subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI, & QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO, & TMID,PMID,TAUGSURF,QVAR,MUVAR) use radinc_h use radcommon_h, only: gasi,tlimit,wrefVAR,Cmk,tgasref,pfgasref,wnoi,scalep,indi use gases_h implicit none !================================================================== ! ! Purpose ! ------- ! Calculates longwave optical constants at each level. For each ! layer and spectral interval in the IR it calculates WBAR, DTAU ! and COSBAR. For each level it calculates TAU. ! ! TAUI(L,LW) is the cumulative optical depth at level L (or alternatively ! at the *bottom* of layer L), LW is the spectral wavelength interval. ! ! TLEV(L) - Temperature at the layer boundary (i.e., level) ! PLEV(L) - Pressure at the layer boundary (i.e., level) ! ! Authors ! ------- ! Adapted from the NASA Ames code by R. Wordsworth (2009) ! !================================================================== #include "comcstfi.h" #include "callkeys.h" real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) real*8 DTAUKI(L_LEVELS+1,L_NSPECTI,L_NGAUSS) real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS) real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) real*8 PLEV(L_LEVELS) real*8 TLEV(L_LEVELS) real*8 TMID(L_LEVELS), PMID(L_LEVELS) real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) ! for aerosols real*8 QXIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) real*8 QSIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) real*8 GIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) real*8 TAUAERO(L_LEVELS+1,NAERKIND) real*8 TAUAEROLK(L_LEVELS+1,L_NSPECTI,NAERKIND) real*8 TAEROS(L_LEVELS,L_NSPECTI,NAERKIND) integer L, NW, NG, K, LK, IAER integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) real*8 ANS, TAUGAS real*8 DPR(L_LEVELS), U(L_LEVELS) real*8 LCOEF(4), LKCOEF(L_LEVELS,4) real*8 taugsurf(L_NSPECTI,L_NGAUSS-1) real*8 DCONT,DAERO double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc double precision p_cross ! variable species mixing ratio variables real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) real*8 KCOEF(4) integer NVAR(L_LEVELS) ! temporary variables for multiple aerosol calculation real*8 atemp real*8 btemp(L_NLAYRAD,L_NSPECTI) ! variables for k in units m^-1 real*8 dz(L_LEVELS) !real*8 rho !! see test below integer igas, jgas integer interm !--- Kasting's CIA ---------------------------------------- !real*8, parameter :: Ci(L_NSPECTI)=[ & ! 3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7, & ! 5.4E-7, 1.6E-6, 0.0, & ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & ! 0.0, 4.0E-7, 4.0E-6, 1.4E-5, & ! 1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ] !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9, & ! -1.7, -1.7, -1.7, -1.7, -1.7, -1.7, & ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & ! -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ] !---------------------------------------------------------- !! AS: to save time in computing continuum (see bilinearbig) IF (.not.ALLOCATED(indi)) THEN ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) indi = -9999 ! this initial value means "to be calculated" ENDIF !======================================================================= ! Determine the total gas opacity throughout the column, for each ! spectral interval, NW, and each Gauss point, NG. taugsurf(:,:) = 0.0 dpr(:) = 0.0 lkcoef(:,:) = 0.0 do K=2,L_LEVELS DPR(k) = PLEV(K)-PLEV(K-1) !--- Kasting's CIA ---------------------------------------- !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K)) ! this is CO2 path length (in cm) as written by Francois ! delta_z = delta_p * R_specific * T / (g * P) ! But Kasting states that W is in units of _atmosphere_ cm ! So we do !dz(k)=dz(k)*(PMID(K)/1013.25) !dz(k)=dz(k)/100.0 ! in m for SI calc !---------------------------------------------------------- ! if we have continuum opacities, we need dz if(kastprof)then dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) U(k) = Cmk*DPR(k)*mugaz/muvar(k) else dz(k) = dpr(k)*R*TMID(K)/(g*PMID(K))*mugaz/muvar(k) U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present endif call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) do LK=1,4 LKCOEF(K,LK) = LCOEF(LK) end do end do ! levels do iaer=1,naerkind DO NW=1,L_NSPECTI do K=2,L_LEVELS TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER) end do ! levels END DO end do do NW=1,L_NSPECTI do K=2,L_LEVELS ! continuum absorption DCONT = 0.0d0 if(continuum.and.(.not.graybody))then ! include continua if necessary wn_cont = dble(wnoi(nw)) T_cont = dble(TMID(k)) do igas=1,ngasmx if(gfrac(igas).eq.-1)then ! variable p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol else p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) endif dtemp=0.0d0 if(igas.eq.igas_N2)then interm = indi(nw,igas,igas) call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm elseif(igas.eq.igas_H2)then ! first do self-induced absorption interm = indi(nw,igas,igas) call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) indi(nw,igas,igas) = interm ! then cross-interactions with other gases do jgas=1,ngasmx p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) dtempc = 0.0d0 if(jgas.eq.igas_N2)then interm = indi(nw,igas,jgas) call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm elseif(jgas.eq.igas_He)then interm = indi(nw,igas,jgas) call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) indi(nw,igas,jgas) = interm endif dtemp = dtemp + dtempc enddo elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! if(H2Ocont_simple)then call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) else interm = indi(nw,igas,igas) call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) indi(nw,igas,igas) = interm endif endif DCONT = DCONT + dtemp enddo ! Oobleck test !rho = PMID(k)*scalep / (TMID(k)*286.99) !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then ! DCONT = rho * 0.125 * 4.6e-4 !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then ! DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g ! DCONT = rho * 1.0 * 4.6e-4 !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then ! DCONT = rho * 0.125 * 4.6e-4 !endif DCONT = DCONT*dz(k) endif ! aerosol absorption DAERO=SUM(TAEROS(K,NW,1:naerkind)) do ng=1,L_NGAUSS-1 ! Now compute TAUGAS ! Interpolate between water mixing ratios ! WRATIO = 0.0 if the requested water amount is equal to, or outside the ! the water data range if(L_REFVAR.eq.1)then ! added by RW for special no variable case KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) else KCOEF(1) = GASI(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* & (GASI(MT(K),MP(K),NVAR(K)+1,NW,NG) - & GASI(MT(K),MP(K),NVAR(K),NW,NG)) KCOEF(2) = GASI(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & (GASI(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - & GASI(MT(K),MP(K)+1,NVAR(K),NW,NG)) KCOEF(3) = GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & (GASI(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - & GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) KCOEF(4) = GASI(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* & (GASI(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - & GASI(MT(K)+1,MP(K),NVAR(K),NW,NG)) endif ! Interpolate the gaseous k-coefficients to the requested T,P values ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) TAUGAS = U(k)*ANS TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT DTAUKI(K,nw,ng) = TAUGAS & + DCONT & ! For parameterized continuum absorption + DAERO ! For aerosol absorption end do ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), ! which holds continuum opacity only NG = L_NGAUSS DTAUKI(K,nw,ng) = 0.d0 & + DCONT & ! For parameterized continuum absorption + DAERO ! For aerosol absorption end do end do DTAUKI(L_LEVELS+1,1:L_NSPECTI,1:L_NGAUSS)=0.d0 !======================================================================= ! Now the full treatment for the layers, where besides the opacity ! we need to calculate the scattering albedo and asymmetry factors do iaer=1,naerkind DO NW=1,L_NSPECTI DO K=2,L_LEVELS+1 TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) ENDDO ENDDO end do DO NW=1,L_NSPECTI DO L=1,L_NLAYRAD K = 2*L+1 btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) END DO ! L vertical loop END DO ! NW spectral loop DO NW=1,L_NSPECTI NG = L_NGAUSS DO L=1,L_NLAYRAD K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 atemp = 0. if(DTAUI(L,NW,NG) .GT. 1.0D-9) then do iaer=1,naerkind atemp = atemp + & GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) end do WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif if(btemp(L,nw) .GT. 0.0d0) then cosbi(L,NW,NG) = atemp/btemp(L,nw) else cosbi(L,NW,NG) = 0.0D0 end if END DO ! L vertical loop ! Now the other Gauss points, if needed. DO NG=1,L_NGAUSS-1 IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN DO L=1,L_NLAYRAD K = 2*L+1 DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 if(DTAUI(L,NW,NG) .GT. 1.0D-9) then WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) else WBARI(L,nw,ng) = 0.0D0 DTAUI(L,NW,NG) = 1.0D-9 endif cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) END DO ! L vertical loop END IF END DO ! NG Gauss loop END DO ! NW spectral loop ! Total extinction optical depths DO NG=1,L_NGAUSS ! full gauss loop DO NW=1,L_NSPECTI TAUCUMI(1,NW,NG)=0.0D0 DO K=2,L_LEVELS TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) END DO END DO ! end full gauss loop END DO ! be aware when comparing with textbook results ! (e.g. Pierrehumbert p. 218) that ! taucumi does not take the =0.5 factor into ! account. It is the optical depth for a vertically ! ascending ray with angle theta = 0. !open(127,file='taucum.out') !do nw=1,L_NSPECTI ! write(127,*) taucumi(L_LEVELS,nw,L_NGAUSS) !enddo !close(127) ! print*,'WBARI' ! print*,WBARI ! print*,'DTAUI' ! print*,DTAUI ! call abort return end subroutine optci