subroutine lwmain (ig0,icount,kdlon,kflev . ,dp,dt0,emis . ,plev,tlev,tlay,aerosol,coolrate . ,fluxground,fluxtop . ,netrad & ,QIRsQREF3d,omegaIR3d,gIR3d & ,co2ice) c---------------------------------------------------------------------- c LWMAIN organizes the LTE longwave calculations c for layer 1 to layer "nlaylte" (stored in "yomlw_h") c---------------------------------------------------------------------- use dimradmars_mod, only: ndlo2, nflev, nir, ndlon, nuco2 use yomlw_h, only: nlaylte, xi implicit none !#include "dimensions.h" !#include "dimphys.h" !#include "dimradmars.h" #include "callkeys.h" #include "comg1d.h" ! naerkind is set in scatterers.h (built when compiling with makegcm -s #) #include"scatterers.h" !#include "yomlw.h" c---------------------------------------------------------------------- c 0.1 arguments c --------- c inputs: c ------- integer ig0 integer icount integer kdlon ! part of ngrid integer kflev ! part of nlayer real dp (ndlo2,kflev) ! layer pressure thickness (Pa) real dt0 (ndlo2) ! surface temperature discontinuity (K) real emis (ndlo2) ! surface emissivity real plev (ndlo2,kflev+1) ! level pressure (Pa) real tlev (ndlo2,kflev+1) ! level temperature (K) real tlay (ndlo2,kflev) ! layer temperature (K) real aerosol(ndlo2,kflev,naerkind) ! aerosol extinction optical c depth at reference wavelength "longrefvis" set c in dimradmars_mod , in each layer, for one of c the "naerkind" kind of aerosol optical properties. c outputs: c -------- real coolrate(ndlo2,kflev) ! cooling rate (K/s) real fluxground(ndlo2) ! downward ground flux (W/m2) real fluxtop(ndlo2) ! outgoing upward flux (W/m2) ("OLR") real netrad (ndlo2,kflev) ! radiative budget (W/m2) c Aerosol optical properties REAL :: QIRsQREF3d(ndlo2,kflev,nir,naerkind) REAL :: omegaIR3d(ndlo2,kflev,nir,naerkind) REAL :: gIR3d(ndlo2,kflev,nir,naerkind) c---------------------------------------------------------------------- c 0.2 local arrays c ------------ real aer_t (ndlon,nuco2,nflev+1) ! transmission (aer) real co2_u (ndlon,nuco2,nflev+1) ! absorber amounts (co2) real co2_up (ndlon,nuco2,nflev+1) ! idem scaled by the pressure (co2) real bsurf (ndlon,nir) ! surface spectral planck function real btop (ndlon,nir) ! top spectral planck function real blev (ndlon,nir,nflev+1) ! level spectral planck function real blay (ndlon,nir,nflev) ! layer spectral planck function real dblay (ndlon,nir,nflev) ! layer gradient spectral planck function real dbsublay (ndlon,nir,2*nflev) ! layer gradient spectral planck function ! in sub layers real tautotal(ndlon,nflev,nir) ! \ Total single scattering real omegtotal(ndlon,nflev,nir) ! > properties (Addition of the real gtotal(ndlon,nflev,nir) ! / NAERKIND aerosols prop.) real newcoolrate(ndlon,nflev) ! cooling rate (K/s) / with implicite scheme REAL co2ice(ndlo2) ! co2 ice surface layer (kg.m-2) REAL emis_gaz(ndlo2) ! emissivity for gaz computations integer jk,jkk,ja,jl logical firstcall save firstcall data firstcall/.true./ c---------------------------------------------------------------------- c 0.3 Initialisation c -------------- if (firstcall) then firstcall = .false. xi (:,:,:,:)=0. endif DO jl=1 , kdlon IF(co2ice(jl) .GT. 20.e-3) THEN emis_gaz(jl)=1. ELSE emis_gaz(jl)=emis(jl) ENDIF ENDDO c---------------------------------------------------------------------- c 1.0 planck function c --------------- call lwb ( kdlon, kflev, tlev, tlay, dt0 . , bsurf, btop, blay, blev, dblay, dbsublay) c---------------------------------------------------------------------- c 2.0 absorber amounts c ---------------- call lwu ( kdlon, kflev . , dp, plev, tlay, aerosol & , QIRsQREF3d,omegaIR3d,gIR3d . , aer_t, co2_u, co2_up . , tautotal,omegtotal,gtotal) c---------------------------------------------------------------------- c 3.0 transmission functions / exchange coefficiants c ---------------------------------------------- c distants c -------- if( mod(icount-1,ilwd).eq.0) then c print*, 'CALL of DISTANTS' call lwxd ( ig0, kdlon, kflev, emis_gaz . , aer_t, co2_u, co2_up) endif c neighbours c ---------- if( mod(icount-1,ilwn).eq.0) then c print*, 'CALL of NEIGHBOURS' call lwxn ( ig0, kdlon, kflev . , dp . , aer_t, co2_u, co2_up) endif c boundaries c ---------- if( mod(icount-1,ilwb).eq.0) then c print*, 'CALL of BOUNDARIES' call lwxb ( ig0, kdlon, kflev, emis_gaz . , aer_t, co2_u, co2_up) endif c---------------------------------------------------------------------- c 4.0 cooling rate c ------------ call lwflux ( ig0, kdlon, kflev, dp . , bsurf, btop, blev, blay, dbsublay . , tlay, tlev, dt0 ! pour sortie dans g2d uniquement . , emis . , tautotal,omegtotal,gtotal . , coolrate, fluxground, fluxtop . , netrad) c do jk = 1, nlaylte c print*,coolrate(1,jk) c enddo c do jkk = 0 , nlaylte+1 c do jk = 0 , nlaylte+1 c do ja = 1 , nuco2 c do jl = 1 , ngrid c if (xi (jl,ja,jk,jkk) .LT. 0 c . .OR. xi (jl,ja,jk,jkk) .GT. 1 ) then c print*,'xi bande',ja,jk,jkk,xi (jl,ja,jk,jkk) c endif c enddo c enddo c enddo c enddo c---------------------------------------------------------------------- c c 5. shema semi-implicite (lwi) c --------------------------- c c call lwi (ig0,kdlon,kflev,netrad,dblay,dp . , newcoolrate) c c Verif que (X sol,space) + somme(X i,sol) = 1 c do jkk = 1 , nlaylte do jl = 1 , kdlon c print*,'NEW et OLD coolrate :',jkk,newcoolrate(jl,jkk) c . ,coolrate(jl,jkk) coolrate(jl,jkk) = newcoolrate(jl,jkk) enddo enddo c c---------------------------------------------------------------------- return end