SUBROUTINE conduction(nlon, nlev,ptimestep,pplay,pplev,pt, $ tsurf,zzlev,zzlay,d_t_conduc) use dimphy use conc, only: akknew, rnew, cpnew IMPLICIT NONE c======================================================================= c c Molecular thermal conduction c c N. Descamp, F. Forget 05/1999 c c======================================================================= c----------------------------------------------------------------------- c declarations: c----------------------------------------------------------------------- !#include "dimensions.h" !#include "dimphys.h" !#include "comcstfi.h" !#include "surfdat.h" !#include "chimiedata.h" !#include "conc.h" c arguments: c ---------- integer,intent(in) :: nlon ! number of atmospheric columns integer,intent(in) :: nlev ! number of atmospheric layers real,intent(in) :: ptimestep REAL,intent(in) :: pplay(nlon,nlev) ! pressure at middle of layers (Pa) real,intent(in) :: pplev(nlon,nlev+1) REAL,intent(in) :: zzlay(nlon,nlev) ! (m) real,intent(in) :: zzlev(nlon,nlev+1) REAL,intent(in) :: pt(nlon,nlev) real,intent(in) :: tsurf(nlon) real,intent(out) :: d_t_conduc(nlon,nlev) c local: c ------ INTEGER i,ig,l real Akk real,save :: phitop real m,tmean REAL alpha(nlev) real zt(nlev) REAL lambda(nlev) real muvol(nlev) ! kg m-3 REAL C(nlev) real D(nlev) real den(nlev) REAL pdtc(nlev) real zlay(nlev) real zlev(nlev+1) c constants used locally c --------------------- c The atmospheric conductivity is a function of temperature T : c conductivity = Akk* T**skk REAL,PARAMETER :: skk=0.69 logical,save :: firstcall=.true. c----------------------------------------------------------------------- c calcul des coefficients alpha et lambda c----------------------------------------------------------------------- IF (firstcall) THEN ! write (*,*)'conduction: coeff to compute molecular', ! & ' conductivity Akk,skk' ! write(*,*) Akk,skk ! NB: Akk is undefined at this stage write (*,*)'conduction: coeff to compute molecular', & ' conductivity skk = ', skk ! Initialize phitop phitop=0.0 firstcall = .false. ENDIF ! of IF (firstcall) do ig=1,nlon c zt(1)=pt(ig,1)+pdt(ig,1)*ptimestep zt(1)=pt(ig,1) c zlay(1)=-log(pplay(ig,1)/pplev(ig,1))*Rnew(ig,1)*zt(1)/g c zlev(1)=0.0 zlay(1)=zzlay(ig,1) zlev(1)=zzlev(ig,1) do i=2,nlev zt(i)= pt(ig,i) c print*, zt(i) c tmean=zt(i) c if(zt(i).ne.zt(i-1)) c & tmean=(zt(i)-zt(i-1))/log(zt(i)/zt(i-1)) c zlay(i)= zlay(i-1) c & -log(pplay(ig,i)/pplay(ig,i-1))*Rnew(ig,i-1)*tmean/g c zlev(i)= zlev(i-1) c & -log(pplev(ig,i)/pplev(ig,i-1))*Rnew(ig,i-1)*tmean/g zlay(i)=zzlay(ig,i) zlev(i)=zzlev(ig,i) enddo zlev(nlev+1)= zzlev(ig,nlev+1) Akk=akknew(ig,1) lambda(1) = Akk*tsurf(ig)**skk/zlay(1) DO i = 2 , nlev Akk=akknew(ig,i) lambda(i)=Akk*zt(i)**skk/(zlay(i)-zlay(i-1)) ENDDO DO i=1,nlev-1 c print*, rnew(1,i) muvol(i)=pplay(ig,i)/(rnew(ig,i)*zt(i)) alpha(i)=cpnew(ig,i)*(muvol(i)/ptimestep) $ *(zlev(i+1)-zlev(i)) ENDDO c if (ig .eq. 2) then c print*, '---conduction---' c print*, i, cpnew(ig,i), zt(i) c endif C stop muvol(nlev)=pplay(ig,nlev)/(rnew(ig,nlev)*zt(nlev)) alpha(nlev)=cpnew(ig,i)*(muvol(nlev)/ptimestep) $ *(zlev(nlev+1)-zlev(nlev)) c-------------------------------------------------------------------- c c calcul des coefficients C et D c c------------------------------------------------------------------- den(1)=alpha(1)+lambda(2)+lambda(1) C(1)=lambda(1)*(tsurf(ig)-zt(1))+lambda(2)*(zt(2)-zt(1)) C(1)=C(1)/den(1) D(1)=lambda(2)/den(1) DO i = 2,nlev-1 den(i)=alpha(i)+lambda(i+1) den(i)=den(i)+lambda(i)*(1-D(i-1)) C(i) =lambda(i+1)*(zt(i+1)-zt(i)) $ +lambda(i)*(zt(i-1)-zt(i)+C(i-1)) C(i) =C(i)/den(i) D(i) =lambda(i+1) / den(i) ENDDO den(nlev)=alpha(nlev) + lambda(nlev) * (1-D(nlev-1)) C(nlev)=C(nlev-1)+zt(nlev-1)-zt(nlev) C(nlev)=(C(nlev)*lambda(nlev)+phitop) / den(nlev) c---------------------------------------------------------------------- c c calcul de la nouvelle temperature ptconduc c c---------------------------------------------------------------------- DO i=1,nlev pdtc(i)=0. ENDDO pdtc(nlev)=C(nlev) DO i=nlev-1,1,-1 pdtc(i)=C(i)+D(i)*pdtc(i+1) ENDDO c----------------------------------------------------------------------- c c calcul de la tendance zdtconduc c c----------------------------------------------------------------------- DO i=1,nlev d_t_conduc(ig,i)=pdtc(i)/ptimestep c print*, i, zdtconduc(0, i) ENDDO c enddo ! of do ig=1,nlon RETURN END