subroutine moldiff(pplay,pplev,pt,pdt,pq,pdq,ptimestep, & zzlay,pdteuv,pdtconduc,pdqdiff) implicit none #include "dimensions.h" #include "dimphys.h" #include "comcstfi.h" #include "callkeys.h" #include "comdiurn.h" #include "chimiedata.h" #include "tracer.h" #include "conc.h" c c Input/Output c real ptimestep real pplay(ngridmx,nlayermx) real zzlay(ngridmx,nlayermx) real pplev(ngridmx,nlayermx+1) real pq(ngridmx,nlayermx,nqmx) real pdq(ngridmx,nlayermx,nqmx) real pt(ngridmx,nlayermx) real pdt(ngridmx,nlayermx) real pdteuv(ngridmx,nlayermx) real pdtconduc(ngridmx,nlayermx) real pdqdiff(ngridmx,nlayermx,nqmx) c c Local c real hco2(ncomptot),ho integer ig,nz,l,n,nn real del1,del2, tmean ,dalfinvdz, d real hh,dcoef,dcoef1,ptfac, ntot, dens, dens2, dens3 real hp(nlayermx) real tt(nlayermx) real qq(nlayermx,ncomptot) real dmmeandz(nlayermx) real qnew(nlayermx,ncomptot) real zlocal(nlayermx) real alf(ncomptot-1,ncomptot-1) real alfinv(nlayermx,ncomptot-1,ncomptot-1) real indx(ncomptot-1) real b(nlayermx,ncomptot-1) real y(ncomptot-1,ncomptot-1) real aa(nlayermx,ncomptot-1,ncomptot-1) real bb(nlayermx,ncomptot-1,ncomptot-1) real cc(nlayermx,ncomptot-1,ncomptot-1) real atri(nlayermx-2) real btri(nlayermx-2) real ctri(nlayermx-2) real rtri(nlayermx-2) real qtri(nlayermx-2) real alfdiag(ncomptot-1) real wi(ncomptot), flux(ncomptot), pote integer i_co2, i_co, i_o2, i_h2, i_h2o, i_h2o2, $ i_o1d, i_o, i_h, i_oh, i_ho2, i_n2, i_o3, i_ar integer g_co2, g_co, g_o2, g_h2, g_h2o, g_h2o2, $ g_o1d, g_o, g_h, g_oh, g_ho2, g_o3, g_n2, g_ar integer gcmind(ncomptot) integer ierr logical firstcall real abfac(ncomptot) real dij(ncomptot,ncomptot) save firstcall save dij data firstcall /.true./ if (firstcall) then call moldiffcoeff(dij) print*,'MOLDIFF EXO' firstcall= .false. endif cccccccccccccccccccccccccccccccccccccccccccccccccccccccc c tracer numbering in the gcm cccccccccccccccccccccccccccccccccccccccccccccccccccccccc c g_co2 = nqchem_min g_co = nqchem_min + 1 g_o = nqchem_min + 2 g_o1d = nqchem_min + 3 g_o2 = nqchem_min + 4 g_o3 = nqchem_min + 5 g_h = nqchem_min + 6 g_h2 = nqchem_min + 7 g_oh = nqchem_min + 8 g_ho2 = nqchem_min + 9 g_h2o2 = nqchem_min + 10 g_n2 = nqchem_min + 11 g_ar = nqchem_min + 12 g_h2o = nqmx cccccccccccccccccccccccccccccccccccccccccccccccccccccccc c tracer numbering in the molecular diffusion cccccccccccccccccccccccccccccccccccccccccccccccccccccccc c Atomic oxygen must always be the LAST species of the list as c it is the dominant species at high altitudes.  i_co = 1 i_n2 = 2 i_o2 = 3 i_co2 = 4 i_h2 = 5 i_h = 6 i_oh = 7 i_ho2 = 8 i_h2o = 9 i_h2o2 = 10 i_o1d = 11 i_o3 = 12 i_ar = 13 i_o = 14 cccccccccccccccccccccccccccccccccccccccccccccccccccccccc c array to relate local indexes to gcm indexes cccccccccccccccccccccccccccccccccccccccccccccccccccccccc gcmind(i_co) = g_co gcmind(i_n2) = g_n2 gcmind(i_o2) = g_o2 gcmind(i_co2) = g_co2 gcmind(i_h2) = g_h2 gcmind(i_h) = g_h gcmind(i_oh) = g_oh gcmind(i_ho2) = g_ho2 gcmind(i_h2o) = g_h2o gcmind(i_h2o2)= g_h2o2 gcmind(i_o1d) = g_o1d gcmind(i_o3) = g_o3 gcmind(i_o) = g_o gcmind(i_ar) = g_ar c cccccccccccccccccccccccccccccccccccccccccccccccccccccccc nz=nlayermx do ig=1,ngridmx do l=2,nz-1 tt(l)=pt(ig,l)+pdt(ig,l)*ptimestep & +pdteuv(ig,l)*ptimestep & +pdtconduc(ig,l)*ptimestep do nn=1,ncomptot qq(l,nn)=pq(ig,l,gcmind(nn))+pdq(ig,l,gcmind(nn))*ptimestep qq(l,nn)=max(qq(l,nn),1.e-30) enddo hp(l)=-log(pplay(ig,l+1)/pplay(ig,l-1)) dmmeandz(l)=(mmean(ig,l+1)-mmean(ig,l-1))/hp(l) enddo tt(1)=pt(ig,1) +pdt(ig,1)*ptimestep & +pdteuv(ig,1)*ptimestep & +pdtconduc(ig,1)*ptimestep tt(nz)=pt(ig,nz)+pdt(ig,nz)*ptimestep & +pdteuv(ig,nz)*ptimestep & +pdtconduc(ig,nz)*ptimestep do nn=1,ncomptot qq(1,nn)=pq(ig,1,gcmind(nn))+pdq(ig,1,gcmind(nn))*ptimestep qq(nz,nn)=pq(ig,nz,gcmind(nn))+pdq(ig,nz,gcmind(nn))*ptimestep qq(1,nn)=max(qq(1,nn),1.e-30) qq(nz,nn)=max(qq(nz,nn),1.e-30) enddo hp(1)=-log(pplay(ig,2)/pplay(ig,1)) dmmeandz(1)=(-3.*mmean(ig,1)+4.*mmean(ig,2) & -mmean(ig,3))/(2.*hp(1)) hp(nz)=-log(pplay(ig,nz)/pplay(ig,nz-1)) dmmeandz(nz)=(3.*mmean(ig,nz)-4.*mmean(ig,nz-1) & +mmean(ig,nz-2))/(2.*hp(nz)) c c Setting-up matrix of alfa coefficients from Dickinson and Ridley 1972 c do l=1,nz if(abs(dmmeandz(l)) .lt. 1.e-5) dmmeandz(l)=0.0 hh=rnew(ig,l)*tt(l)/g ptfac=(1.e5/pplay(ig,l))*(tt(l)/273)**1.75 ntot=pplay(ig,l)/(1.381e-23*tt(l)) ! in #/m3 do nn=1,ncomptot-1 ! rows alfdiag(nn)=0. dcoef1=dij(nn,i_o)*ptfac do n=1,ncomptot-1 ! columns y(nn,n)=0. dcoef=dij(nn,n)*ptfac alf(nn,n)=qq(l,nn)/ntot/1.66e-27 & *(1./(mmol(gcmind(n))*dcoef)-1./(mmol(g_o)*dcoef1)) alfdiag(nn)=alfdiag(nn) & +(1./(mmol(gcmind(n))*dcoef)-1./(mmol(g_o)*dcoef1)) & *qq(l,n) enddo dcoef=dij(nn,nn)*ptfac alfdiag(nn)=alfdiag(nn) & -(1./(mmol(gcmind(nn))*dcoef)-1./(mmol(g_o)*dcoef1)) & *qq(l,nn) alf(nn,nn)=-(alfdiag(nn) & +1./(mmol(g_o)*dcoef1))/ntot/1.66e-27 y(nn,nn)=1. b(l,nn)=-(dmmeandz(l)/mmean(ig,l) & +mmol(gcmind(nn))/mmean(ig,l)-1.) enddo c c Inverting the alfa matrix c call ludcmp(alf,ncomptot-1,ncomptot-1,indx,d,ierr) c TEMPORAIRE ***************************** if (ierr.ne.0) then write(*,*) 'In moldiff: Problem in LUDCMP with matrix alf' write(*,*) 'Singular matrix ?' c write(*,*) 'Matrix alf = ', alf write(*,*) 'ig, l=',ig, l write(*,*) 'No molecular diffusion this time !' call zerophys(ngridmx*nlayermx*nqmx,pdqdiff) return c stop end if c ******************************************* do n=1,ncomptot-1 call lubksb(alf,ncomptot-1,ncomptot-1,indx,y(1,n)) do nn=1,ncomptot-1 alfinv(l,nn,n)=y(nn,n)/hh enddo enddo enddo c c Calculating coefficients of the system c c zlocal(1)=-log(pplay(ig,1)/pplev(ig,1))* Rnew(ig,1)*tt(1)/g zlocal(1)=zzlay(ig,1) do l=2,nz-1 del1=hp(l)*pplay(ig,l)/(g*ptimestep) del2=(hp(l)/2)**2*pplay(ig,l)/(g*ptimestep) do nn=1,ncomptot-1 do n=1,ncomptot-1 dalfinvdz=(alfinv(l+1,nn,n)-alfinv(l-1,nn,n))/hp(l) aa(l,nn,n)=-dalfinvdz/del1+alfinv(l,nn,n)/del2 & +alfinv(l-1,nn,n)*b(l-1,n)/del1 bb(l,nn,n)=-2.*alfinv(l,nn,n)/del2 cc(l,nn,n)=dalfinvdz/del1+alfinv(l,nn,n)/del2 & -alfinv(l+1,nn,n)*b(l+1,n)/del1 enddo enddo c tmean=tt(l) c if(tt(l).ne.tt(l-1)) c & tmean=(tt(l)-tt(l-1))/log(tt(l)/tt(l-1)) c zlocal(l)= zlocal(l-1) c & -log(pplay(ig,l)/pplay(ig,l-1))*rnew(ig,l)*tmean/g zlocal(l)=zzlay(ig,l) enddo c zlocal(nz)= zlocal(nz-1) c & -log(pplay(ig,nz)/pplay(ig,nz-1))*rnew(ig,nz)*tmean/g zlocal(nz)=zzlay(ig,nz) ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c Escape velocity from Jeans equation for the flux of H and H2 c (Hunten 1973, eq. 5) do n=1,ncomptot wi(n)=1. flux(n)=0. abfac(n)=1. enddo dens=pplay(ig,nz)/(rnew(ig,nz)*tt(nz)) c c For H: c pote=(3398000.+zlocal(nz))/ & (1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h)*g)) wi(i_h)=sqrt(2.*1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h))) & /(2.*sqrt(3.1415))*(1.+pote)*exp(-pote) flux(i_h)=qq(nz,i_h)*dens/(1.6605e-27*mmol(g_h))*wi(i_h) flux(i_h)=flux(i_h)*1.6606e-27 abfac(i_h)=0. c c For H2: c pote=(3398000.+zlocal(nz))/ & (1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h2)*g)) wi(i_h2)=sqrt(2.*1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h2))) & /(2.*sqrt(3.1415))*(1.+pote)*exp(-pote) flux(i_h2)=qq(nz,i_h2)*dens/(1.6605e-27*mmol(g_h2))*wi(i_h2) flux(i_h2)=flux(i_h2)*1.6606e-27 abfac(i_h2)=0. c ********* TEMPORAIRE : no escape for h and h2 c do n=1,ncomptot c wi(n)=1. c flux(n)=0. c abfac(n)=1. c enddo c ******************************************** ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c c Setting coefficients for tridiagonal matrix and solving the system c do nn=1,ncomptot-1 do l=2,nz-1 atri(l-1)=aa(l,nn,nn) btri(l-1)=bb(l,nn,nn)+1. ctri(l-1)=cc(l,nn,nn) rtri(l-1)=qq(l,nn) do n=1,ncomptot-1 rtri(l-1)=rtri(l-1)-(aa(l,nn,n)*qq(l-1,n) & +bb(l,nn,n)*qq(l,n) & +cc(l,nn,n)*qq(l+1,n)) enddo rtri(l-1)=rtri(l-1)+(aa(l,nn,nn)*qq(l-1,nn) & +bb(l,nn,nn)*qq(l,nn) & +cc(l,nn,nn)*qq(l+1,nn)) enddo c c Boundary conditions: c Escape flux for H and H2 at top c Diffusive equilibrium for the other species at top c Perfect mixing for all at bottom c rtri(nz-2)=rtri(nz-2) & -ctri(nz-2)*flux(nn)*mmol(gcmind(nn))/(dens*wi(nn)) atri(nz-2)=atri(nz-2) & -abfac(nn)*ctri(nz-2)/(3.-2.*hp(nz)*b(nz,nn)) btri(nz-2)=btri(nz-2) & +abfac(nn)*4.*ctri(nz-2)/(3.-2.*hp(nz)*b(nz,nn)) c rtri(1)=rtri(1)-atri(1)*qq(1,nn) btri(1)=btri(1)+atri(1) call tridag(atri,btri,ctri,rtri,qtri,nz-2) do l=2,nz-1 c qnew(l,nn)=qtri(l-1) qnew(l,nn)=max(qtri(l-1),1.e-30) enddo qnew(nz,nn)=flux(nn)*mmol(gcmind(nn))/(dens*wi(nn)) & +abfac(nn)*(4.*qnew(nz-1,nn)-qnew(nz-2,nn)) & /(3.-2.*hp(nz)*b(nz,nn)) c qnew(1,nn)=qq(1,nn) qnew(1,nn)=qnew(2,nn) qnew(nz,nn)=max(qnew(nz,nn),1.e-30) qnew(1,nn)=max(qnew(1,nn),1.e-30) enddo ! loop on species DO l=1,nz if(zlocal(l).gt.65000.)then pdqdiff(ig,l,g_o)=0. do n=1,ncomptot-1 pdqdiff(ig,l,gcmind(n))=(qnew(l,n)-qq(l,n)) pdqdiff(ig,l,g_o)=pdqdiff(ig,l,g_o)-(qnew(l,n)-qq(l,n)) pdqdiff(ig,l,gcmind(n))=pdqdiff(ig,l,gcmind(n))/ptimestep enddo pdqdiff(ig,l,g_o)=pdqdiff(ig,l,g_o)/ptimestep endif ENDDO c do l=2,nz c do n=1,ncomptot-1 c hco2(n)=qnew(l,n)*pplay(ig,l)/(rnew(ig,l)*tt(l)) / c & (qnew(l-1,n)*pplay(ig,l-1)/(rnew(ig,l-1)*tt(l-1))) c hco2(n)=-(zlocal(l)-zlocal(l-1))/log(hco2(n))/1000. c enddo c write(225,*),l,pt(1,l),(hco2(n),n=1,6) c write(226,*),l,pt(1,l),(hco2(n),n=7,12) c enddo enddo ! ig loop return end c ******************************************************************** c ******************************************************************** c ******************************************************************** subroutine tridag(a,b,c,r,u,n) parameter (nmax=100) c dimension gam(nmax),a(n),b(n),c(n),r(n),u(n) real gam(nmax),a(n),b(n),c(n),r(n),u(n) if(b(1).eq.0.)pause bet=b(1) u(1)=r(1)/bet do 11 j=2,n gam(j)=c(j-1)/bet bet=b(j)-a(j)*gam(j) if(bet.eq.0.)pause u(j)=(r(j)-a(j)*u(j-1))/bet 11 continue do 12 j=n-1,1,-1 u(j)=u(j)-gam(j+1)*u(j+1) 12 continue return end c ******************************************************************** c ******************************************************************** c ******************************************************************** SUBROUTINE LUBKSB(A,N,NP,INDX,B) implicit none integer i,j,n,np,ii,ll real sum real a(np,np),indx(np),b(np) c DIMENSION A(NP,NP),INDX(N),B(N) II=0 DO 12 I=1,N LL=INDX(I) SUM=B(LL) B(LL)=B(I) IF (II.NE.0)THEN DO 11 J=II,I-1 SUM=SUM-A(I,J)*B(J) 11 CONTINUE ELSE IF (SUM.NE.0.) THEN II=I ENDIF B(I)=SUM 12 CONTINUE DO 14 I=N,1,-1 SUM=B(I) IF(I.LT.N)THEN DO 13 J=I+1,N SUM=SUM-A(I,J)*B(J) 13 CONTINUE ENDIF B(I)=SUM/A(I,I) 14 CONTINUE RETURN END c ******************************************************************** c ******************************************************************** c ******************************************************************** SUBROUTINE LUDCMP(A,N,NP,INDX,D,ierr) implicit none integer n,np,nmax,i,j,k,imax real d,tiny,aamax real a(np,np),indx(np) integer ierr ! error =0 if OK, =1 if problem PARAMETER (NMAX=100,TINY=1.0E-20) c DIMENSION A(NP,NP),INDX(N),VV(NMAX) real sum,vv(nmax),dum D=1. DO 12 I=1,N AAMAX=0. DO 11 J=1,N IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J)) 11 CONTINUE IF (AAMAX.EQ.0.) then write(*,*) 'In moldiff: Problem in LUDCMP with matrix A' write(*,*) 'Singular matrix ?' c write(*,*) 'Matrix A = ', A c TO DEBUG : ierr =1 return c stop END IF VV(I)=1./AAMAX 12 CONTINUE DO 19 J=1,N IF (J.GT.1) THEN DO 14 I=1,J-1 SUM=A(I,J) IF (I.GT.1)THEN DO 13 K=1,I-1 SUM=SUM-A(I,K)*A(K,J) 13 CONTINUE A(I,J)=SUM ENDIF 14 CONTINUE ENDIF AAMAX=0. DO 16 I=J,N SUM=A(I,J) IF (J.GT.1)THEN DO 15 K=1,J-1 SUM=SUM-A(I,K)*A(K,J) 15 CONTINUE A(I,J)=SUM ENDIF DUM=VV(I)*ABS(SUM) IF (DUM.GE.AAMAX) THEN IMAX=I AAMAX=DUM ENDIF 16 CONTINUE IF (J.NE.IMAX)THEN DO 17 K=1,N DUM=A(IMAX,K) A(IMAX,K)=A(J,K) A(J,K)=DUM 17 CONTINUE D=-D VV(IMAX)=VV(J) ENDIF INDX(J)=IMAX IF(J.NE.N)THEN IF(A(J,J).EQ.0.)A(J,J)=TINY DUM=1./A(J,J) DO 18 I=J+1,N A(I,J)=A(I,J)*DUM 18 CONTINUE ENDIF 19 CONTINUE IF(A(N,N).EQ.0.)A(N,N)=TINY ierr =0 RETURN END