SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, & pq,tauscaling,tauref,tau,taucloudtes,aerosol,dsodust,reffrad, & nueffrad,QREFvis3d,QREFir3d,omegaREFvis3d,omegaREFir3d) ! to use 'getin' USE ioipsl_getincom, only: getin use tracer_mod, only: noms, igcm_h2o_ice, igcm_dust_mass, & igcm_dust_submicron, rho_dust, rho_ice, & nqdust use comgeomfi_h, only: lati, sinlat ! grid point latitudes (rad) #ifdef DUSTSTORM use comgeomfi_h, only: long use tracer_mod, only: r3n_q, ref_r0, igcm_dust_number #endif use planete_h USE comcstfi_h use dimradmars_mod, only: naerkind, name_iaer, & iaerdust,tauvis, & iaer_dust_conrath,iaer_dust_doubleq, & iaer_dust_submicron,iaer_h2o_ice IMPLICIT NONE c======================================================================= c subject: c -------- c Computing aerosol optical depth in each gridbox. c c author: F.Forget c ------ c update F. Montmessin (water ice scheme) c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry c update J.-B. Madeleine 2008-2009: c - added 3D scattering by aerosols; c - dustopacity transferred from physiq.F to callradite.F, c and renamed into aeropacity.F; c update E. Millour, march 2012: c - reference pressure is now set to 610Pa (not 700Pa) c c input: c ----- c ngrid Number of gridpoint of horizontal grid c nlayer Number of layer c nq Number of tracer c zday Date (time since Ls=0, in martian days) c ls Solar longitude (Ls) , radian c pplay,pplev pressure (Pa) in the middle and boundary of each layer c pq Dust mixing ratio (used if tracer =T and active=T). c reffrad(ngrid,nlayer,naerkind) Aerosol effective radius c QREFvis3d(ngrid,nlayer,naerkind) \ 3d extinction coefficients c QREFir3d(ngrid,nlayer,naerkind) / at reference wavelengths; c omegaREFvis3d(ngrid,nlayer,naerkind) \ 3d single scat. albedo c omegaREFir3d(ngrid,nlayer,naerkind) / at reference wavelengths; c c output: c ------- c tauref Prescribed mean column optical depth at 610 Pa c tau Column total visible dust optical depth at each point c aerosol aerosol(ig,l,1) is the dust optical c depth in layer l, grid point ig c c======================================================================= #include "callkeys.h" c----------------------------------------------------------------------- c c Declarations : c -------------- c c Input/Output c ------------ INTEGER ngrid,nlayer,nq REAL ls,zday,expfactor REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) REAL pq(ngrid,nlayer,nq) REAL tauref(ngrid), tau(ngrid,naerkind) REAL aerosol(ngrid,nlayer,naerkind) REAL dsodust(ngrid,nlayer) REAL reffrad(ngrid,nlayer,naerkind) REAL nueffrad(ngrid,nlayer,naerkind) REAL QREFvis3d(ngrid,nlayer,naerkind) REAL QREFir3d(ngrid,nlayer,naerkind) REAL omegaREFvis3d(ngrid,nlayer,naerkind) REAL omegaREFir3d(ngrid,nlayer,naerkind) c c Local variables : c ----------------- INTEGER l,ig,iq,i,j INTEGER iaer ! Aerosol index real topdust(ngrid) real zlsconst, zp real taueq,tauS,tauN c Mean Qext(vis)/Qext(ir) profile real msolsir(nlayer,naerkind) c Mean Qext(ir)/Qabs(ir) profile real mqextsqabs(nlayer,naerkind) c Variables used when multiple particle sizes are used c for dust or water ice particles in the radiative transfer c (see callradite.F for more information). REAL taudusttmp(ngrid)! Temporary dust opacity ! used before scaling REAL tauscaling(ngrid) ! Scaling factor for qdust and Ndust REAL taudustvis(ngrid) ! Dust opacity after scaling REAL taudusttes(ngrid) ! Dust opacity at IR ref. wav. as ! "seen" by the GCM. REAL taucloudvis(ngrid)! Cloud opacity at visible ! reference wavelength REAL taucloudtes(ngrid)! Cloud opacity at infrared ! reference wavelength using ! Qabs instead of Qext ! (direct comparison with TES) REAL topdust0(ngrid) #ifdef DUSTSTORM !! Local dust storms logical localstorm ! =true to create a local dust storm real taulocref,ztoploc,radloc,lonloc,latloc ! local dust storm parameters real reffstorm, yeah REAL ray(ngrid) ! distance from dust storm center REAL tauuser(ngrid) ! opacity perturbation due to dust storm REAL more_dust(ngrid,nlayer,2) ! Mass mixing ratio perturbation due to the dust storm REAL int_factor(ngrid) ! useful factor to compute mmr perturbation real l_top ! layer of the storm's top REAL zalt(ngrid, nlayer) ! useful factor to compute l_top #endif c local saved variables c --------------------- c Level under which the dust mixing ratio is held constant c when computing the dust opacity in each layer c (this applies when doubleq and active are true) INTEGER, PARAMETER :: cstdustlevel0 = 7 INTEGER, SAVE :: cstdustlevel LOGICAL,SAVE :: firstcall=.true. ! indexes of water ice and dust tracers: INTEGER,SAVE :: i_ice=0 ! water ice real,parameter :: odpref=610. ! DOD reference pressure (Pa) CHARACTER(LEN=20) :: txt ! to temporarly store text CHARACTER(LEN=1) :: txt2 ! to temporarly store text ! indexes of dust scatterers: INTEGER,SAVE :: naerdust ! number of dust scatterers tau(1:ngrid,1:naerkind)=0 ! identify tracers IF (firstcall) THEN ! identify scatterers that are dust naerdust=0 DO iaer=1,naerkind txt=name_iaer(iaer) IF (txt(1:4).eq."dust") THEN naerdust=naerdust+1 iaerdust(naerdust)=iaer ENDIF ENDDO ! identify tracers which are dust i=0 DO iq=1,nq txt=noms(iq) IF (txt(1:4).eq."dust") THEN i=i+1 nqdust(i)=iq ENDIF ENDDO IF (water.AND.activice) THEN i_ice=igcm_h2o_ice write(*,*) "aeropacity: i_ice=",i_ice ENDIF c typical profile of solsir and (1-w)^(-1): msolsir(1:nlayer,1:naerkind)=0 mqextsqabs(1:nlayer,1:naerkind)=0 WRITE(*,*) "Typical profiles of Qext(vis)/Qext(IR)" WRITE(*,*) " and Qext(IR)/Qabs(IR):" DO iaer = 1, naerkind ! Loop on aerosol kind WRITE(*,*) "Aerosol # ",iaer DO l=1,nlayer DO ig=1,ngrid msolsir(l,iaer)=msolsir(l,iaer)+ & QREFvis3d(ig,l,iaer)/ & QREFir3d(ig,l,iaer) mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) ENDDO msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngrid) mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngrid) ENDDO WRITE(*,*) "solsir: ",msolsir(:,iaer) WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) ENDDO ! load value of tauvis from callphys.def (if given there, ! otherwise default value read from starfi.nc file will be used) call getin("tauvis",tauvis) IF (freedust) THEN cstdustlevel = 1 ELSE cstdustlevel = cstdustlevel0 ENDIF #ifndef DUSTSTORM firstcall=.false. #endif END IF c Vertical column optical depth at "odpref" Pa c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IF(freedust) THEN tauref(:) = 0. ! tauref is computed after, instead of being forced ELSE IF(iaervar.eq.1) THEN do ig=1, ngrid tauref(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def ! or read in starfi end do ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> tauref(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 do ig=2,ngrid tauref(ig) = tauref(1) end do ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 tauN = 0.1 c if (peri_day.eq.150) then c tauS=0.1 c tauN=0.1 +(0.5-0.1) *(cos(0.5*(ls+pi-4.363)))**14 c taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls+pi-4.363)))**14 c endif do ig=1,ngrid if (lati(ig).ge.0) then ! Northern hemisphere tauref(ig)= tauN + & (taueq-tauN)*0.5*(1+tanh((45-lati(ig)*180./pi)*6/60)) else ! Southern hemisphere tauref(ig)= tauS + & (taueq-tauS)*0.5*(1+tanh((45+lati(ig)*180./pi)*6/60)) endif enddo ! of do ig=1,ngrid ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> c tauref(1) = 0.2 c if ((ls.ge.210.*pi/180.).and.(ls.le.330.*pi/180.)) c & tauref(1) = 2.5 tauref(1) = 2.5 if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) & tauref(1) = .2 do ig=2,ngrid tauref(ig) = tauref(1) end do ELSE IF ((iaervar.ge.6).and.(iaervar.le.8)) THEN ! clim, cold or warm synthetic scenarios call read_dust_scenario(ngrid,nlayer,zday,pplev,tauref) ELSE IF ((iaervar.ge.24).and.(iaervar.le.31)) & THEN ! << MY... dust scenarios >> call read_dust_scenario(ngrid,nlayer,zday,pplev,tauref) ELSE IF ((iaervar.eq.4).or. & ((iaervar.ge.124).and.(iaervar.le.126))) THEN ! "old" TES assimation dust scenario (values at 700Pa in files!) call read_dust_scenario(ngrid,nlayer,zday,pplev,tauref) ELSE stop 'problem with iaervar in aeropacity.F' ENDIF c ----------------------------------------------------------------- c Computing the opacity in each layer c ----------------------------------------------------------------- DO iaer = 1, naerkind ! Loop on aerosol kind c -------------------------------------------- aerkind: SELECT CASE (name_iaer(iaer)) c================================================================== CASE("dust_conrath") aerkind ! Typical dust profile c================================================================== c Altitude of the top of the dust layer c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ zlsconst=SIN(ls-2.76) if (iddist.eq.1) then do ig=1,ngrid topdust(ig)=topdustref ! constant dust layer top end do else if (iddist.eq.2) then ! "Viking" scenario do ig=1,ngrid ! altitude of the top of the aerosol layer (km) at Ls=2.76rad: ! in the Viking year scenario topdust0(ig)=60. -22.*sinlat(ig)**2 topdust(ig)=topdust0(ig)+18.*zlsconst end do else if(iddist.eq.3) then !"MGS" scenario do ig=1,ngrid topdust(ig)=60.+18.*zlsconst & -(32+18*zlsconst)*sin(lati(ig))**4 & - 8*zlsconst*(sin(lati(ig)))**5 end do endif c Optical depth in each layer : c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(iddist.ge.1) then expfactor=0. DO l=1,nlayer DO ig=1,ngrid c Typical mixing ratio profile if(pplay(ig,l).gt.odpref $ /(988.**(topdust(ig)/70.))) then zp=(odpref/pplay(ig,l))**(70./topdust(ig)) expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) else expfactor=1.e-3 endif c Vertical scaling function aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * & expfactor * & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) ENDDO ENDDO else if(iddist.eq.0) then c old dust vertical distribution function (pollack90) DO l=1,nlayer DO ig=1,ngrid zp=odpref/pplay(ig,l) aerosol(ig,l,1)= tauref(ig)/odpref * s (pplev(ig,l)-pplev(ig,l+1)) s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) ENDDO ENDDO end if c================================================================== CASE("dust_doubleq") aerkind! Two-moment scheme for dust c (transport of mass and number mixing ratio) c================================================================== DO l=1,nlayer IF (l.LE.cstdustlevel) THEN c Opacity in the first levels is held constant to c avoid unrealistic values due to constant lifting: DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * & pq(ig,cstdustlevel,igcm_dust_mass) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ! DENSITY SCALED OPACITY IN INFRARED: dsodust(ig,l) = & ( 0.75 * QREFir3d(ig,cstdustlevel,iaer) / & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * & pq(ig,cstdustlevel,igcm_dust_mass) ENDDO ELSE DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_dust * reffrad(ig,l,iaer) ) ) * & pq(ig,l,igcm_dust_mass) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ! DENSITY SCALED OPACITY IN INFRARED: dsodust(ig,l) = & ( 0.75 * QREFir3d(ig,l,iaer) / & ( rho_dust * reffrad(ig,l,iaer) ) ) * & pq(ig,l,igcm_dust_mass) ENDDO ENDIF ENDDO c================================================================== CASE("dust_submicron") aerkind ! Small dust population c================================================================== DO l=1,nlayer IF (l.LE.cstdustlevel) THEN c Opacity in the first levels is held constant to c avoid unrealistic values due to constant lifting: DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * & pq(ig,cstdustlevel,igcm_dust_submicron) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDDO ELSE DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_dust * reffrad(ig,l,iaer) ) ) * & pq(ig,l,igcm_dust_submicron) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDDO ENDIF ENDDO c================================================================== CASE("h2o_ice") aerkind ! Water ice crystals c================================================================== c 1. Initialization aerosol(1:ngrid,1:nlayer,iaer) = 0. taucloudvis(1:ngrid) = 0. taucloudtes(1:ngrid) = 0. c 2. Opacity calculation DO ig=1, ngrid DO l=1,nlayer aerosol(ig,l,iaer) = max(1E-20, & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_ice * reffrad(ig,l,iaer) ) ) * & pq(ig,l,i_ice) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g & ) taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) ENDDO ENDDO c 3. Outputs -- Now done in physiq.F ! IF (ngrid.NE.1) THEN ! CALL WRITEDIAGFI(ngrid,'tauVIS','tauext VIS refwvl', ! & ' ',2,taucloudvis) ! CALL WRITEDIAGFI(ngrid,'tauTES','tauabs IR refwvl', ! & ' ',2,taucloudtes) ! IF (callstats) THEN ! CALL wstats(ngrid,'tauVIS','tauext VIS refwvl', ! & ' ',2,taucloudvis) ! CALL wstats(ngrid,'tauTES','tauabs IR refwvl', ! & ' ',2,taucloudtes) ! ENDIF ! ELSE ! CALL writeg1d(ngrid,1,taucloudtes,'tautes','NU') ! ENDIF c================================================================== END SELECT aerkind c ----------------------------------- ENDDO ! iaer (loop on aerosol kind) c ----------------------------------------------------------------- c Rescaling each layer to reproduce the choosen (or assimilated) c dust extinction opacity at visible reference wavelength, which c is originally scaled to an equivalent odpref Pa pressure surface. c ----------------------------------------------------------------- #ifdef DUSTSTORM c ----------------------------------------------------------------- ! Calculate reference opacity without perturbation c ----------------------------------------------------------------- IF (firstcall) THEN DO iaer=1,naerdust DO l=1,nlayer DO ig=1,ngrid tauref(ig) = tauref(ig) + & aerosol(ig,l,iaerdust(iaer)) ENDDO ENDDO ENDDO tauref(:) = tauref(:) * odpref / pplev(:,1) c-------------------------------------------------- c Get parameters of the opacity perturbation c-------------------------------------------------- iaer=1 ! just change dust write(*,*) "Add a local storm ?" localstorm=.true. ! default value call getin("localstorm",localstorm) write(*,*) " localstorm = ",localstorm IF (localstorm) THEN WRITE(*,*) "********************" WRITE(*,*) "ADDING A LOCAL STORM" WRITE(*,*) "********************" write(*,*) "ref opacity of local dust storm" taulocref = 4.25 ! default value call getin("taulocref",taulocref) write(*,*) " taulocref = ",taulocref write(*,*) "target altitude of local storm (km)" ztoploc = 10.0 ! default value call getin("ztoploc",ztoploc) write(*,*) " ztoploc = ",ztoploc write(*,*) "radius of dust storm (degree)" radloc = 0.5 ! default value call getin("radloc",radloc) write(*,*) " radloc = ",radloc write(*,*) "center longitude of storm (deg)" lonloc = 25.0 ! default value call getin("lonloc",lonloc) write(*,*) " lonloc = ",lonloc write(*,*) "center latitude of storm (deg)" latloc = -2.5 ! default value call getin("latloc",latloc) write(*,*) " latloc = ",latloc write(*,*) "reff storm (mic) 0. for background" reffstorm = 0.0 ! default value call getin("reffstorm",reffstorm) write(*,*) " reffstorm = ",reffstorm !! LOOP: modify opacity DO ig=1,ngrid !! distance to the center: ray(ig)=SQRT((lati(ig)*180./pi-latloc)**2 + & (long(ig)*180./pi -lonloc)**2) !! transition factor for storm !! factor is hardcoded -- increase it to steepen yeah = (TANH(2.+(radloc-ray(ig))*10.)+1.)/2. !! new opacity field !! -- add an opacity set to taulocref !! -- the additional reference opacity will !! thus be taulocref*odpref/pplev tauuser(ig)=max( tauref(ig) * pplev(ig,1) /odpref , & taulocref * yeah ) !! compute l_top DO l=1,nlayer zalt(ig,l) = LOG( pplev(ig,1)/pplev(ig,l) ) & / g / 44.01 & * 8.31 * 210. IF ( (ztoploc .lt. zalt(ig,l) ) & .and. (ztoploc .gt. zalt(ig,l-1)) ) l_top=l-1 ENDDO !! change reffrad if ever needed IF (reffstorm .gt. 0.) THEN DO l=1,nlayer IF (l .lt. l_top+1) THEN reffrad(ig,l,iaer) = max( reffrad(ig,l,iaer), reffstorm & * 1.e-6 * yeah ) ENDIF ENDDO ENDIF ENDDO !! END LOOP !! compute perturbation in each layer (equation 8 in Spiga et al. JGR 2013) DO ig=1,ngrid int_factor(ig)=0. DO l=1,nlayer IF (l .lt. l_top+1) THEN int_factor(ig) = & int_factor(ig) + & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_dust * reffrad(ig,l,iaer) ) ) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDIF ENDDO DO l=1, nlayer !! Mass mixing ratio perturbation due to local dust storm in each layer more_dust(ig,l,1)= & (tauuser(ig)-(tauref(ig) & * pplev(ig,1) /odpref)) / & int_factor(ig) more_dust(ig,l,2)= & (tauuser(ig)-(tauref(ig) * & pplev(ig,1) /odpref)) & / int_factor(ig) * & ((ref_r0/reffrad(ig,l,iaer))**3) & * r3n_q ENDDO ENDDO !! quantity of dust for each layer with the addition of the perturbation DO l=1, l_top pq(:,l,igcm_dust_mass)= pq(:,l,igcm_dust_mass) . + more_dust(:,l,1) pq(:,l,igcm_dust_number)= pq(:,l,igcm_dust_number) . + more_dust(:,l,2) ENDDO ENDIF !! IF (localstorm) tauref(:)=0. ENDIF !! IF (firstcall) #endif IF (freedust) THEN tauscaling(:) = 1. ELSE c Temporary scaling factor taudusttmp(1:ngrid)=0. DO iaer=1,naerdust DO l=1,nlayer DO ig=1,ngrid c Scaling factor taudusttmp(ig) = taudusttmp(ig) + & aerosol(ig,l,iaerdust(iaer)) ENDDO ENDDO ENDDO c Saved scaling factor DO ig=1,ngrid tauscaling(ig) = tauref(ig) * & pplev(ig,1) / odpref / taudusttmp(ig) ENDDO ENDIF ! IF (freedust) c Opacity computation DO iaer=1,naerdust DO l=1,nlayer DO ig=1,ngrid aerosol(ig,l,iaerdust(iaer)) = max(1E-20, & aerosol(ig,l,iaerdust(iaer))* tauscaling(ig)) ENDDO ENDDO ENDDO DO l=1,nlayer DO ig=1,ngrid dsodust(ig,l) = max(1E-20,dsodust(ig,l)* tauscaling(ig)) ENDDO ENDDO IF (freedust) THEN ! tauref has been initialized to 0 before. DO iaer=1,naerdust DO l=1,nlayer DO ig=1,ngrid #ifdef DUSTSTORM !! recalculate opacity because storm perturbation has been added IF (firstcall) THEN aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_dust * reffrad(ig,l,iaer) ) ) * & pq(ig,l,igcm_dust_mass) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDIF #endif tauref(ig) = tauref(ig) + & aerosol(ig,l,iaerdust(iaer)) ENDDO ENDDO ENDDO tauref(:) = tauref(:) * odpref / pplev(:,1) ENDIF c output for debug c IF (ngrid.NE.1) THEN c CALL WRITEDIAGFI(ngrid,'taudusttmp','virtual tau dust', c & '#',2,taudusttmp) c CALL WRITEDIAGFI(ngrid,'tausca','tauscaling', c & '#',2,tauscaling) c ELSE c CALL WRITEDIAGFI(ngrid,'taudusttmp','virtual tau dust', c & '#',0,taudusttmp) c CALL WRITEDIAGFI(ngrid,'tausca','tauscaling', c & '#',0,tauscaling) c ENDIF c ----------------------------------------------------------------- c Column integrated visible optical depth in each point c ----------------------------------------------------------------- DO iaer=1,naerkind do l=1,nlayer do ig=1,ngrid tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) end do end do ENDDO #ifdef DUSTSTORM IF (firstcall) THEN firstcall=.false. ENDIF #endif c ----------------------------------------------------------------- c Density scaled opacity and column opacity output c ----------------------------------------------------------------- c dsodust(1:ngrid,1:nlayer) = 0. c DO iaer=1,naerdust c DO l=1,nlayer c DO ig=1,ngrid c dsodust(ig,l) = dsodust(ig,l) + c & aerosol(ig,l,iaerdust(iaer)) * g / c & (pplev(ig,l) - pplev(ig,l+1)) c ENDDO c ENDDO c IF (ngrid.NE.1) THEN c write(txt2,'(i1.1)') iaer c call WRITEDIAGFI(ngrid,'taudust'//txt2, c & 'Dust col opacity', c & ' ',2,tau(1,iaerdust(iaer))) c IF (callstats) THEN c CALL wstats(ngrid,'taudust'//txt2, c & 'Dust col opacity', c & ' ',2,tau(1,iaerdust(iaer))) c ENDIF c ENDIF c ENDDO c IF (ngrid.NE.1) THEN c CALL WRITEDIAGFI(ngrid,'dsodust','tau*g/dp', c & 'm2.kg-1',3,dsodust) c IF (callstats) THEN c CALL wstats(ngrid,'dsodust', c & 'tau*g/dp', c & 'm2.kg-1',3,dsodust) c ENDIF c ELSE c CALL WRITEDIAGFI(ngrid,"dsodust","dsodust","m2.kg-1",1, c & dsodust) c ENDIF ! of IF (ngrid.NE.1) c ----------------------------------------------------------------- return end