\relax \catcode`:\active \catcode`;\active \catcode`!\active \catcode`?\active \bibstyle{abbrv} \select@language{english} \@writefile{toc}{\select@language{english}} \@writefile{lof}{\select@language{english}} \@writefile{lot}{\select@language{english}} \select@language{english} \@writefile{toc}{\select@language{english}} \@writefile{lof}{\select@language{english}} \@writefile{lot}{\select@language{english}} \@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \select@language{english} \@writefile{toc}{\select@language{english}} \@writefile{lof}{\select@language{english}} \@writefile{lot}{\select@language{english}} \@writefile{toc}{\contentsline {chapter}{\numberline {2}Main features of the model}{4}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:apercu}{{2}{4}} \@writefile{toc}{\contentsline {section}{\numberline {2.1}Basic principles}{4}} \@writefile{toc}{\contentsline {section}{\numberline {2.2}Dynamical-Physical separation}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Physical/dynamical interface}}{5}} \newlabel{fg:fidyn}{{2.1}{5}} \@writefile{toc}{\contentsline {section}{\numberline {2.3}Grid boxes:}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Horizontal grids}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Dynamical and physical grids for a 6 $\times $ 7 horizontal resolution. In the dynamics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical variables are on the dynamical ``scalar'' grid. The physics uses the same ``scalar'' grid for all the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-1)$\times $IM points when counting from the north pole. N.B.: In the Fortran program, the following variables are used: {\tt iim=IM , iip1=IM+1, jjm=JM , jjp1=JM+1}.}}{6}} \newlabel{fg:grid}{{2.2}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Vertical grids}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces hybrides}}{7}} \newlabel{fg:hybrid}{{2.3}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Vertical grid description of the {\tt llm (or nlayer)} atmospheric layers in the programming code ({\tt llm} is the variable used in the dynamical part, and {\tt nlayer} is used in the physical part). Variables {\tt ap, bp} and {\tt aps, bps} indicate the hybrid levels at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer is $Plev(l)=ap(l)+bp(l) \times Ps$ and pressure in the middle of the layer is defined by $Play(l)=aps(l)+bps(l) \times Ps$, (where $Ps$ is surface pressure). Sigma coordinates are merely a specific case of hybrid coordinates such that $aps=0$ and $bps=P/Ps$. Note that for the hybrid coordinates, $bps=0$ above $\sim 50$~km, leading to purely pressure levels. The user can choose whether to run the model using hybrid coordinates or not by setting variable {\tt hybrid} in run.def to True or False.}}{8}} \newlabel{fg:sigma}{{2.4}{8}} \@writefile{toc}{\contentsline {section}{\numberline {2.4}Variables used in the model}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Dynamical variables}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Physical variables}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Tracers}{10}} \citation{Holt:79} \citation{LeVa:89} \citation{Arak:77} \@writefile{toc}{\contentsline {chapter}{\numberline {3}3D Dynamical Code}{11}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:dynamic}{{3}{11}} \@writefile{toc}{\contentsline {section}{\numberline {3.1}Discretisation of the dynamical equations}{11}} \@writefile{toc}{\contentsline {paragraph}{la pression extensive:}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Grille obtenue avec 96 points en longitude et 73 en latitude et un zoom d'un facteur 3 centr\'e sur la m\'edit\'erann\'ee (grille utilis\'ee au laboratoire par Ali Harzallah)}}{12}} \newlabel{fg:zoom}{{3.1}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Disposition des variables dans la grille du LMD}}{13}} \newlabel{fg:grille}{{3.2}{13}} \@writefile{toc}{\contentsline {paragraph}{les trois composantes du flux de masse:}{13}} \@writefile{toc}{\contentsline {paragraph}{le facteur de Coriolis multipli\'e par l'aire de la maille:}{13}} \@writefile{toc}{\contentsline {paragraph}{la vorticit\'e potentielle absolue:}{13}} \@writefile{toc}{\contentsline {paragraph}{l'\'energie cin\'etique}{13}} \@writefile{toc}{\contentsline {paragraph}{\'equations du mouvement:}{13}} \newlabel{eq:u1}{{3.5}{13}} \newlabel{eq:v1}{{3.6}{13}} \@writefile{toc}{\contentsline {paragraph}{\'equation thermodynamique:}{14}} \newlabel{eq:thermo}{{3.7}{14}} \@writefile{toc}{\contentsline {paragraph}{\'equation hydrostatique:}{14}} \@writefile{toc}{\contentsline {paragraph}{\'equations de continuit\'e:}{14}} \newlabel{eq:cont1}{{3.9}{14}} \newlabel{eq:cont2}{{3.10}{14}} \@writefile{toc}{\contentsline {section}{\numberline {3.2}High latitude filters}{14}} \@writefile{toc}{\contentsline {section}{\numberline {3.3}Dissipation}{14}} \@writefile{toc}{\contentsline {section}{\numberline {3.4}Sponge layer}{15}} \citation{Forg:99} \citation{Forg:99} \citation{Lewi:99} \@writefile{toc}{\contentsline {chapter}{\numberline {4}Physical parameterizations of the generic model: some references}{16}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:phystd}{{4}{16}} \@writefile{toc}{\contentsline {section}{\numberline {4.1}General}{16}} \@writefile{toc}{\contentsline {paragraph}{General references:}{16}} \@writefile{toc}{\contentsline {section}{\numberline {4.2}Radiative transfer}{16}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}\bf Absorption/emission and diffusion by dust:}{16}} \citation{Toon:89} \citation{Forg:98grl} \citation{Fouq:80} \citation{Ocke:97} \citation{Clan:91} \citation{Hour:93} \citation{Forg:98} \citation{Hour:99} \citation{Mont:04jgr} \@writefile{toc}{\contentsline {section}{\numberline {4.3}Subgrid atmospheric dynamical processes}{17}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Turbulent diffusion in the upper layer}{17}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Convection}{17}} \@writefile{toc}{\contentsline {section}{\numberline {4.4}Surface thermal conduction}{17}} \@writefile{toc}{\contentsline {section}{\numberline {4.5}CO$_2$ Condensation}{17}} \@writefile{toc}{\contentsline {section}{\numberline {4.6}Tracer transport and sources}{17}} \@writefile{toc}{\contentsline {chapter}{\numberline {5}Running the model: a practice simulation}{19}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{loc:contact1}{{5}{19}} \@writefile{toc}{\contentsline {section}{\numberline {5.1}Installing the model from SVN}{19}} \@writefile{toc}{\contentsline {section}{\numberline {5.2}Installing the model without SVN}{21}} \@writefile{toc}{\contentsline {section}{\numberline {5.3}Compiling the model}{21}} \newlabel{sc:run1}{{5.3}{21}} \@writefile{toc}{\contentsline {section}{\numberline {5.4}Input files (initial states and def files)}{22}} \@writefile{toc}{\contentsline {section}{\numberline {5.5}Running the model}{22}} \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Input/output data}}{23}} \newlabel{fig:inout}{{5.1}{23}} \@writefile{toc}{\contentsline {section}{\numberline {5.6}Visualizing the output files}{24}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.6.1}Using GrAds to visualize outputs}{24}} \newlabel{loc:visu}{{5.6.1}{24}} \@writefile{toc}{\contentsline {section}{\numberline {5.7}Resuming a simulation}{25}} \@writefile{toc}{\contentsline {section}{\numberline {5.8}Chain simulations}{25}} \@writefile{toc}{\contentsline {section}{\numberline {5.9}Creating and modifying initial states}{25}} \newlabel{sc:newstart}{{5.9}{25}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.1}Using program ``newstart''}{25}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.2}Creating the initial start\_archive.nc file }{27}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.3}Changing the horizontal or vertical grid resolution}{27}} \@writefile{toc}{\contentsline {chapter}{\numberline {6}Program organization and compilation script}{28}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:info}{{6}{28}} \newlabel{loc:contenu}{{6}{28}} \@writefile{toc}{\contentsline {section}{\numberline {6.1}Organization of the model source files}{28}} \@writefile{toc}{\contentsline {section}{\numberline {6.2}Programming}{29}} \@writefile{toc}{\contentsline {section}{\numberline {6.3}Model organization}{29}} \@writefile{toc}{\contentsline {section}{\numberline {6.4}Compiling the model}{29}} \newlabel{sc:compil1}{{6.4}{29}} \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Organigram of subroutine function physiq.F90}}{30}} \newlabel{fg:organi_phys}{{6.1}{30}} \@writefile{toc}{\contentsline {paragraph}{Help manual for the makegcm script}{31}} \@writefile{toc}{\contentsline {chapter}{\numberline {7}Input/Output}{33}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:io}{{7}{33}} \@writefile{toc}{\contentsline {section}{\numberline {7.1}NetCDF format}{33}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.1}NetCDF file editor: ncdump}{33}} \@writefile{toc}{\contentsline {paragraph}{Main commands for ncdump}{33}} \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Example of temperature data (in this case for present-day Mars) at a given time using GrADS visualization}}{34}} \newlabel{fg:grads}{{7.1}{34}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.2}Graphic visualization of the NetCDF files using GrAds}{34}} \@writefile{toc}{\contentsline {section}{\numberline {7.2}Input and parameter files}{34}} \newlabel{loc:entrees}{{7.2}{34}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.1}run.def}{35}} \newlabel{vb:run.def}{{7.2.1}{35}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.2}callphys.def}{37}} \newlabel{sc:callphys.def}{{7.2.2}{37}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.3}traceur.def}{39}} \newlabel{sc:traceur.def}{{7.2.3}{39}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.4}z2sig.def}{39}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.5}Initialization files: start and startfi}{40}} \@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Organization of NetCDF files }}{41}} \newlabel{fg:netcdf}{{7.2}{41}} \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical headers}{43}} \@writefile{toc}{\contentsline {paragraph}{Surface conditions}{43}} \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical state variables}{43}} \@writefile{toc}{\contentsline {paragraph}{The ``control'' array}{44}} \@writefile{toc}{\contentsline {section}{\numberline {7.3}Output files}{46}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.1}NetCDF restart files - restart.nc and restartfi.nc}{46}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.2} NetCDF file - diagfi.nc}{46}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.3}Stats files}{47}} \@writefile{toc}{\contentsline {chapter}{\numberline {8}Water Cycle Simulation}{51}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:water}{{8}{51}} \@writefile{toc}{\contentsline {chapter}{\numberline {9}1D version of the generic model}{54}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:rcm1d}{{9}{54}} \@writefile{toc}{\contentsline {section}{\numberline {9.1}Compilation}{54}} \@writefile{toc}{\contentsline {section}{\numberline {9.2}1-D runs and input files}{54}} \@writefile{toc}{\contentsline {section}{\numberline {9.3}Output data}{56}} \@writefile{toc}{\contentsline {chapter}{\numberline {10}Zoomed simulations}{57}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:zoom}{{10}{57}} \@writefile{toc}{\contentsline {section}{\numberline {10.1}To define the zoomed area}{57}} \@writefile{toc}{\contentsline {section}{\numberline {10.2}Making a zoomed initial state}{57}} \@writefile{toc}{\contentsline {section}{\numberline {10.3}Running a zoomed simulation and stability issue}{58}} \@writefile{toc}{\contentsline {chapter}{\numberline {11}Changing the radiative transfer properties}{59}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{sc:kspectrum}{{11}{59}} \@writefile{toc}{\contentsline {section}{\numberline {11.1}Producing the high-resolution data}{59}} \@writefile{toc}{\contentsline {section}{\numberline {11.2}Performing the correlated-k conversion}{60}} \bibdata{newfred.bib} \@writefile{toc}{\contentsline {section}{\numberline {11.3}Implementing the absorption data in the GCM}{61}} \bibstyle{plain}