SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls, & pq,tauscaling,tauref,tau,taucloudtes,aerosol,reffrad,nueffrad, & QREFvis3d,QREFir3d,omegaREFvis3d,omegaREFir3d) ! to use 'getin' USE ioipsl_getincom, only: getin use tracer_mod, only: noms, igcm_h2o_ice, igcm_dust_mass, & igcm_dust_submicron, rho_dust, rho_ice use comgeomfi_h, only: lati ! grid point latitudes (rad) use yomaer_h, only: tauvis IMPLICIT NONE c======================================================================= c subject: c -------- c Computing aerosol optical depth in each gridbox. c c author: F.Forget c ------ c update F. Montmessin (water ice scheme) c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry c update J.-B. Madeleine 2008-2009: c - added 3D scattering by aerosols; c - dustopacity transferred from physiq.F to callradite.F, c and renamed into aeropacity.F; c update E. Millour, march 2012: c - reference pressure is now set to 610Pa (not 700Pa) c c input: c ----- c ngrid Number of gridpoint of horizontal grid c nlayer Number of layer c nq Number of tracer c zday Date (time since Ls=0, in martian days) c ls Solar longitude (Ls) , radian c pplay,pplev pressure (Pa) in the middle and boundary of each layer c pq Dust mixing ratio (used if tracer =T and active=T). c reffrad(ngrid,nlayer,naerkind) Aerosol effective radius c QREFvis3d(ngrid,nlayer,naerkind) \ 3d extinction coefficients c QREFir3d(ngrid,nlayer,naerkind) / at reference wavelengths; c omegaREFvis3d(ngrid,nlayer,naerkind) \ 3d single scat. albedo c omegaREFir3d(ngrid,nlayer,naerkind) / at reference wavelengths; c c output: c ------- c tauref Prescribed mean column optical depth at 610 Pa c tau Column total visible dust optical depth at each point c aerosol aerosol(ig,l,1) is the dust optical c depth in layer l, grid point ig c c======================================================================= !#include "dimensions.h" !#include "dimphys.h" #include "callkeys.h" #include "comcstfi.h" !#include "comgeomfi.h" !#include "dimradmars.h" !#include "yomaer.h" !#include "tracer.h" ! naerkind is set in scatterers.h (built when compiling with makegcm -s #) #include"scatterers.h" #include "planete.h" #include "aerkind.h" c----------------------------------------------------------------------- c c Declarations : c -------------- c c Input/Output c ------------ INTEGER ngrid,nlayer,nq REAL ls,zday,expfactor REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) REAL pq(ngrid,nlayer,nq) REAL tauref(ngrid), tau(ngrid,naerkind) REAL aerosol(ngrid,nlayer,naerkind) REAL dsodust(ngrid,nlayer) REAL reffrad(ngrid,nlayer,naerkind) REAL nueffrad(ngrid,nlayer,naerkind) REAL QREFvis3d(ngrid,nlayer,naerkind) REAL QREFir3d(ngrid,nlayer,naerkind) REAL omegaREFvis3d(ngrid,nlayer,naerkind) REAL omegaREFir3d(ngrid,nlayer,naerkind) c c Local variables : c ----------------- INTEGER l,ig,iq,i,j INTEGER iaer ! Aerosol index real topdust(ngrid) real zlsconst, zp real taueq,tauS,tauN c Mean Qext(vis)/Qext(ir) profile real msolsir(nlayer,naerkind) c Mean Qext(ir)/Qabs(ir) profile real mqextsqabs(nlayer,naerkind) c Variables used when multiple particle sizes are used c for dust or water ice particles in the radiative transfer c (see callradite.F for more information). REAL taudusttmp(ngrid)! Temporary dust opacity ! used before scaling REAL tauscaling(ngrid) ! Scaling factor for qdust and Ndust REAL taudustvis(ngrid) ! Dust opacity after scaling REAL taudusttes(ngrid) ! Dust opacity at IR ref. wav. as ! "seen" by the GCM. REAL taucloudvis(ngrid)! Cloud opacity at visible ! reference wavelength REAL taucloudtes(ngrid)! Cloud opacity at infrared ! reference wavelength using ! Qabs instead of Qext ! (direct comparison with TES) c local saved variables c --------------------- REAL,SAVE,ALLOCATABLE :: topdust0(:) c Level under which the dust mixing ratio is held constant c when computing the dust opacity in each layer c (this applies when doubleq and active are true) INTEGER, PARAMETER :: cstdustlevel = 7 LOGICAL,SAVE :: firstcall=.true. ! indexes of water ice and dust tracers: INTEGER,ALLOCATABLE,SAVE :: nqdust(:) ! to store the indexes of dust tracers INTEGER,SAVE :: i_ice=0 ! water ice real,parameter :: odpref=610. ! DOD reference pressure (Pa) CHARACTER(LEN=20) :: txt ! to temporarly store text CHARACTER(LEN=1) :: txt2 ! to temporarly store text ! indexes of dust scatterers: INTEGER,SAVE :: iaerdust(naerkind) INTEGER,SAVE :: naerdust ! number of dust scatterers tau(1:ngrid,1:naerkind)=0 ! identify tracers IF (firstcall) THEN ! allocate local saved arrays allocate(nqdust(nq)) allocate(topdust0(ngrid)) ! identify scatterers that are dust naerdust=0 DO iaer=1,naerkind txt=name_iaer(iaer) IF (txt(1:4).eq."dust") THEN naerdust=naerdust+1 iaerdust(naerdust)=iaer ENDIF ENDDO ! identify tracers which are dust i=0 DO iq=1,nq txt=noms(iq) IF (txt(1:4).eq."dust") THEN i=i+1 nqdust(i)=iq ENDIF ENDDO IF (water.AND.activice) THEN i_ice=igcm_h2o_ice write(*,*) "aeropacity: i_ice=",i_ice ENDIF c altitude of the top of the aerosol layer (km) at Ls=2.76rad: c in the Viking year scenario DO ig=1,ngrid topdust0(ig)=60. -22.*SIN(lati(ig))**2 END DO c typical profile of solsir and (1-w)^(-1): msolsir(1:nlayer,1:naerkind)=0 mqextsqabs(1:nlayer,1:naerkind)=0 WRITE(*,*) "Typical profiles of Qext(vis)/Qext(IR)" WRITE(*,*) " and Qext(IR)/Qabs(IR):" DO iaer = 1, naerkind ! Loop on aerosol kind WRITE(*,*) "Aerosol # ",iaer DO l=1,nlayer DO ig=1,ngrid msolsir(l,iaer)=msolsir(l,iaer)+ & QREFvis3d(ig,l,iaer)/ & QREFir3d(ig,l,iaer) mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) ENDDO msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngrid) mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngrid) ENDDO WRITE(*,*) "solsir: ",msolsir(:,iaer) WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) ENDDO ! load value of tauvis from callphys.def (if given there, ! otherwise default value read from starfi.nc file will be used) call getin("tauvis",tauvis) firstcall=.false. END IF c Vertical column optical depth at "odpref" Pa c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IF(freedust) THEN tauref(:) = 0. ! tauref is computed after, instead of being forced ELSE IF(iaervar.eq.1) THEN do ig=1, ngrid tauref(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def ! or read in starfi end do ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> tauref(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 do ig=2,ngrid tauref(ig) = tauref(1) end do ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 tauN = 0.1 c if (peri_day.eq.150) then c tauS=0.1 c tauN=0.1 +(0.5-0.1) *(cos(0.5*(ls+pi-4.363)))**14 c taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls+pi-4.363)))**14 c endif do ig=1,ngrid if (lati(ig).ge.0) then ! Northern hemisphere tauref(ig)= tauN + & (taueq-tauN)*0.5*(1+tanh((45-lati(ig)*180./pi)*6/60)) else ! Southern hemisphere tauref(ig)= tauS + & (taueq-tauS)*0.5*(1+tanh((45+lati(ig)*180./pi)*6/60)) endif enddo ! of do ig=1,ngrid ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> c tauref(1) = 0.2 c if ((ls.ge.210.*pi/180.).and.(ls.le.330.*pi/180.)) c & tauref(1) = 2.5 tauref(1) = 2.5 if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) & tauref(1) = .2 do ig=2,ngrid tauref(ig) = tauref(1) end do ELSE IF ((iaervar.ge.6).and.(iaervar.le.7)) THEN ! cold or warm synthetic scenarios call read_dust_scenario(ngrid,nlayer,zday,pplev,tauref) ELSE IF ((iaervar.ge.24).and.(iaervar.le.30)) & THEN ! << MY... dust scenarios >> call read_dust_scenario(ngrid,nlayer,zday,pplev,tauref) ELSE IF ((iaervar.eq.4).or. & ((iaervar.ge.124).and.(iaervar.le.126))) THEN ! "old" TES assimation dust scenario (values at 700Pa in files!) call read_dust_scenario(ngrid,nlayer,zday,pplev,tauref) ELSE stop 'problem with iaervar in aeropacity.F' ENDIF c ----------------------------------------------------------------- c Computing the opacity in each layer c ----------------------------------------------------------------- DO iaer = 1, naerkind ! Loop on aerosol kind c -------------------------------------------- aerkind: SELECT CASE (name_iaer(iaer)) c================================================================== CASE("dust_conrath") aerkind ! Typical dust profile c================================================================== c Altitude of the top of the dust layer c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ zlsconst=SIN(ls-2.76) if (iddist.eq.1) then do ig=1,ngrid topdust(ig)=topdustref ! constant dust layer top end do else if (iddist.eq.2) then ! "Viking" scenario do ig=1,ngrid topdust(ig)=topdust0(ig)+18.*zlsconst end do else if(iddist.eq.3) then !"MGS" scenario do ig=1,ngrid topdust(ig)=60.+18.*zlsconst & -(32+18*zlsconst)*sin(lati(ig))**4 & - 8*zlsconst*(sin(lati(ig)))**5 end do endif c Optical depth in each layer : c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(iddist.ge.1) then expfactor=0. DO l=1,nlayer DO ig=1,ngrid c Typical mixing ratio profile if(pplay(ig,l).gt.odpref $ /(988.**(topdust(ig)/70.))) then zp=(odpref/pplay(ig,l))**(70./topdust(ig)) expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) else expfactor=1.e-3 endif c Vertical scaling function aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * & expfactor * & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) ENDDO ENDDO else if(iddist.eq.0) then c old dust vertical distribution function (pollack90) DO l=1,nlayer DO ig=1,ngrid zp=odpref/pplay(ig,l) aerosol(ig,l,1)= tauref(ig)/odpref * s (pplev(ig,l)-pplev(ig,l+1)) s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) ENDDO ENDDO end if c================================================================== CASE("dust_doubleq") aerkind! Two-moment scheme for dust c (transport of mass and number mixing ratio) c================================================================== DO l=1,nlayer IF (l.LE.cstdustlevel) THEN c Opacity in the first levels is held constant to c avoid unrealistic values due to constant lifting: DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * & pq(ig,cstdustlevel,igcm_dust_mass) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDDO ELSE DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_dust * reffrad(ig,l,iaer) ) ) * & pq(ig,l,igcm_dust_mass) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDDO ENDIF ENDDO c================================================================== CASE("dust_submicron") aerkind ! Small dust population c================================================================== DO l=1,nlayer IF (l.LE.cstdustlevel) THEN c Opacity in the first levels is held constant to c avoid unrealistic values due to constant lifting: DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,cstdustlevel,iaer) / & ( rho_dust * reffrad(ig,cstdustlevel,iaer) ) ) * & pq(ig,cstdustlevel,igcm_dust_submicron) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDDO ELSE DO ig=1,ngrid aerosol(ig,l,iaer) = & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_dust * reffrad(ig,l,iaer) ) ) * & pq(ig,l,igcm_dust_submicron) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g ENDDO ENDIF ENDDO c================================================================== CASE("h2o_ice") aerkind ! Water ice crystals c================================================================== c 1. Initialization aerosol(1:ngrid,1:nlayer,iaer) = 0. taucloudvis(1:ngrid) = 0. taucloudtes(1:ngrid) = 0. c 2. Opacity calculation DO ig=1, ngrid DO l=1,nlayer aerosol(ig,l,iaer) = max(1E-20, & ( 0.75 * QREFvis3d(ig,l,iaer) / & ( rho_ice * reffrad(ig,l,iaer) ) ) * & pq(ig,l,i_ice) * & ( pplev(ig,l) - pplev(ig,l+1) ) / g & ) taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) ENDDO ENDDO c 3. Outputs -- Now done in physiq.F ! IF (ngrid.NE.1) THEN ! CALL WRITEDIAGFI(ngrid,'tauVIS','tauext VIS refwvl', ! & ' ',2,taucloudvis) ! CALL WRITEDIAGFI(ngrid,'tauTES','tauabs IR refwvl', ! & ' ',2,taucloudtes) ! IF (callstats) THEN ! CALL wstats(ngrid,'tauVIS','tauext VIS refwvl', ! & ' ',2,taucloudvis) ! CALL wstats(ngrid,'tauTES','tauabs IR refwvl', ! & ' ',2,taucloudtes) ! ENDIF ! ELSE ! CALL writeg1d(ngrid,1,taucloudtes,'tautes','NU') ! ENDIF c================================================================== END SELECT aerkind c ----------------------------------- ENDDO ! iaer (loop on aerosol kind) c ----------------------------------------------------------------- c Rescaling each layer to reproduce the choosen (or assimilated) c dust extinction opacity at visible reference wavelength, which c is originally scaled to an equivalent odpref Pa pressure surface. c ----------------------------------------------------------------- IF (freedust) THEN tauscaling(:) = 1. ELSE c Temporary scaling factor taudusttmp(1:ngrid)=0. DO iaer=1,naerdust DO l=1,nlayer DO ig=1,ngrid c Scaling factor taudusttmp(ig) = taudusttmp(ig) + & aerosol(ig,l,iaerdust(iaer)) ENDDO ENDDO ENDDO c Saved scaling factor DO ig=1,ngrid tauscaling(ig) = tauref(ig) * & pplev(ig,1) / odpref / taudusttmp(ig) c tauscaling(ig) = 1.e-4 ENDDO ENDIF c Opacity computation DO iaer=1,naerdust DO l=1,nlayer DO ig=1,ngrid aerosol(ig,l,iaerdust(iaer)) = max(1E-20, & aerosol(ig,l,iaerdust(iaer))* tauscaling(ig)) ENDDO ENDDO ENDDO IF (freedust) THEN ! tauref has been initialized to 0 before. DO iaer=1,naerdust DO l=1,nlayer DO ig=1,ngrid tauref(ig) = tauref(ig) + & aerosol(ig,l,iaerdust(iaer)) ENDDO ENDDO ENDDO ENDIF c output for debug c IF (ngrid.NE.1) THEN c CALL WRITEDIAGFI(ngrid,'taudusttmp','virtual tau dust', c & '#',2,taudusttmp) c CALL WRITEDIAGFI(ngrid,'tausca','tauscaling', c & '#',2,tauscaling) c ELSE c CALL WRITEDIAGFI(ngrid,'taudusttmp','virtual tau dust', c & '#',0,taudusttmp) c CALL WRITEDIAGFI(ngrid,'tausca','tauscaling', c & '#',0,tauscaling) c ENDIF c ----------------------------------------------------------------- c Column integrated visible optical depth in each point c ----------------------------------------------------------------- DO iaer=1,naerkind do l=1,nlayer do ig=1,ngrid tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) end do end do ENDDO c ----------------------------------------------------------------- c Density scaled opacity and column opacity output c ----------------------------------------------------------------- c dsodust(1:ngrid,1:nlayer) = 0. c DO iaer=1,naerdust c DO l=1,nlayer c DO ig=1,ngrid c dsodust(ig,l) = dsodust(ig,l) + c & aerosol(ig,l,iaerdust(iaer)) * g / c & (pplev(ig,l) - pplev(ig,l+1)) c ENDDO c ENDDO c IF (ngrid.NE.1) THEN c write(txt2,'(i1.1)') iaer c call WRITEDIAGFI(ngrid,'taudust'//txt2, c & 'Dust col opacity', c & ' ',2,tau(1,iaerdust(iaer))) c IF (callstats) THEN c CALL wstats(ngrid,'taudust'//txt2, c & 'Dust col opacity', c & ' ',2,tau(1,iaerdust(iaer))) c ENDIF c ENDIF c ENDDO c IF (ngrid.NE.1) THEN c CALL WRITEDIAGFI(ngrid,'dsodust','tau*g/dp', c & 'm2.kg-1',3,dsodust) c IF (callstats) THEN c CALL wstats(ngrid,'dsodust', c & 'tau*g/dp', c & 'm2.kg-1',3,dsodust) c ENDIF c ELSE c CALL WRITEDIAGFI(ngrid,"dsodust","dsodust","m2.kg-1",1, c & dsodust) c ENDIF ! of IF (ngrid.NE.1) c ----------------------------------------------------------------- return end