c************************************************************************** c subroutine nltecool(ngrid,nlayer,pplay,pt,dtnlte) c c This code was designed as a delivery for the "Martian Environment Models" c project ( ESA contract 11369/95/nl/jg CCN2 ) c Computes non-LTE heating rates from CO2 emission at 15 um c in the Martian upper atmosphere. c Uses a simplified model consisting of two excited levels with two c emission bands, one of them stronger than the other, which correspond c to the behaviours of the 626 fundamental band and the isotopic fund.bands. c It uses a cool-to-space approximation with tabulated escape functions. c These escape functions have been precomputed for the strong and weak bands, c and are given as a function of pressure in separate files. c The output values are the heating rates (actually, cooling, since they c are always negative) for the two bands, i.e., the total cooling is the c sum of them. c Miguel A. Lopez Valverde c Instituto de Astrofisica de Andalucia (CSIC), Granada, Spain c c Version 1b. See description above. 22-March-2000. c Adapted as a subroutine for use in GCM -- PLR/SRL 6/2000 c Version 1c. Inclusion of VMR in the tabulation of escape functions. c Table contains now only 1 input file -- Miguel 11/Jul/2000 c Version 1d data contained in original input file "nlte_escape.dat" c now stored in include file "nltedata.h" Y.Wanherdrick 09/2000 c c*************************************************************************** implicit none #include "nltedata.h" ! (Equivalent to the reading of the "nlte_escape.dat" file) c Input and output variables c integer ngrid ! no. of horiz. gridpoints integer nlayer ! no. of atmospheric layers real pplay(ngrid,nlayer) ! input pressure grid real pt(ngrid,nlayer) ! input temperatures real dtnlte(ngrid,nlayer) ! output temp. tendencies c c Standard atmosphere variables c real nt ! number density [cm-3] real co2(nlayer) ! " of CO2 real o3p(nlayer) ! " of atomic oxygen real n2co(nlayer) ! " of N2 + CO real pyy(nlayer) ! auxiliary pressure grid c c Vectors and indexes for the tabulation of escape functions and VMR c c np ! # data points in tabulation c pnb(np) ! Pressure in tabulation c ef1(np) ! Esc.funct.#1, tabulated c ef2(np) ! Esc.funct.#2, tabulated c co2vmr(np) ! CO2 VMR tabulated c o3pvmr(np) ! CO2 VMR tabulated c n2covmr(np) ! N2+CO VMR tabulated real escf1(nlayer) ! Esc.funct.#1, interpolated real escf2(nlayer) ! Esc.funct.#2, interpolated c c Local Constants c real nu1, nu2 ! freq. of energy levels real imr1, imr2 ! isotopic abundances real hplanck, gamma, vlight ! physical constants real ee real rfvt ! collisional rate real rfvto3p ! " real rfvv ! " c c Local variables for the main loop c real n1, n2, co2t ! ground populations real l1, p1, p12 ! prod & losses real l2, p2, p21 real tt ! dummy variable real c1, c2 ! molecular constants real ae1, ae2 ! einstein spontaneous emission real a1, a2, a12, a21 real pl1, pl2 real el1, el2 real hr1, hr2 ! heating rate due to each band real hr(nlayer) ! total heating rate c c Indexes c integer i integer j,ii c c Rate coefficients c real k19xca, k19xcb real k19cap1, k19cap2 real k19cbp1, k19cbp2 real d19c, d19cp1, d19cp2 real k20xc, k20cp1, k20cp2 real k21xc, k21cp2 logical firstcall data firstcall/.true./ save firstcall,ef1,ef2,co2vmr,n2covmr,o3pvmr,pnb c c Data c data nu1, nu2, hplanck, gamma, vlight, ee/ 1 667.38, 662.3734, 6.6261e-27, 1.191e-5, 3.e10, 1.438769/ c************************************************************************* c PROGRAM STARTS c************************************************************************* imr1 = 0.987 imr2 = 0.00408 + 0.0112 rfvt = 0.1 rfvto3p = 1.0 rfvv = 0.1 if(firstcall) then do i=1,np pnb(i)=1.0e-4*exp(pnb(i)) ! p into Pa end do firstcall = .false. endif c c MAIN LOOP, for each gridpoint and altitude: c do j=1,ngrid ! loop over grid points c c set up local pressure grid c do ii=1,nlayer pyy(ii)=pplay(j,ii) enddo ! ! Interpolate escape functions and VMR to the desired grid ! call interp1(escf2,pyy,nlayer,ef2,pnb,np) call interp1(escf1,pyy,nlayer,ef1,pnb,np) call interp3(co2,o3p,n2co,pyy,nlayer, & co2vmr,o3pvmr,n2covmr,pnb,np) do i=1,nlayer ! loop over layers C C test if p lies outside range (p > 3.5 Pa) C changed to 1 Pa since transition will always be higher than this C if(pyy(i) .gt. 1.0 .or. pyy(i) .lt. 4.0e-6) then hr(i)=0.0 dtnlte(j,i)=0.0 else c c if(pt(j,i).lt.1.0)print*,pt(j,i) nt = pyy(i)/(1.381e-17*pt(j,i)) ! nt in cm-3 co2(i)=co2(i)*nt ! CO2 density in cm-3 o3p(i)=o3p(i)*nt ! O3p density in cm-3 n2co(i)=n2co(i)*nt ! N2+CO in cm-3 c molecular populations n1 = co2(i) * imr1 n2 = co2(i) * imr2 co2t = n1 + n2 c intermediate collisional rates tt = pt(j,i)*pt(j,i) if (pt(j,i).le.175.0) then k19xca = 3.3e-15 k19xcb = 7.6e-16 else k19xca = 4.2e-12 * exp( -2988.0/pt(j,i) + 303930.0/tt) k19xcb = 2.1e-12 * exp( -2659.0/pt(j,i) + 223052.0/tt) endif k19xca = k19xca * rfvt k19xcb = k19xcb * rfvt k19cap1 = k19xca * 2.0 * exp( -ee*nu1/pt(j,i) ) k19cap2 = k19xca * 2.0 * exp( -ee*nu2/pt(j,i) ) k19cbp1 = k19xcb * 2.0 * exp( -ee*nu1/pt(j,i) ) k19cbp2 = k19xcb * 2.0 * exp( -ee*nu2/pt(j,i) ) d19c = k19xca*co2t + k19xcb*n2co(i) d19cp1 = k19cap1*co2t + k19cbp1*n2co(i) d19cp2 = k19cap2*co2t + k19cbp2*n2co(i) ! k20xc = 3.e-12 * rfvto3p k20cp1 = k20xc * 2.0 * exp( -ee/pt(j,i) * nu1 ) k20cp2 = k20xc * 2.0 * exp( -ee/pt(j,i) * nu2 ) ! k21xc = 2.49e-11 * 0.5 * rfvv k21cp2 = k21xc * exp( - ee/pt(j,i) * (nu2-nu1) ) ! l1 = d19c + k20xc*o3p(i) + k21cp2*n2 p1 = ( d19cp1 + k20cp1*o3p(i) ) * n1 p12 = k21xc*n1 ! l2 = d19c + k20xc*o3p(i) + k21xc*n1 p2 = ( d19cp2 + k20cp2*o3p(i) ) * n2 p21 = k21cp2*n2 c radiative rates ae1 = 1.3546 * 1.66 / 4.0 * escf1(i) ae2 = ( 1.3452 + 1.1878 ) * 1.66 / 4.0 * escf2(i) l1 = l1 + ae1 l2 = l2 + ae2 c solving the system c1 = gamma*nu1**3. * 0.5 c2 = gamma*nu2**3. * 0.5 a1 = c1 * p1 / (n1*l1) a2 = c2 * p2 / (n2*l2) a12 = (nu1/nu2)**3. * n2/n1 * p12/l1 a21 = (nu2/nu1)**3. * n1/n2 * p21/l2 el2 = (a2 + a21 * a1 ) / ( 1.0 - a21 * a12 ) el1 = a1 + a12 * el2 pl1 = el1 * n1 / c1 pl2 = el2 * n2 / c2 c heating rate hr1 = - hplanck*vlight * nu1 * ae1 * pl1 hr2 = - hplanck*vlight * nu2 * ae2 * pl2 hr(i) = hr1 + hr2 dtnlte(j,i)=0.1*hr(i)*pt(j,i)/(4.4*pyy(i)) ! dtnlte in K s-1 c write(7,25)pxx(i),hr1,hr2,hr(i),qt c 25 format(' ',1p5e12.4) endif enddo ! end loop over layers enddo ! end loop over grid points c close(7) c return end c*********************************************************************** subroutine interp1(escout,p,nlayer,escin,pin,nl) C C subroutine to perform linear interpolation in pressure from 1D profile C escin(nl) sampled on pressure grid pin(nl) to profile C escout(nlayer) on pressure grid p(nlayer). C real escout(nlayer),p(nlayer) real escin(nl),pin(nl),wm,wp integer nl,nlayer,n1,n,nm,np do n1=1,nlayer if(p(n1) .gt. 3.5 .or. p(n1) .lt. 4.0e-6) then escout(n1) = 0.0 else do n = 1,nl-1 if (p(n1).le.pin(n).and.p(n1).ge.pin(n+1)) then nm=n np=n+1 wm=abs(pin(np)-p(n1))/(pin(nm)-pin(np)) wp=1.0 - wm endif enddo escout(n1) = escin(nm)*wm + escin(np)*wp endif enddo return end c*********************************************************************** subroutine interp3(esco1,esco2,esco3,p,nlayer, 1 esci1,esci2,esci3,pin,nl) C C subroutine to perform 3 simultaneous linear interpolations in pressure from C 1D profiles esci1-3(nl) sampled on pressure grid pin(nl) to 1D profiles C esco1-3(nlayer) on pressure grid p(ngrid,nlayer). C real esco1(nlayer),esco2(nlayer),esco3(nlayer),p(nlayer) real esci1(nl), esci2(nl), esci3(nl), pin(nl),wm,wp integer nl,nlayer,n1,n,nm,np do n1=1,nlayer if (p(n1).gt. 3.5 .or. p(n1) .lt. 4.0e-6) then esco1(n1)=0.0 esco2(n1)=0.0 esco3(n1)=0.0 else do n = 1,nl-1 if (p(n1).le.pin(n).and.p(n1).ge.pin(n+1)) then nm=n np=n+1 wm=abs(pin(np)-p(n1))/(pin(nm)-pin(np)) wp=1.0 - wm endif enddo esco1(n1) = esci1(nm)*wm + esci1(np)*wp esco2(n1) = esci2(nm)*wm + esci2(np)*wp esco3(n1) = esci3(nm)*wm + esci3(np)*wp endif enddo return end