SUBROUTINE callsedim(ngrid,nlay, ptimestep, $ pplev,zlev, pt, & pq, pdqfi, pdqsed,pdqs_sed,nq) IMPLICIT NONE !================================================================== ! ! Purpose ! ------- ! Calculates sedimentation of aerosols depending on their ! density and radius. ! ! Authors ! ------- ! F. Forget (1999) ! Tracer generalisation by E. Millour (2009) ! !================================================================== c----------------------------------------------------------------------- c declarations: c ------------- #include "dimensions.h" #include "dimphys.h" #include "comcstfi.h" #include "tracer.h" #include "callkeys.h" #include "fisice.h" c c arguments: c ---------- INTEGER ngrid ! number of horizontal grid points INTEGER nlay ! number of atmospheric layers REAL ptimestep ! physics time step (s) REAL pplev(ngrid,nlay+1) ! pressure at inter-layers (Pa) REAL pt(ngrid,nlay) ! temperature at mid-layer (K) REAL zlev(ngrid,nlay+1) ! altitude at layer boundaries c Traceurs : integer nq ! number of tracers real pq(ngrid,nlay,nq) ! tracers (kg/kg) real pdqfi(ngrid,nlay,nq) ! tendency before sedimentation (kg/kg.s-1) real pdqsed(ngrid,nlay,nq) ! tendency due to sedimentation (kg/kg.s-1) real pdqs_sed(ngrid,nq) ! flux at surface (kg.m-2.s-1) c local: c ------ INTEGER l,ig, iq real zqi(ngridmx,nlayermx) ! to locally store tracers real masse (ngridmx,nlayermx) ! Layer mass (kg.m-2) real epaisseur (ngridmx,nlayermx) ! Layer thickness (m) real wq(ngridmx,nlayermx+1) ! displaced tracer mass (kg.m-2) c real dens(ngridmx,nlayermx) ! Mean density of the ice part. accounting for dust core real rfall(ngridmx,nlayermx) LOGICAL firstcall SAVE firstcall DATA firstcall/.true./ c ** un petit test de coherence c -------------------------- IF (firstcall) THEN IF(ngrid.NE.ngridmx) THEN PRINT*,'STOP dans callsedim' PRINT*,'probleme de dimensions :' PRINT*,'ngrid =',ngrid PRINT*,'ngridmx =',ngridmx STOP ENDIF firstcall=.false. ENDIF ! of IF (firstcall) !======================================================================= ! Preliminary calculation of the layer characteristics ! (mass (kg.m-2), thickness (m), etc. do l=1,nlay do ig=1, ngrid masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g epaisseur(ig,l)= zlev(ig,l+1) - zlev(ig,l) end do end do do iq=1,nq if(radius(iq).gt.1.e-9) then ! no sedimentation for gases (defined by radius=0) ! The value of q is updated after the other parameterisations do l=1,nlay do ig=1,ngrid ! store locally updated tracers zqi(ig,l)=pq(ig,l,iq)+pdqfi(ig,l,iq)*ptimestep ! if (iceparty.and.(iq.eq.igcm_h2o_ice)) then if (iq.eq.igcm_h2o_ice) then c On affecte un rayon moyen aux poussieres a chaque altitude du type : c r(z)=r0*exp(-z/H) avec r0=0.8 micron et H=18 km. c '''''''''''''''''''''''''''''''''''''''''''''''' rfall(ig,l)=max( rice(ig,l)*1.5,rdust(ig,l) ) c modif FranckMM pour ameliorer cycle H2O: rfall= 20 microns rfall(ig,l)=min(rfall(ig,l),1.e-4) endif enddo enddo ! of do l=1,nlay !======================================================================= ! Calculate the transport due to sedimentation for each tracer if (iq.eq.igcm_h2o_ice) then !if (iceparty.and.(iq.eq.igcm_h2o_ice)) then call newsedim(ngrid,nlay,ngrid*nlay,ptimestep, & pplev,masse,epaisseur,pt,rfall,rho_q(iq),zqi,wq) else call newsedim(ngrid,nlay,1,ptimestep, & pplev,masse,epaisseur,pt,radius(iq),rho_q(iq),zqi,wq) endif !======================================================================= ! Calculate the tendencies do ig=1,ngrid ! Ehouarn: with new way of tracking tracers by name, this is simply pdqs_sed(ig,iq)=wq(ig,1)/ptimestep end do DO l = 1, nlay DO ig=1,ngrid pdqsed(ig,l,iq)=(zqi(ig,l)- $ (pq(ig,l,iq) + pdqfi(ig,l,iq)*ptimestep))/ptimestep ENDDO ENDDO endif ! of if(radius(iq).gt.1.e-9) enddo ! of do iq=1,nq RETURN END