subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & tsurf,fract,dist_star,aerosol,muvar, & dtlw,dtsw,fluxsurf_lw, & fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & fluxabs_sw,fluxtop_dn, & OLR_nu,OSR_nu, & tau_col,cloudfrac,totcloudfrac, & clearsky,firstcall,lastcall) use radinc_h use radcommon_h use watercommon_h use datafile_mod, only: datadir use ioipsl_getin_p_mod, only: getin_p use gases_h use radii_mod, only : su_aer_radii,co2_reffrad,h2o_reffrad,dust_reffrad,h2so4_reffrad,back2lay_reffrad use aerosol_mod, only : iaero_co2,iaero_h2o,iaero_dust,iaero_h2so4, iaero_back2lay USE tracer_h use comcstfi_mod, only: pi, mugaz, cpp use callkeys_mod, only: varactive,diurnal,tracer,water,nosurf,varfixed,satval, & kastprof,strictboundcorrk,specOLR,CLFvarying implicit none !================================================================== ! ! Purpose ! ------- ! Solve the radiative transfer using the correlated-k method for ! the gaseous absorption and the Toon et al. (1989) method for ! scatttering due to aerosols. ! ! Authors ! ------- ! Emmanuel 01/2001, Forget 09/2001 ! Robin Wordsworth (2009) ! !================================================================== !----------------------------------------------------------------------- ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid ! Layer #1 is the layer near the ground. ! Layer #nlayer is the layer at the top. !----------------------------------------------------------------------- ! INPUT INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). INTEGER,INTENT(IN) :: nq ! Number of tracers. REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). REAL,INTENT(IN) :: muvar(ngrid,nlayer+1) REAL,INTENT(IN) :: cloudfrac(ngrid,nlayer) ! Fraction of clouds (%). logical,intent(in) :: clearsky logical,intent(in) :: firstcall ! Signals first call to physics. logical,intent(in) :: lastcall ! Signals last call to physics. ! OUTPUT REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau (kg/kg). REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1). REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1). REAL,INTENT(OUT) :: tau_col(ngrid) ! Diagnostic from aeropacity. REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 REAL,INTENT(OUT) :: totcloudfrac(ngrid) ! Column Fraction of clouds (%). ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind) REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) REAL :: QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind) REAL :: omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind) REAL :: gIR3d(ngrid,nlayer,L_NSPECTI,naerkind) ! REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) ! REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these... REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance !$OMP THREADPRIVATE(reffrad,nueffrad) !----------------------------------------------------------------------- ! Declaration of the variables required by correlated-k subroutines ! Numbered from top to bottom (unlike in the GCM) !----------------------------------------------------------------------- REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) ! Optical values for the optci/cv subroutines REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) REAL*8 tauaero(L_LEVELS+1,naerkind) REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) REAL*8 albi,acosz REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. INTEGER ig,l,k,nw,iaer real szangle logical global1d save szangle,global1d !$OMP THREADPRIVATE(szangle,global1d) real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) real*8 qvar(L_LEVELS) ! Mixing ratio of variable component (mol/mol). ! Local aerosol optical properties for each column on RADIATIVE grid. real*8,save,allocatable :: QXVAER(:,:,:) real*8,save,allocatable :: QSVAER(:,:,:) real*8,save,allocatable :: GVAER(:,:,:) real*8,save,allocatable :: QXIAER(:,:,:) real*8,save,allocatable :: QSIAER(:,:,:) real*8,save,allocatable :: GIAER(:,:,:) real, dimension(:,:,:), save, allocatable :: QREFvis3d real, dimension(:,:,:), save, allocatable :: QREFir3d !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER,QREFvis3d,QREFir3d) ! Miscellaneous : real*8 temp,temp1,temp2,pweight character(len=10) :: tmp1 character(len=10) :: tmp2 ! For fixed water vapour profiles. integer i_var real RH real*8 pq_temp(nlayer) ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! real ptemp, Ttemp, qsat logical OLRz real*8 NFLUXGNDV_nu(L_NSPECTV) ! Included by RW for runaway greenhouse 1D study. real vtmp(nlayer) REAL*8 muvarrad(L_LEVELS) ! Included by MT for albedo calculations. REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. !=============================================================== ! I.a Initialization on first call !=============================================================== if(firstcall) then ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq) if(.not.allocated(QXVAER)) allocate(QXVAER(L_LEVELS+1,L_NSPECTV,naerkind)) if(.not.allocated(QSVAER)) allocate(QSVAER(L_LEVELS+1,L_NSPECTV,naerkind)) if(.not.allocated(GVAER)) allocate(GVAER(L_LEVELS+1,L_NSPECTV,naerkind)) if(.not.allocated(QXIAER)) allocate(QXIAER(L_LEVELS+1,L_NSPECTI,naerkind)) if(.not.allocated(QSIAER)) allocate(QSIAER(L_LEVELS+1,L_NSPECTI,naerkind)) if(.not.allocated(GIAER)) allocate(GIAER(L_LEVELS+1,L_NSPECTI,naerkind)) !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...) IF(.not.ALLOCATED(QREFvis3d)) ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind)) IF(.not.ALLOCATED(QREFir3d)) ALLOCATE(QREFir3d(ngrid,nlayer,naerkind)) ! Effective radius and variance of the aerosols IF(.not.ALLOCATED(reffrad)) allocate(reffrad(ngrid,nlayer,naerkind)) IF(.not.ALLOCATED(nueffrad)) allocate(nueffrad(ngrid,nlayer,naerkind)) call system('rm -f surf_vals_long.out') if(naerkind.gt.4)then print*,'Code not general enough to deal with naerkind > 4 yet.' call abort endif call su_aer_radii(ngrid,nlayer,reffrad,nueffrad) !-------------------------------------------------- ! Set up correlated k !-------------------------------------------------- print*, "callcorrk: Correlated-k data base folder:",trim(datadir) call getin_p("corrkdir",corrkdir) print*, "corrkdir = ",corrkdir write( tmp1, '(i3)' ) L_NSPECTI write( tmp2, '(i3)' ) L_NSPECTV banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) call setspi ! Basic infrared properties. call setspv ! Basic visible properties. call sugas_corrk ! Set up gaseous absorption properties. call suaer_corrk ! Set up aerosol optical properties. if((igcm_h2o_vap.eq.0) .and. varactive)then print*,'varactive in callcorrk but no h2o_vap tracer.' stop endif OLR_nu(:,:) = 0. OSR_nu(:,:) = 0. if (ngrid.eq.1) then PRINT*, 'Simulate global averaged conditions ?' global1d = .false. ! default value call getin_p("global1d",global1d) write(*,*) "global1d = ",global1d ! Test of incompatibility : if global1d is true, there should not be any diurnal cycle. if (global1d.and.diurnal) then print*,'if global1d is true, diurnal must be set to false' stop endif if (global1d) then PRINT *,'Solar Zenith angle (deg.) ?' PRINT *,'(assumed for averaged solar flux S/4)' szangle=60.0 ! default value call getin_p("szangle",szangle) write(*,*) "szangle = ",szangle endif endif end if ! of if (firstcall) !======================================================================= ! I.b Initialization on every call !======================================================================= qxvaer(:,:,:)=0.0 qsvaer(:,:,:)=0.0 gvaer(:,:,:) =0.0 qxiaer(:,:,:)=0.0 qsiaer(:,:,:)=0.0 giaer(:,:,:) =0.0 !-------------------------------------------------- ! Effective radius and variance of the aerosols !-------------------------------------------------- do iaer=1,naerkind if ((iaer.eq.iaero_co2).and.tracer.and.(igcm_co2_ice.gt.0)) then ! Treat condensed co2 particles. call co2_reffrad(ngrid,nlayer,nq,pq,reffrad(1,1,iaero_co2)) print*,'Max. CO2 ice particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' print*,'Min. CO2 ice particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' end if if ((iaer.eq.iaero_h2o).and.water) then ! Treat condensed water particles. To be generalized for other aerosols ... call h2o_reffrad(ngrid,nlayer,pq(1,1,igcm_h2o_ice),pt, & reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o)) print*,'Max. H2O cloud particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' print*,'Min. H2O cloud particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' endif if(iaer.eq.iaero_dust)then call dust_reffrad(ngrid,nlayer,reffrad(1,1,iaero_dust)) print*,'Dust particle size = ',reffrad(1,1,iaer)/1.e-6,' um' endif if(iaer.eq.iaero_h2so4)then call h2so4_reffrad(ngrid,nlayer,reffrad(1,1,iaero_h2so4)) print*,'H2SO4 particle size =',reffrad(1,1,iaer)/1.e-6,' um' endif if(iaer.eq.iaero_back2lay)then call back2lay_reffrad(ngrid,reffrad(1,1,iaero_back2lay),nlayer,pplev) endif end do !iaer=1,naerkind. ! How much light do we get ? do nw=1,L_NSPECTV stel(nw)=stellarf(nw)/(dist_star**2) end do ! Get 3D aerosol optical properties. call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & QVISsQREF3d,omegaVIS3d,gVIS3d, & QIRsQREF3d,omegaIR3d,gIR3d, & QREFvis3d,QREFir3d) ! Get aerosol optical depths. call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, & reffrad,QREFvis3d,QREFir3d, & tau_col,cloudfrac,totcloudfrac,clearsky) !----------------------------------------------------------------------- do ig=1,ngrid ! Starting Big Loop over every GCM column !----------------------------------------------------------------------- !======================================================================= ! II. Transformation of the GCM variables !======================================================================= !----------------------------------------------------------------------- ! Aerosol optical properties Qext, Qscat and g. ! The transformation in the vertical is the same as for temperature. !----------------------------------------------------------------------- do iaer=1,naerkind ! Shortwave. do nw=1,L_NSPECTV do l=1,nlayer temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & *QREFvis3d(ig,nlayer+1-l,iaer) temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & *QREFvis3d(ig,max(nlayer-l,1),iaer) qxvaer(2*l,nw,iaer) = temp1 qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) qsvaer(2*l,nw,iaer) = temp1 qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 temp1=gvis3d(ig,nlayer+1-l,nw,iaer) temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) gvaer(2*l,nw,iaer) = temp1 gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 end do ! nlayer qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) qxvaer(2*nlayer+1,nw,iaer)=0. qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) qsvaer(2*nlayer+1,nw,iaer)=0. gvaer(1,nw,iaer)=gvaer(2,nw,iaer) gvaer(2*nlayer+1,nw,iaer)=0. end do ! L_NSPECTV do nw=1,L_NSPECTI ! Longwave do l=1,nlayer temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer) & *QREFir3d(ig,nlayer+1-l,iaer) temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer) & *QREFir3d(ig,max(nlayer-l,1),iaer) qxiaer(2*l,nw,iaer) = temp1 qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer) temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer) qsiaer(2*l,nw,iaer) = temp1 qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 temp1=gir3d(ig,nlayer+1-l,nw,iaer) temp2=gir3d(ig,max(nlayer-l,1),nw,iaer) giaer(2*l,nw,iaer) = temp1 giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 end do ! nlayer qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) qxiaer(2*nlayer+1,nw,iaer)=0. qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) qsiaer(2*nlayer+1,nw,iaer)=0. giaer(1,nw,iaer)=giaer(2,nw,iaer) giaer(2*nlayer+1,nw,iaer)=0. end do ! L_NSPECTI end do ! naerkind ! Test / Correct for freaky s. s. albedo values. do iaer=1,naerkind do k=1,L_LEVELS+1 do nw=1,L_NSPECTV if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then print*,'Serious problems with qsvaer values' print*,'in callcorrk' call abort endif if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) endif end do do nw=1,L_NSPECTI if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then print*,'Serious problems with qsiaer values' print*,'in callcorrk' call abort endif if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) endif end do end do ! L_LEVELS end do ! naerkind !----------------------------------------------------------------------- ! Aerosol optical depths !----------------------------------------------------------------------- do iaer=1,naerkind ! a bug was here do k=0,nlayer-1 pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) end do ! boundary conditions tauaero(1,iaer) = tauaero(2,iaer) tauaero(L_LEVELS+1,iaer) = tauaero(L_LEVELS,iaer) !tauaero(1,iaer) = 0. !tauaero(L_LEVELS+1,iaer) = 0. end do ! naerkind ! Albedo and Emissivity. albi=1-emis(ig) ! Long Wave. DO nw=1,L_NSPECTV ! Short Wave loop. albv(nw)=albedo(ig,nw) ENDDO if (nosurf) then ! Case with no surface. DO nw=1,L_NSPECTV if(albv(nw).gt.0.0) then print*,'For open lower boundary in callcorrk must' print*,'have spectral surface band albedos all set to zero!' call abort endif ENDDO endif if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight. acosz = cos(pi*szangle/180.0) print*,'acosz=',acosz,', szangle=',szangle else acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. endif !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! Note by JL13 : In the following, some indices were changed in the interpolations, !!! so that the model results are less dependent on the number of layers ! !!! !!! --- The older versions are commented with the comment !JL13index --- !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !----------------------------------------------------------------------- ! Water vapour (to be generalised for other gases eventually ...) !----------------------------------------------------------------------- if(varactive)then i_var=igcm_h2o_vap do l=1,nlayer qvar(2*l) = pq(ig,nlayer+1-l,i_var) qvar(2*l+1) = pq(ig,nlayer+1-l,i_var) !JL13index qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2 !JL13index ! Average approximation as for temperature... end do qvar(1)=qvar(2) elseif(varfixed)then do l=1,nlayer ! Here we will assign fixed water vapour profiles globally. RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98) if(RH.lt.0.0) RH=0.0 ptemp=pplay(ig,l) Ttemp=pt(ig,l) call watersat(Ttemp,ptemp,qsat) !pq_temp(l) = qsat ! fully saturated everywhere pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) end do do l=1,nlayer qvar(2*l) = pq_temp(nlayer+1-l) qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2 end do qvar(1)=qvar(2) ! Lowest layer of atmosphere RH = satval * (1 - 0.02) / 0.98 if(RH.lt.0.0) RH=0.0 ! ptemp = pplev(ig,1) ! Ttemp = tsurf(ig) ! call watersat(Ttemp,ptemp,qsat) qvar(2*nlayer+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) else do k=1,L_LEVELS qvar(k) = 1.0D-7 end do end if ! varactive/varfixed if(.not.kastprof)then ! IMPORTANT: Now convert from kg/kg to mol/mol. do k=1,L_LEVELS qvar(k) = qvar(k)/(epsi+qvar(k)*(1.-epsi)) end do end if !----------------------------------------------------------------------- ! kcm mode only ! !----------------------------------------------------------------------- if(kastprof)then ! Initial values equivalent to mugaz. DO l=1,nlayer muvarrad(2*l) = mugaz muvarrad(2*l+1) = mugaz END DO if(ngasmx.gt.1)then DO l=1,nlayer muvarrad(2*l) = muvar(ig,nlayer+2-l) muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + & muvar(ig,max(nlayer+1-l,1)))/2 END DO muvarrad(1) = muvarrad(2) muvarrad(2*nlayer+1) = muvar(ig,1) print*,'Recalculating qvar with VARIABLE epsi for kastprof' print*,'Assumes that the variable gas is H2O!!!' print*,'Assumes that there is only one tracer' !i_var=igcm_h2o_vap i_var=1 if(nq.gt.1)then print*,'Need 1 tracer only to run kcm1d.e' stop endif do l=1,nlayer vtmp(l)=pq(ig,l,i_var)/(epsi+pq(ig,l,i_var)*(1.-epsi)) !vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O !JL to be changed end do do l=1,nlayer qvar(2*l) = vtmp(nlayer+1-l) qvar(2*l+1) = vtmp(nlayer+1-l) ! qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2 end do qvar(1)=qvar(2) print*,'Warning: reducing qvar in callcorrk.' print*,'Temperature profile no longer consistent ', & 'with saturated H2O. qsat=',satval do k=1,L_LEVELS qvar(k) = qvar(k)*satval end do endif else ! if kastprof DO l=1,nlayer muvarrad(2*l) = muvar(ig,nlayer+2-l) muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2 END DO muvarrad(1) = muvarrad(2) muvarrad(2*nlayer+1)=muvar(ig,1) endif ! if kastprof ! Keep values inside limits for which we have radiative transfer coefficients !!! if(L_REFVAR.gt.1)then ! (there was a bug here) do k=1,L_LEVELS if(qvar(k).lt.wrefvar(1))then qvar(k)=wrefvar(1)+1.0e-8 elseif(qvar(k).gt.wrefvar(L_REFVAR))then qvar(k)=wrefvar(L_REFVAR)-1.0e-8 endif end do endif !----------------------------------------------------------------------- ! Pressure and temperature !----------------------------------------------------------------------- DO l=1,nlayer plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep tlevrad(2*l) = pt(ig,nlayer+1-l) tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 END DO plevrad(1) = 0. plevrad(2) = 0. !! Trick to have correct calculations of fluxes in gflux(i/v).F, but the pmid levels are not impacted by this change. tlevrad(1) = tlevrad(2) tlevrad(2*nlayer+1)=tsurf(ig) pmid(1) = max(pgasmin,0.0001*plevrad(3)) pmid(2) = pmid(1) tmid(1) = tlevrad(2) tmid(2) = tmid(1) DO l=1,L_NLAYRAD-1 tmid(2*l+1) = tlevrad(2*l+1) tmid(2*l+2) = tlevrad(2*l+1) pmid(2*l+1) = plevrad(2*l+1) pmid(2*l+2) = plevrad(2*l+1) END DO pmid(L_LEVELS) = plevrad(L_LEVELS) tmid(L_LEVELS) = tlevrad(L_LEVELS) !!Alternative interpolation: ! pmid(3) = pmid(1) ! pmid(4) = pmid(1) ! tmid(3) = tmid(1) ! tmid(4) = tmid(1) ! DO l=2,L_NLAYRAD-1 ! tmid(2*l+1) = tlevrad(2*l) ! tmid(2*l+2) = tlevrad(2*l) ! pmid(2*l+1) = plevrad(2*l) ! pmid(2*l+2) = plevrad(2*l) ! END DO ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) ! Test for out-of-bounds pressure. if(plevrad(3).lt.pgasmin)then print*,'Minimum pressure is outside the radiative' print*,'transfer kmatrix bounds, exiting.' call abort elseif(plevrad(L_LEVELS).gt.pgasmax)then print*,'Maximum pressure is outside the radiative' print*,'transfer kmatrix bounds, exiting.' call abort endif ! Test for out-of-bounds temperature. do k=1,L_LEVELS if(tlevrad(k).lt.tgasmin)then print*,'Minimum temperature is outside the radiative' print*,'transfer kmatrix bounds' print*,"k=",k," tlevrad(k)=",tlevrad(k) print*,"tgasmin=",tgasmin if (strictboundcorrk) then call abort else print*,'***********************************************' print*,'we allow model to continue with tlevrad=tgasmin' print*,' ... we assume we know what you are doing ... ' print*,' ... but do not let this happen too often ... ' print*,'***********************************************' !tlevrad(k)=tgasmin endif elseif(tlevrad(k).gt.tgasmax)then print*,'Maximum temperature is outside the radiative' print*,'transfer kmatrix bounds, exiting.' print*,"k=",k," tlevrad(k)=",tlevrad(k) print*,"tgasmax=",tgasmax if (strictboundcorrk) then call abort else print*,'***********************************************' print*,'we allow model to continue with tlevrad=tgasmax' print*,' ... we assume we know what you are doing ... ' print*,' ... but do not let this happen too often ... ' print*,'***********************************************' !tlevrad(k)=tgasmax endif endif enddo do k=1,L_NLAYRAD+1 if(tmid(k).lt.tgasmin)then print*,'Minimum temperature is outside the radiative' print*,'transfer kmatrix bounds, exiting.' print*,"k=",k," tmid(k)=",tmid(k) print*,"tgasmin=",tgasmin if (strictboundcorrk) then call abort else print*,'***********************************************' print*,'we allow model to continue with tmid=tgasmin' print*,' ... we assume we know what you are doing ... ' print*,' ... but do not let this happen too often ... ' print*,'***********************************************' tmid(k)=tgasmin endif elseif(tmid(k).gt.tgasmax)then print*,'Maximum temperature is outside the radiative' print*,'transfer kmatrix bounds, exiting.' print*,"k=",k," tmid(k)=",tmid(k) print*,"tgasmax=",tgasmax if (strictboundcorrk) then call abort else print*,'***********************************************' print*,'we allow model to continue with tmid=tgasmin' print*,' ... we assume we know what you are doing ... ' print*,' ... but do not let this happen too often ... ' print*,'***********************************************' tmid(k)=tgasmax endif endif enddo !======================================================================= ! III. Calling the main radiative transfer subroutines !======================================================================= Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. glat_ig=glat(ig) !----------------------------------------------------------------------- ! Short Wave Part !----------------------------------------------------------------------- if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. if((ngrid.eq.1).and.(global1d))then do nw=1,L_NSPECTV stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle end do else do nw=1,L_NSPECTV stel_fract(nw)= stel(nw) * fract(ig) end do endif call optcv(dtauv,tauv,taucumv,plevrad, & qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & tmid,pmid,taugsurf,qvar,muvarrad) call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & acosz,stel_fract,gweight, & nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) else ! During the night, fluxes = 0. nfluxtopv = 0.0d0 fluxtopvdn = 0.0d0 nfluxoutv_nu(:) = 0.0d0 nfluxgndv_nu(:) = 0.0d0 do l=1,L_NLAYRAD fmnetv(l)=0.0d0 fluxupv(l)=0.0d0 fluxdnv(l)=0.0d0 end do end if ! Equivalent Albedo Calculation (for OUTPUT). MT2015 if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. DO nw=1,L_NSPECTV albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) ENDDO albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) else albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. endif else albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. endif !----------------------------------------------------------------------- ! Long Wave Part !----------------------------------------------------------------------- call optci(plevrad,tlevrad,dtaui,taucumi, & qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & taugsurfi,qvar,muvarrad) call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & wnoi,dwni,cosbi,wbari,gweight,nfluxtopi,nfluxtopi_nu, & fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) !----------------------------------------------------------------------- ! Transformation of the correlated-k code outputs ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) ! Flux incident at the top of the atmosphere fluxtop_dn(ig)=fluxtopvdn fluxtop_lw(ig) = real(nfluxtopi) fluxabs_sw(ig) = real(-nfluxtopv) fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) ! Flux absorbed by the surface. By MT2015. fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) if(fluxtop_dn(ig).lt.0.0)then print*,'Achtung! fluxtop_dn has lost the plot!' print*,'fluxtop_dn=',fluxtop_dn(ig) print*,'acosz=',acosz print*,'aerosol=',aerosol(ig,:,:) print*,'temp= ',pt(ig,:) print*,'pplay= ',pplay(ig,:) call abort endif ! Spectral output, for exoplanet observational comparison if(specOLR)then do nw=1,L_NSPECTI OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth end do do nw=1,L_NSPECTV !GSR_nu(ig,nw)=nfluxgndv_nu(nw) OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth end do endif ! Finally, the heating rates DO l=2,L_NLAYRAD dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) END DO ! These are values at top of atmosphere dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(1))) dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(1))) !----------------------------------------------------------------------- end do ! End of big loop over every GCM column. !----------------------------------------------------------------------- !----------------------------------------------------------------------- ! Additional diagnostics !----------------------------------------------------------------------- ! IR spectral output, for exoplanet observational comparison if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 print*,'Saving scalar quantities in surf_vals.out...' print*,'psurf = ', pplev(1,1),' Pa' open(116,file='surf_vals.out') write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & real(-nfluxtopv),real(nfluxtopi) close(116) ! USEFUL COMMENT - Do Not Remove. ! ! if(specOLR)then ! open(117,file='OLRnu.out') ! do nw=1,L_NSPECTI ! write(117,*) OLR_nu(1,nw) ! enddo ! close(117) ! ! open(127,file='OSRnu.out') ! do nw=1,L_NSPECTV ! write(127,*) OSR_nu(1,nw) ! enddo ! close(127) ! endif ! OLR vs altitude: do it as a .txt file. OLRz=.false. if(OLRz)then print*,'saving IR vertical flux for OLRz...' open(118,file='OLRz_plevs.out') open(119,file='OLRz.out') do l=1,L_NLAYRAD write(118,*) plevrad(2*l) do nw=1,L_NSPECTI write(119,*) fluxupi_nu(l,nw) enddo enddo close(118) close(119) endif endif ! See physiq.F for explanations about CLFvarying. This is temporary. if (lastcall .and. .not.CLFvarying) then IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) !$OMP BARRIER !$OMP MASTER IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) !$OMP END MASTER !$OMP BARRIER IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) endif end subroutine callcorrk