** c*********************************************************************** subroutine interhuntlimits ( y, zz,m, limite1,limite2, @ x, z,n, opt) c Interpolation soubroutine basada en Numerical Recipes HUNT.FOR c Input values: x(n) at z(n) c Output values: y(m) at zz(m) pero solo entre los indices de zz c siguientes: [limite1,limite2] c Options: 1 -> linear in z and linear in x c 2 -> linear in z and logarithmic in x c 3 -> logarithmic in z and linear in x c 4 -> logarithmic in z and logaritmic in x c c NOTAS: Esta subrutina extiende y generaliza la usual "interhunt" c en 2 direcciones: c - la condicion en los limites es que zz(limite1:limite2) c esté dentro de los limites de z (pero quizas no todo zz) c - se han añadido 3 opciones mas al caso de interpolacion c logaritmica, ahora se hace en log de z, de x o de ambos. c Notese que esta subrutina engloba a la usual interhunt c ( esta es reproducible haciendo limite1=1 y limite2=m c y usando una de las 2 primeras opciones opt=1,2 ) c*********************************************************************** implicit none ! Arguments integer n,m,opt, limite1,limite2 ! I real zz(m),z(n) ! I real y(m) ! O real x(n) ! I ! Local variables integer i, j real factor real zaux !!!! j = 1 ! initial first guess (=n/2 is anothr pssblty) do 1,i=limite1,limite2 ! Busca indice j donde ocurre q zz(i) esta entre [z(j),z(j+1)] zaux = zz(i) if (abs(zaux-z(1)).le.0.01) then zaux=z(1) elseif (abs(zaux-z(n)).le.0.01) then zaux=z(n) endif call hunt ( z,n, zaux, j ) if ( j.eq.0 .or. j.eq.n ) then write (*,*) ' HUNT/ Limits input grid:', z(1),z(n) write (*,*) ' HUNT/ location in new grid:', zz(i) stop ' interhuntlimits/ Interpolat error. z out of limits.' endif ! Perform interpolation if (opt.eq.1) then factor = (zz(i)-z(j))/(z(j+1)-z(j)) y(i) = x(j) + (x(j+1)-x(j)) * factor elseif (opt.eq.2) then factor = (zz(i)-z(j))/(z(j+1)-z(j)) y(i) = exp( log(x(j)) + log(x(j+1)/x(j)) * factor ) elseif (opt.eq.3) then factor = (log(zz(i))-log(z(j)))/(log(z(j+1))-log(z(j))) y(i) = x(j) + (x(j+1)-x(j)) * factor elseif (opt.eq.4) then factor = (log(zz(i))-log(z(j)))/(log(z(j+1))-log(z(j))) y(i) = exp( log(x(j)) + log(x(j+1)/x(j)) * factor ) end if 1 continue return end c *** lubksb_dp.f *** subroutine lubksb_dp(a,n,np,indx,b) implicit none integer,intent(in) :: n,np real*8,intent(in) :: a(np,np) integer,intent(in) :: indx(n) real*8,intent(out) :: b(n) real*8 sum integer ii, ll, i, j ii=0 do 12 i=1,n ll=indx(i) sum=b(ll) b(ll)=b(i) if (ii.ne.0)then do 11 j=ii,i-1 sum=sum-a(i,j)*b(j) 11 continue else if (sum.ne.0.0) then ii=i endif b(i)=sum 12 continue do 14 i=n,1,-1 sum=b(i) if(i.lt.n)then do 13 j=i+1,n sum=sum-a(i,j)*b(j) 13 continue endif b(i)=sum/a(i,i) 14 continue return end c *** ludcmp_dp.f *** subroutine ludcmp_dp(a,n,np,indx,d) implicit none integer,intent(in) :: n, np real*8,intent(inout) :: a(np,np) real*8,intent(out) :: d integer,intent(out) :: indx(n) integer nmax, i, j, k, imax real*8 tiny parameter (nmax=100,tiny=1.0d-20) real*8 vv(nmax), aamax, sum, dum d=1.0d0 do 12 i=1,n aamax=0.0d0 do 11 j=1,n if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j)) 11 continue if (aamax.eq.0.0) then write(*,*) 'ludcmp_dp: singular matrix!' stop endif vv(i)=1.0d0/aamax 12 continue do 19 j=1,n if (j.gt.1) then do 14 i=1,j-1 sum=a(i,j) if (i.gt.1)then do 13 k=1,i-1 sum=sum-a(i,k)*a(k,j) 13 continue a(i,j)=sum endif 14 continue endif aamax=0.0d0 do 16 i=j,n sum=a(i,j) if (j.gt.1)then do 15 k=1,j-1 sum=sum-a(i,k)*a(k,j) 15 continue a(i,j)=sum endif dum=vv(i)*abs(sum) if (dum.ge.aamax) then imax=i aamax=dum endif 16 continue if (j.ne.imax)then do 17 k=1,n dum=a(imax,k) a(imax,k)=a(j,k) a(j,k)=dum 17 continue d=-d vv(imax)=vv(j) endif indx(j)=imax if(j.ne.n)then if(a(j,j).eq.0.0)a(j,j)=tiny dum=1.0d0/a(j,j) do 18 i=j+1,n a(i,j)=a(i,j)*dum 18 continue endif 19 continue if(a(n,n).eq.0.0)a(n,n)=tiny return end c *** LUdec.f *** ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c c Solution of linear equation without inverting matrix c using LU decomposition: c AA * xx = bb AA, bb: known c xx: to be found c AA and bb are not modified in this subroutine c c MALV , Sep 2007 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc subroutine LUdec(xx,aa,bb,m,n) implicit none ! Arguments integer,intent(in) :: m, n real*8,intent(in) :: aa(m,m), bb(m) real*8,intent(out) :: xx(m) ! Local variables real*8 a(n,n), b(n), x(n), d integer i, j, indx(n) ! Subrutinas utilizadas ! ludcmp_dp, lubksb_dp !!!!!!!!!!!!!!!Comienza el programa !!!!!!!!!!!!!! do i=1,n b(i) = bb(i+1) do j=1,n a(i,j) = aa(i+1,j+1) enddo enddo ! Descomposicion de auxm1 call ludcmp_dp ( a, n, n, indx, d) ! Sustituciones foward y backwards para hallar la solucion do i=1,n x(i) = b(i) enddo call lubksb_dp( a, n, n, indx, x ) do i=1,n xx(i+1) = x(i) enddo return end c *** mat_oper.f *** ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c *********************************************************************** subroutine unit(a,n) c store the unit value in the diagonal of a c *********************************************************************** implicit none real*8 a(n,n) integer n,i,j,k do 1,i=2,n-1 do 2,j=2,n-1 if(i.eq.j) then a(i,j) = 1.d0 else a(i,j)=0.0d0 end if 2 continue 1 continue do k=1,n a(n,k) = 0.0d0 a(1,k) = 0.0d0 a(k,1) = 0.0d0 a(k,n) = 0.0d0 end do return end c *********************************************************************** subroutine diago(a,v,n) c store the vector v in the diagonal elements of the square matrix a c *********************************************************************** implicit none integer n,i,j,k real*8 a(n,n),v(n) do 1,i=2,n-1 do 2,j=2,n-1 if(i.eq.j) then a(i,j) = v(i) else a(i,j)=0.0d0 end if 2 continue 1 continue do k=1,n a(n,k) = 0.0d0 a(1,k) = 0.0d0 a(k,1) = 0.0d0 a(k,n) = 0.0d0 end do return end c *********************************************************************** subroutine invdiag(a,b,n) c inverse of a diagonal matrix c *********************************************************************** implicit none integer n,i,j,k real*8 a(n,n),b(n,n) do 1,i=2,n-1 do 2,j=2,n-1 if (i.eq.j) then a(i,j) = 1.d0/b(i,i) else a(i,j)=0.0d0 end if 2 continue 1 continue do k=1,n a(n,k) = 0.0d0 a(1,k) = 0.0d0 a(k,1) = 0.0d0 a(k,n) = 0.0d0 end do return end c *********************************************************************** subroutine samem (a,m,n) c store the matrix m in the matrix a c *********************************************************************** implicit none real*8 a(n,n),m(n,n) integer n,i,j,k do 1,i=2,n-1 do 2,j=2,n-1 a(i,j) = m(i,j) 2 continue 1 continue do k=1,n a(n,k) = 0.0d0 a(1,k) = 0.0d0 a(k,1) = 0.0d0 a(k,n) = 0.0d0 end do return end c *********************************************************************** subroutine mulmv(a,b,c,n) c do a(i)=b(i,j)*c(j). a, b, and c must be distint c *********************************************************************** implicit none integer n,i,j real*8 a(n),b(n,n),c(n),sum do 1,i=2,n-1 sum=0.0d0 do 2,j=2,n-1 sum = sum + b(i,j) * c(j) 2 continue a(i)=sum 1 continue a(1) = 0.0d0 a(n) = 0.0d0 return end c *********************************************************************** subroutine trucodiag(a,b,c,d,e,n) c inputs: matrices b,c,d,e c output: matriz diagonal a c Operacion a realizar: a = b * c^(-1) * d + e c La matriz c va a ser invertida c Todas las matrices de entrada son diagonales excepto b c Aprovechamos esa condicion para invertir c, acelerar el calculo, y c ademas, para forzar que a sea diagonal c *********************************************************************** implicit none real*8 a(n,n),b(n,n),c(n,n),d(n,n),e(n,n), sum integer n,i,j,k do 1,i=2,n-1 sum=0.0d0 do 2,j=2,n-1 sum=sum+ b(i,j) * d(j,j)/c(j,j) 2 continue a(i,i) = sum + e(i,i) 1 continue do k=1,n a(n,k) = 0.0d0 a(1,k) = 0.0d0 a(k,1) = 0.0d0 a(k,n) = 0.0d0 end do return end c *********************************************************************** subroutine trucommvv(v,b,c,u,w,n) c inputs: matrices b,c , vectores u,w c output: vector v c Operacion a realizar: v = b * c^(-1) * u + w c La matriz c va a ser invertida c c es diagonal, b no c Aprovechamos esa condicion para invertir c, y acelerar el calculo c *********************************************************************** implicit none real*8 v(n),b(n,n),c(n,n),u(n),w(n), sum integer n,i,j do 1,i=2,n-1 sum=0.0d0 do 2,j=2,n-1 sum=sum+ b(i,j) * u(j)/c(j,j) 2 continue v(i) = sum + w(i) 1 continue v(1) = 0.d0 v(n) = 0.d0 return end c *********************************************************************** subroutine sypvmv(v,u,c,w,n) c inputs: matriz diagonal c , vectores u,w c output: vector v c Operacion a realizar: v = u + c * w c *********************************************************************** implicit none real*8 v(n),u(n),c(n,n),w(n) integer n,i do 1,i=2,n-1 v(i)= u(i) + c(i,i) * w(i) 1 continue v(1) = 0.0d0 v(n) = 0.0d0 return end c *********************************************************************** subroutine sumvv(a,b,c,n) c a(i)=b(i)+c(i) c *********************************************************************** implicit none integer n,i real*8 a(n),b(n),c(n) do 1,i=2,n-1 a(i)= b(i) + c(i) 1 continue a(1) = 0.0d0 a(n) = 0.0d0 return end c *********************************************************************** subroutine sypvvv(a,b,c,d,n) c a(i)=b(i)+c(i)*d(i) c *********************************************************************** implicit none real*8 a(n),b(n),c(n),d(n) integer n,i do 1,i=2,n-1 a(i)= b(i) + c(i) * d(i) 1 continue a(1) = 0.0d0 a(n) = 0.0d0 return end c *********************************************************************** ! subroutine zerom(a,n) c a(i,j)= 0.0 c *********************************************************************** ! implicit none ! integer n,i,j ! real*8 a(n,n) ! do 1,i=1,n ! do 2,j=1,n ! a(i,j) = 0.0d0 ! 2 continue ! 1 continue ! return ! end c *********************************************************************** subroutine zero4m(a,b,c,d,n) c a(i,j) = b(i,j) = c(i,j) = d(i,j) = 0.0 c *********************************************************************** implicit none real*8 a(n,n), b(n,n), c(n,n), d(n,n) integer n a(1:n,1:n)=0.d0 b(1:n,1:n)=0.d0 c(1:n,1:n)=0.d0 d(1:n,1:n)=0.d0 ! do 1,i=1,n ! do 2,j=1,n ! a(i,j) = 0.0d0 ! b(i,j) = 0.0d0 ! c(i,j) = 0.0d0 ! d(i,j) = 0.0d0 ! 2 continue ! 1 continue return end c *********************************************************************** subroutine zero3m(a,b,c,n) c a(i,j) = b(i,j) = c(i,j) = 0.0 c ********************************************************************** implicit none real*8 a(n,n), b(n,n), c(n,n) integer n a(1:n,1:n)=0.d0 b(1:n,1:n)=0.d0 c(1:n,1:n)=0.d0 ! do 1,i=1,n ! do 2,j=1,n ! a(i,j) = 0.0d0 ! b(i,j) = 0.0d0 ! c(i,j) = 0.0d0 ! 2 continue ! 1 continue return end c *********************************************************************** subroutine zero2m(a,b,n) c a(i,j) = b(i,j) = 0.0 c *********************************************************************** implicit none real*8 a(n,n), b(n,n) integer n a(1:n,1:n)=0.d0 b(1:n,1:n)=0.d0 ! do 1,i=1,n ! do 2,j=1,n ! a(i,j) = 0.0d0 ! b(i,j) = 0.0d0 ! 2 continue ! 1 continue return end c *********************************************************************** ! subroutine zerov(a,n) c a(i)= 0.0 c *********************************************************************** ! implicit none ! real*8 a(n) ! integer n,i ! do 1,i=1,n ! a(i) = 0.0d0 ! 1 continue ! return ! end c *********************************************************************** subroutine zero4v(a,b,c,d,n) c a(i) = b(i) = c(i) = d(i,j) = 0.0 c *********************************************************************** implicit none real*8 a(n), b(n), c(n), d(n) integer n a(1:n)=0.d0 b(1:n)=0.d0 c(1:n)=0.d0 d(1:n)=0.d0 ! do 1,i=1,n ! a(i) = 0.0d0 ! b(i) = 0.0d0 ! c(i) = 0.0d0 ! d(i) = 0.0d0 ! 1 continue return end c *********************************************************************** subroutine zero3v(a,b,c,n) c a(i) = b(i) = c(i) = 0.0 c *********************************************************************** implicit none real*8 a(n), b(n), c(n) integer n a(1:n)=0.d0 b(1:n)=0.d0 c(1:n)=0.d0 ! do 1,i=1,n ! a(i) = 0.0d0 ! b(i) = 0.0d0 ! c(i) = 0.0d0 ! 1 continue return end c *********************************************************************** subroutine zero2v(a,b,n) c a(i) = b(i) = 0.0 c *********************************************************************** implicit none real*8 a(n), b(n) integer n a(1:n)=0.d0 b(1:n)=0.d0 ! do 1,i=1,n ! a(i) = 0.0d0 ! b(i) = 0.0d0 ! 1 continue return end c *********************************************************************** c**************************************************************************** c *** suaviza.f *** c***************************************************************************** c subroutine suaviza ( x, n, ismooth, y ) c c x - input and return values c y - auxiliary vector c ismooth = 0 --> no smoothing is performed c ismooth = 1 --> weak smoothing (5 points, centred weighted) c ismooth = 2 --> normal smoothing (3 points, evenly weighted) c ismooth = 3 --> strong smoothing (5 points, evenly weighted) c august 1991 c***************************************************************************** implicit none integer n, imax, imin, i, ismooth real*8 x(n), y(n) c***************************************************************************** imin=1 imax=n if (ismooth.eq.0) then return elseif (ismooth.eq.1) then ! 5 points, with central weighting do i=imin,imax if(i.eq.imin)then y(i)=x(imin) elseif(i.eq.imax)then y(i)=x(imax-1)+(x(imax-1)-x(imax-3))/2.d0 elseif(i.gt.(imin+1) .and. i.lt.(imax-1) )then y(i) = ( x(i+2)/4.d0 + x(i+1)/2.d0 + 2.d0*x(i)/3.d0 + @ x(i-1)/2.d0 + x(i-2)/4.d0 )* 6.d0/13.d0 else y(i)=(x(i+1)/2.d0+x(i)+x(i-1)/2.d0)/2.d0 end if end do elseif (ismooth.eq.2) then ! 3 points, evenly spaced do i=imin,imax if(i.eq.imin)then y(i)=x(imin) elseif(i.eq.imax)then y(i)=x(imax-1)+(x(imax-1)-x(imax-3))/2.d0 else y(i) = ( x(i+1)+x(i)+x(i-1) )/3.d0 end if end do elseif (ismooth.eq.3) then ! 5 points, evenly spaced do i=imin,imax if(i.eq.imin)then y(i) = x(imin) elseif(i.eq.(imin+1) .or. i.eq.(imax-1))then y(i) = ( x(i+1)+x(i)+x(i-1) )/3.d0 elseif(i.eq.imax)then y(i) = ( x(imax-1) + x(imax-1) + x(imax-2) ) / 3.d0 else y(i) = ( x(i+2)+x(i+1)+x(i)+x(i-1)+x(i-2) )/5.d0 end if end do else write (*,*) ' Error in suaviza.f Wrong ismooth value.' stop endif c rehago el cambio, para devolver x(i) do i=imin,imax x(i)=y(i) end do return end c *********************************************************************** subroutine mulmmf90(a,b,c,n) c *********************************************************************** implicit none real*8 a(n,n), b(n,n), c(n,n) integer n a=matmul(b,c) a(1,:)=0.d0 a(:,1)=0.d0 a(n,:)=0.d0 a(:,n)=0.d0 return end c *********************************************************************** subroutine resmmf90(a,b,c,n) c *********************************************************************** implicit none real*8 a(n,n), b(n,n), c(n,n) integer n a=b-c a(1,:)=0.d0 a(:,1)=0.d0 a(n,:)=0.d0 a(:,n)=0.d0 return end c******************************************************************* subroutine gethist_03 (ihist) c******************************************************************* implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c arguments integer ihist c local variables integer j, r c *************** nbox = nbox_stored(ihist) do j=1,mm_stored(ihist) thist(j) = thist_stored(ihist,j) do r=1,nbox_stored(ihist) no(r) = no_stored(ihist,r) sk1(j,r) = sk1_stored(ihist,j,r) xls1(j,r) = xls1_stored(ihist,j,r) xld1(j,r) = xld1_stored(ihist,j,r) enddo enddo return end c ******************************************************************* subroutine rhist_03 (ihist) c ******************************************************************* implicit none #include "nlte_paramdef.h" #include "nlte_commons.h" c arguments integer ihist c local variables integer j, r real*8 xx c *************** open(unit=3,file=hisfile,status='old') read(3,*) read(3,*) read(3,*) mm_stored(ihist) read(3,*) read(3,*) nbox_stored(ihist) read(3,*) if ( nbox_stored(ihist) .gt. nbox_max ) then write (*,*) ' nbox too large in input file ', hisfile stop ' Check maximum number nbox_max in mz1d.par ' endif do j=mm_stored(ihist),1,-1 read(3,*) thist_stored(ihist,j) do r=1,nbox_stored(ihist) read(3,*) no_stored(ihist,r), & sk1_stored(ihist,j,r), & xls1_stored(ihist,j,r), & xx, & xld1_stored(ihist,j,r) enddo enddo close(unit=3) return end