subroutine growthrate(temp,pmid,psat,rcrystal,res) IMPLICIT NONE c======================================================================= c c Determination of the water ice crystal growth rate c c Authors: F. Montmessin c Adapted for the LMD/GCM by J.-B. Madeleine (October 2011) c Use of resistances in the analytical function c instead of growth rate - T. Navarro (2012) c c======================================================================= c----------------------------------------------------------------------- c declarations: c ------------- #include "dimensions.h" #include "dimphys.h" #include "comcstfi.h" #include "tracer.h" #include "microphys.h" c c arguments: c ---------- c Input REAL temp ! temperature in the middle of the layer (K) REAL pmid ! pressure in the middle of the layer (K) REAL psat ! water vapor saturation pressure (Pa) REAL rcrystal ! crystal radius before condensation (m) c Output REAL res ! growth resistance (res=Rk+Rd) c local: c ------ REAL k,Lv REAL knudsen ! Knudsen number (gas mean free path/particle radius) REAL afactor,Dv,lambda ! Intermediate computations for growth rate REAL Rk,Rd c----------------------------------------------------------------------- c Ice particle growth rate by diffusion/impegement of water molecules c r.dr/dt = (S-Seq) / (Seq*Rk+Rd) c with r the crystal radius, Rk and Rd the resistances due to c latent heat release and to vapor diffusion respectively c----------------------------------------------------------------------- c - Equilibrium saturation accounting for KeLvin Effect c seq=exp(2*sigh2o*mh2o/(rho_ice*rgp*t*r)) c (already computed in improvedcloud.F) c - Thermal conductibility of CO2 k = (0.17913 * temp - 13.9789) * 4.184e-4 c - Latent heat of h2o (J.kg-1) Lv = (2834.3 & - 0.28 * (temp-To) & - 0.004 * (temp-To) * (temp-To) ) * 1.e+3 c - Constant to compute gas mean free path c l= (T/P)*a, with a = ( 0.707*8.31/(4*pi*molrad**2 * avogadro)) afactor = 0.707*rgp/(4 * pi * molco2 * molco2 * nav) c - Compute Dv, water vapor diffusion coefficient c accounting for both kinetic and continuum regime of diffusion, c the nature of which depending on the Knudsen number. Dv = 1./3. * sqrt( 8*kbz*temp/(pi*mh2o/nav) )* kbz * temp / & ( pi * pmid * (molco2+molh2o)*(molco2+molh2o) & * sqrt(1.+mh2o/mco2) ) knudsen = temp / pmid * afactor / rcrystal lambda = (1.333+0.71/knudsen) / (1.+1./knudsen) c Dv is not corrected. Instead, we use below coefficients coeff1, coeff2 c Dv = Dv / (1. + lambda * knudsen) c - Compute Rk Rk = Lv*Lv* rho_ice * mh2o / (k*rgp*temp*temp) c - Compute Rd Rd = rgp * temp *rho_ice / (Dv*psat*mh2o) res = Rk + Rd*(1. + lambda * knudsen) !coeff1 = real(Rk + Rd*(1. + lambda * knudsen)) !coeff2 = real(Rk + Rd*(1. - lambda * knudsen)) c Below are growth rate used for other schemes c - Compute growth=rdr/dt, then r(t+1)= sqrt(r(t)**2.+2.*growth*dt) c growth = 1. / (seq*Rk+Rd) c growth = (ph2o/psat-seq) / (seq*Rk+Rd) c rf = sqrt( max( r**2.+2.*growth*timestep , 0. ) ) c dr = rf-r RETURN END