Changeset 763 for trunk/UTIL/PYTHON
- Timestamp:
- Aug 28, 2012, 3:08:35 PM (12 years ago)
- Location:
- trunk/UTIL/PYTHON
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/UTIL/PYTHON/myplot.py
r760 r763 29 29 return basename 30 30 31 ## Author: AS 32 def localtime(utc,lon): 33 ltst = utc + lon / 15. 31 ## Author: AS + AC 32 def localtime(time,lon,nc): # lon is the mean longitude of the plot, not of the domain. central lon of domain is taken from cen_lon 33 import numpy as np 34 dt_hour=1. 35 start=0. 36 if lon is not None: 37 if lon[0,1]!=lon[0,0]: mean_lon_plot = 0.5*(lon[0,1]-lon[0,0]) 38 else: mean_lon_plot=lon[0,0] 39 elif hasattr(nc, 'CEN_LON'): mean_lon_plot=getattr(nc, 'CEN_LON') 40 else: mean_lon_plot=0. 41 if hasattr(nc,'TITLE'): 42 title=getattr(nc, 'TITLE') 43 if hasattr(nc,'DT') and 'MRAMS' in title: dt_hour=getattr(nc, 'DT')/60. #LMD MMM is 1 output/hour (and not 1 output/timestep) 44 # MRAMS is 1 output/timestep, unless stride is added in ic.py 45 if hasattr(nc,'START_DATE'): 46 start_date=getattr(nc, 'START_DATE') 47 start_hour=np.float(start_date[11:13]) 48 start_minute=np.float(start_date[14:16])/60. 49 start=start_hour+start_minute # start is the local time of simu at longitude 0 50 ltst = start + time*dt_hour + mean_lon_plot / 15. 51 else: ltst = time*dt_hour + mean_lon_plot / 15. 52 else: ltst = time*dt_hour + mean_lon_plot / 15. 34 53 ltst = int (ltst * 10) / 10. 35 54 ltst = ltst % 24 … … 39 58 def check_localtime(time): 40 59 a=-1 60 print time 41 61 for i in range(len(time)-1): 42 62 if (time[i] > time[i+1]): a=i … … 102 122 # if (True in np.array(mask)):out=masked 103 123 # else:out=field 104 else:out=field 124 else: 125 # # missing values from MRAMS files are 0.100E+32 126 masked=np.ma.masked_where(field > 1e30,field) 127 masked.set_fill_value([np.NaN]) 128 mask = np.ma.getmask(masked) 129 if (True in np.array(mask)):out=masked 130 else:out=field 131 # else:out=field 105 132 return out 106 133 107 134 ## Author: AC 108 # Compute the norm of the winds 135 # Compute the norm of the winds or return an hodograph 109 136 # The corresponding variable to call is UV or uvmet (to use api) 110 def windamplitude (nc ):137 def windamplitude (nc,mode): 111 138 import numpy as np 112 139 varinfile = nc.variables.keys() 113 140 if "U" in varinfile: zu=getfield(nc,'U') 114 141 elif "Um" in varinfile: zu=getfield(nc,'Um') 142 else: errormess("you need slopex or U or Um in your file.") 115 143 if "V" in varinfile: zv=getfield(nc,'V') 116 144 elif "Vm" in varinfile: zv=getfield(nc,'Vm') 145 else: errormess("you need V or Vm in your file.") 117 146 znt,znz,zny,znx = np.array(zu).shape 118 if "U" in varinfile:znx=znx-1147 if hasattr(nc,'WEST-EAST_PATCH_END_UNSTAG'):znx=getattr(nc, 'WEST-EAST_PATCH_END_UNSTAG') 119 148 zuint = np.zeros([znt,znz,zny,znx]) 120 149 zvint = np.zeros([znt,znz,zny,znx]) 121 150 if "U" in varinfile: 122 for xx in np.arange(znx): zuint[:,:,:,xx] = (zu[:,:,:,xx] + zu[:,:,:,xx+1])/2. 123 for yy in np.arange(zny): zvint[:,:,yy,:] = (zv[:,:,yy,:] + zv[:,:,yy+1,:])/2. 151 if hasattr(nc,'SOUTH-NORTH_PATCH_END_STAG'): zny_stag=getattr(nc, 'SOUTH-NORTH_PATCH_END_STAG') 152 if hasattr(nc,'WEST-EAST_PATCH_END_STAG'): znx_stag=getattr(nc, 'WEST-EAST_PATCH_END_STAG') 153 if zny_stag == zny: zvint=zv 154 else: 155 for yy in np.arange(zny): zvint[:,:,yy,:] = (zv[:,:,yy,:] + zv[:,:,yy+1,:])/2. 156 if znx_stag == znx: zuint=zu 157 else: 158 for xx in np.arange(znx): zuint[:,:,:,xx] = (zu[:,:,:,xx] + zu[:,:,:,xx+1])/2. 124 159 else: 125 160 zuint=zu 126 161 zvint=zv 127 return np.sqrt(zuint**2 + zvint**2) 162 if mode=='amplitude': return np.sqrt(zuint**2 + zvint**2) 163 if mode=='hodograph': return zuint,zvint 164 if mode=='hodograph_2': return None, 360.*np.arctan(zvint/zuint)/(2.*np.pi) 128 165 129 166 ## Author: AC … … 214 251 if redope == "mint": input = min(input,axis=0) ; d1 = None 215 252 elif redope == "maxt": input = max(input,axis=0) ; d1 = None 253 elif redope == "edge_y1": input = input[:,:,0,:] ; d2 = None 254 elif redope == "edge_y2": input = input[:,:,-1,:] ; d2 = None 255 elif redope == "edge_x1": input = input[:,:,:,0] ; d1 = None 256 elif redope == "edge_x2": input = input[:,:,:,-1] ; d1 = None 216 257 else: errormess("not supported. but try lines in reducefield beforehand.") 217 258 #elif redope == "minz": input = min(input,axis=1) ; d2 = None … … 372 413 totalarea = mean(totalarea[:,:,d2,:],axis=2); totalarea = mean(totalarea[:,:,d1],axis=1) 373 414 except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. 374 output = output*mesharea; output = mean(output[:,:,d2,:],axis=2); output = mean(output[:,:,d1],axis= 1)/totalarea415 output = output*mesharea; output = mean(output[:,:,d2,:],axis=2); output = mean(output[:,:,d1],axis=2)/totalarea 375 416 elif d1 is not None: output = mean(input[:,:,:,d1],axis=3) 376 417 elif d2 is not None: … … 1272 1313 1273 1314 ## Author: TN 1274 def define_axis(lon,lat,vert,time,indexlon,indexlat,indexvert,indextime,what_I_plot,dim0,vertmode ):1315 def define_axis(lon,lat,vert,time,indexlon,indexlat,indexvert,indextime,what_I_plot,dim0,vertmode,redope): 1275 1316 # Purpose of define_axis is to find x and y axis scales in a smart way 1276 1317 # x axis priority: 1/time 2/lon 3/lat 4/vertical … … 1286 1327 x = time 1287 1328 count = count+1 1288 if indexlon is None and len(lon) > 1 :1329 if indexlon is None and len(lon) > 1 and redope not in ['edge_x1','edge_x2']: 1289 1330 print "AXIS is lon" 1290 1331 if count == 0: x = lon 1291 1332 else: y = lon 1292 1333 count = count+1 1293 if indexlat is None and len(lat) > 1 :1334 if indexlat is None and len(lat) > 1 and redope not in ['edge_y1','edge_y2']: 1294 1335 print "AXIS is lat" 1295 1336 if count == 0: x = lat … … 1322 1363 return what_I_plot,x,y 1323 1364 1324 # Author: TN + AS 1325 def determineplot(slon, slat, svert, stime ):1365 # Author: TN + AS + AC 1366 def determineplot(slon, slat, svert, stime, redope): 1326 1367 nlon = 1 # number of longitudinal slices -- 1 is None 1327 1368 nlat = 1 … … 1330 1371 nslices = 1 1331 1372 if slon is not None: 1332 nslices = nslices*len(slon) 1373 if slon[0,0]!=slon[0,1]: length=len(slon) 1374 else: length=1 1375 nslices = nslices*length 1333 1376 nlon = len(slon) 1334 1377 if slat is not None: 1335 nslices = nslices*len(slat) 1378 if slat[0,0]!=slat[0,1]: length=len(slat) 1379 else: length=1 1380 nslices = nslices*length 1336 1381 nlat = len(slat) 1337 1382 if svert is not None: 1338 nslices = nslices*len(svert) 1383 if svert[0,0]!=svert[0,1]: lenth=len(svert) 1384 else: length=1 1385 nslices = nslices*length 1339 1386 nvert = len(svert) 1340 1387 if stime is not None: 1341 nslices = nslices*len(stime) 1388 if stime[0,0]!=stime[0,1]: length=len(stime) 1389 else: length=1 1390 nslices = nslices*length 1342 1391 ntime = len(stime) 1343 1392 #else: 1344 1393 # nslices = 2 1345 1394 mapmode = 0 1346 if slon is None and slat is None :1395 if slon is None and slat is None and redope not in ['edge_x1','edge_x2','edge_y1','edge_y2']: 1347 1396 mapmode = 1 # in this case we plot a map, with the given projection 1348 1349 1397 return nlon, nlat, nvert, ntime, mapmode, nslices 1350 1351 ## Author: AC1352 ## Reduce complexity of main script by moving the contour part here. Also allow to call it from elsewhere1353 ## which can be usefull1354 #1355 #def call_contour(what_I_plot,error,x,y,m,lon,lat,vert,time,vertmode,ze_var2,indextime,indexlon,indexlat,indexvert,yintegral,mapmode,typefile,var2,ticks):1356 # from matplotlib.pyplot import contour, plot, clabel1357 # import numpy as np1358 # #what_I_plot = what_I_plot*mult1359 # if not error:1360 # if mapmode == 1:1361 # if typefile in ['mesoapi','meso']: what_I_plot = dumpbdy(what_I_plot,6)1362 # zevmin, zevmax = calculate_bounds(what_I_plot)1363 # zelevels = np.linspace(zevmin,zevmax,ticks) #20)1364 # if var2 == 'HGT': zelevels = np.arange(-10000.,30000.,2000.)1365 # if mapmode == 0:1366 # #if typefile in ['mesoideal']: what_I_plot = dumpbdy(what_I_plot,0,stag='W')1367 # itime=indextime1368 # if len(what_I_plot.shape) is 3: itime=[0]1369 # what_I_plot, x, y = define_axis(lon,lat,vert,time,indexlon,indexlat,indexvert,\1370 # itime,what_I_plot, len(ze_var2.shape),vertmode)1371 # ### If we plot a 2-D field1372 # if len(what_I_plot.shape) is 2:1373 # #zelevels=[1.]1374 # if mapmode == 0:cs = contour(x,y,what_I_plot, zelevels, colors='k', linewidths = 1 ) #0.33 colors='w' )# , alpha=0.5)1375 # elif mapmode == 1:cs = m.contour(x,y,what_I_plot, zelevels, colors='k', linewidths = 1 ) #0.33 colors='w' )# , alpha=0.5)1376 # #clabel(cs,zelevels,inline=3,fmt='%1.1f',fontsize=7)1377 # ### If we plot a 1-D field1378 # elif len(what_I_plot.shape) is 1:1379 # plot(what_I_plot,x)1380 # else:1381 # errormess("There is an error in reducing field !")1382 # return error1383 1398 1384 1399 ## Author : AS … … 1428 1443 ## Author : AC 1429 1444 ## Handles calls to specific computations (e.g. wind norm, enrichment factor...) 1430 def select_getfield(zvarname=None,znc=None,ztypefile=None,mode=None,ztsat=None,ylon=None,ylat=None,yalt=None,ytime=None ):1445 def select_getfield(zvarname=None,znc=None,ztypefile=None,mode=None,ztsat=None,ylon=None,ylat=None,yalt=None,ytime=None,analysis=None): 1431 1446 from mymath import get_tsat 1432 1447 1433 1448 ## Specific variables are described here: 1434 1449 # for the mesoscale: 1435 specificname_meso = ['UV','uv','uvmet','slopexy','SLOPEXY','deltat','DELTAT' ]1450 specificname_meso = ['UV','uv','uvmet','slopexy','SLOPEXY','deltat','DELTAT','hodograph','tk','hodograph_2'] 1436 1451 # for the gcm: 1437 1452 specificname_gcm = ['enfact'] … … 1452 1467 ## Get the corresponding variable: 1453 1468 if mode == 'getvar': 1469 plot_x = None ; plot_y = None ; 1454 1470 ### ----------- 1. saturation temperature 1455 1471 if zvarname in ["temp","t","T_nadir_nit","T_nadir_day","temp_day","temp_night"] and ztsat: … … 1460 1476 ### ----------- 2. wind amplitude 1461 1477 elif ((zvarname in ['UV','uv','uvmet']) and (ztypefile in ['meso']) and (zvarname not in znc.variables)): 1462 all_var=windamplitude(znc) 1478 all_var=windamplitude(znc,'amplitude') 1479 elif ((zvarname in ['hodograph','hodograph_2']) and (ztypefile in ['meso']) and (zvarname not in znc.variables)): 1480 plot_x, plot_y = windamplitude(znc,zvarname) 1481 if plot_x is not None: all_var=plot_x # dummy 1482 else: all_var=plot_y ; plot_x = None ; plot_y = None # Hodograph type 2 is not 'xy' mode 1463 1483 elif ((zvarname in ['slopexy','SLOPEXY']) and (ztypefile in ['meso']) and (zvarname not in znc.variables)): 1464 1484 all_var=slopeamplitude(znc) … … 1469 1489 elif ((ztypefile in ['gcm']) and (zvarname in ['enfact'])): 1470 1490 all_var=enrichment_factor(znc,ylon,ylat,ytime) 1491 ### ------------ 5. teta -> temp 1492 elif ((ztypefile in ['meso']) and (zvarname in ['tk']) and ('tk' not in znc.variables.keys())): 1493 all_var=teta_to_tk(znc) 1471 1494 else: 1472 1495 ### ----------- 999. Normal case 1473 1496 all_var = getfield(znc,zvarname) 1474 return all_var 1475 1497 if analysis is not None: 1498 if analysis in ['histo','density','histodensity']: plot_y=all_var ; plot_x = plot_y 1499 elif analysis == 'fft': plot_y, plot_x = spectrum(all_var,ytime,yalt,ylat,ylon) ; all_var = plot_y 1500 return all_var, plot_x, plot_y 1501 1502 # Author : A.C 1503 # FFT is computed before reducefield voluntarily, because we dont want to compute 1504 # ffts on averaged fields (which would kill all waves). Instead, we take the fft everywhere 1505 # (which is not efficient but it is still ok) and then, make the average (if the user wants to) 1506 def spectrum(var,time,vert,lat,lon): 1507 import numpy as np 1508 fft=np.fft.fft(var,axis=1) 1509 N=len(vert) 1510 step=(vert[1]-vert[0])*1000. 1511 print "step is: ",step 1512 fftfreq=np.fft.fftfreq(N,d=step) 1513 fftfreq=np.fft.fftshift(fftfreq) # spatial FFT => this is the wavenumber 1514 fft=np.fft.fftshift(fft) 1515 fftfreq = 1./fftfreq # => wavelength (div by 0 expected, don't panic) 1516 fft=np.abs(fft) # => amplitude spectrum 1517 # fft=np.abs(fft)**2 # => power spectrum 1518 return fft,fftfreq 1519 1520 # Author : A.C. 1521 # Computes temperature from potential temperature for mesoscale files, without the need to use API, i.e. using natural vertical grid 1522 def teta_to_tk(nc): 1523 import numpy as np 1524 varinfile = nc.variables.keys() 1525 p0=610. 1526 t0=220. 1527 r_cp=1./3.89419 1528 if "T" in varinfile: zteta=getfield(nc,'T') 1529 else: errormess("you need T in your file.") 1530 if "PTOT" in varinfile: zptot=getfield(nc,'PTOT') 1531 else: errormess("you need PTOT in your file.") 1532 zt=(zteta+220.)*(zptot/p0)**(r_cp) 1533 return zt -
trunk/UTIL/PYTHON/myscript.py
r760 r763 64 64 parser.add_option('--ymin', action='store',dest='ymin', type="float", default=None, help='min value for y-axis in contour-plots [min(yaxis)]') 65 65 parser.add_option('--inverty', action='store_true',dest='inverty', default=False,help='force decreasing values along y-axis (e.g. p-levels)') 66 parser.add_option('--logy', action='store_true',dest='logy', default=False,help='set y-axis to logarithmic') 66 parser.add_option('--logx', action='store_true',dest='logx', default=False,help='set x-axis to logarithmic') 67 parser.add_option('--logy', action='store_true',dest='logy', default=False,help='set y-axis to logarithmic') 67 68 parser.add_option('--axtime', action='store',dest='axtime', type="string", default=None, help='choose "ls","sol","lt" for time ref (1D or --time)') 68 69 69 70 ### OPERATIONS BETWEEN FILES 70 parser.add_option('--operation', action='store',dest='operat', type="string", default=None, help='operation to perform on input files given through -f. "+" or "-" acts on each input file by adding or substracting the ref file specified through --fref. "cat" acts on all input files in-a-row. "add_var" "sub_var" "mul_var" "div_var" acts on two variables (add _only to get only operation plot). ')71 parser.add_option('--operation', action='store',dest='operat', type="string", default=None, help='operation to perform on input files given through -f. "+" or "-" acts on each input file by adding or substracting the ref file specified through --fref. "cat" acts on all input files in-a-row. "add_var" "sub_var" "mul_var" "div_var" acts on two variables (add _only to get only operation plot). "-_histo" will add an histogram plot for the "-" operation.') 71 72 parser.add_option('--fref', action='store',dest='fref', type="string", default=None, help='reference namefile for the --operation option.') 72 73 parser.add_option('--mope', action='store',dest='vminope', type="float", default=0., help='bounding minimum value for inter-file operation') … … 77 78 parser.add_option('--tsat', action='store_true',dest='tsat', default=False,help='convert temperature field T in Tsat-T using pressure') 78 79 parser.add_option('--stream', action='store_true',dest='stream', default=False,help='plot streamlines from streamfunction.e for vert/lat slices.') 80 parser.add_option('--analysis', action='store' ,dest='analysis', default=None ,help='Analysis operation. histo, density (kernel distribution estimate, with gaussian kernel only for the moment (many other distributions are available and can be added)), histodensity (overplot of both density and histo), fft. (currently fft works only on the z-axis, i.e. spatial Fourier Transform, and yields spectrum amplitude. To get enough bandwith, use API with a step of 10m on your data. Note that if you use --time A,B, the result will be the mean of FT at each timestep, and not the FT of the mean. The same apply to --lon and --lat, but does not apply to histo and density (for which arrays are flattened -> no mean).) [None]') 79 81 80 82 return parser -
trunk/UTIL/PYTHON/planetoplot.py
r760 r763 26 26 winds=False,\ 27 27 addchar=None,\ 28 interv=[0,1],\29 28 vmin=None,\ 30 29 vmax=None,\ … … 54 53 yaxis=[None,None],\ 55 54 ylog=False,\ 55 xlog=False,\ 56 56 yintegral=False,\ 57 57 blat=None,\ … … 73 73 facwind=1.,\ 74 74 trycol=False,\ 75 streamflag=False): 75 streamflag=False,\ 76 analysis=None): 76 77 77 78 #################################################################################################################### … … 95 96 import numpy as np 96 97 from numpy.core.defchararray import find 98 from scipy.stats import gaussian_kde,describe 97 99 from videosink import VideoSink 98 100 from times import sol2ls … … 126 128 ### we prepare number of plot fields [zelen] and number of plot instances [numplot] according to user choices 127 129 ### --> we support multifile and multivar plots : files + vars separated by commas are on the same figure 128 nlon, nlat, nvert, ntime, mapmode, nslices = determineplot(slon, slat, svert, stime )130 nlon, nlat, nvert, ntime, mapmode, nslices = determineplot(slon, slat, svert, stime, redope) 129 131 zelen = len(namefiles)*len(var) 132 ### we correct number of plot fields for possible operation (substract, etc...) 133 if ope is not None: 134 if fileref is not None: zelen = 3*len(var)*len(namefiles) 135 elif "var" in ope: zelen = zelen + 1 130 136 numplot = zelen*nslices 131 137 print "********** FILES, SLICES, VARS, TOTAL PLOTS: ", len(namefiles), nslices, len(var), numplot 132 138 print "********** MAPMODE: ", mapmode 133 ### we correct number of plot fields for possible operation (substract, etc...)134 if ope is not None:135 if fileref is not None: zelen = zelen + 2136 elif "var" in ope: zelen = zelen + 1137 139 ### we define the arrays for plot fields -- which will be placed within multiplot loops 138 all_var = [[]]*zelen ; all_var2 = [[]]*zelen 139 all_title = [[]]*zelen ; all_varname = [[]]*zelen ; all_namefile = [[]]*zelen ; all_time = [[]]*zelen ; all_colorb = [[]]*zelen 140 all_var = [[]]*zelen ; all_var2 = [[]]*zelen 141 all_title = [[]]*zelen ; all_varname = [[]]*zelen ; all_namefile = [[]]*zelen ; all_colorb = [[]]*zelen 142 all_time = [[]]*zelen ; all_vert = [[]]*zelen ; all_lat = [[]]*zelen ; all_lon = [[]]*zelen 140 143 all_windu = [[]]*zelen ; all_windv = [[]]*zelen 141 144 plot_x = [[]]*zelen ; plot_y = [[]]*zelen ; multiplot = [[]]*zelen 145 ### tool (should be move to mymath) 146 getVar = lambda searchList, ind: [searchList[i] for i in ind] 142 147 ############################# 143 148 ### LOOP OVER PLOT FIELDS ### 144 149 ############################# 150 145 151 for nnn in range(len(namefiles)): 146 152 for vvv in range(len(var)): … … 290 296 ftime = np.zeros(len(time)) 291 297 for i in range(len(time)): 292 ftime[i] = localtime ( interv[0]+time[i]*interv[1], 0.5*(wlon[0]+wlon[1]))298 ftime[i] = localtime ( time[i], slon , nc ) 293 299 time=ftime 294 300 time=check_localtime(time) … … 312 318 all_namefile[k] = namefile 313 319 all_time[k] = time 320 all_vert[k] = vert 321 all_lat[k] = lat 322 all_lon[k] = lon 314 323 all_colorb[k] = clb[vvv] 315 if var2: all_var2[k] = select_getfield(zvarname=var2,znc=nc,ztypefile=typefile,mode='getvar',ztsat=tsat,ylon=lon,ylat=lat,yalt=vert,ytime=all_time[k])324 if var2: all_var2[k], plot_x[k], plot_y[k] = select_getfield(zvarname=var2,znc=nc,ztypefile=typefile,mode='getvar',ztsat=tsat,ylon=all_lon[k],ylat=all_lat[k],yalt=all_vert[k],ytime=all_time[k],analysis=analysis) 316 325 if winds: all_windu[k] = getfield(nc,uchar) ; all_windv[k] = getfield(nc,vchar) 317 326 ### we fill the arrays of fields to be plotted at the current step considered 318 all_var[k] = select_getfield(zvarname=all_varname[k],znc=nc,ztypefile=typefile,mode='getvar',ztsat=tsat,ylon=lon,ylat=lat,yalt=vert,ytime=all_time[k]) 319 ### we inform the user about the loop then increment the loop. this is the last line of "for namefile in namefiles" 327 all_var[k], plot_x[k], plot_y[k] = select_getfield(zvarname=all_varname[k],znc=nc,ztypefile=typefile,mode='getvar',ztsat=tsat,ylon=all_lon[k],ylat=all_lat[k],yalt=all_vert[k],ytime=all_time[k],analysis=analysis) 328 329 # last line of for namefile in namefiles 320 330 print "**** GOT SUBDATA:",k," NAMEFILE:",namefile," VAR:",varname, var2 ; k += 1 ; firstfile = False 321 331 … … 323 333 324 334 ################################## 325 ### Operation on files 326 if ope is not None: 327 print "********** OPERATION: ",ope 328 if "var" not in ope: 329 if len(var) > 1: errormess("for this operation... please set only one var !") 330 if ope in ["-","+","-%"]: 331 if fileref is not None: 332 ncref = Dataset(fileref) 333 all_var[k] = select_getfield(zvarname=all_varname[k-1],znc=ncref,ztypefile=typefile,mode='getvar',ztsat=tsat,ylon=lon,ylat=lat,yalt=vert,ytime=all_time[k]) 334 all_varname[k] = all_varname[k-1] ; all_time[k] = all_time[k-1] ; all_namefile[k] = all_namefile[k-1] ; all_var2[k] = all_var2[k-1] ; all_colorb[k] = all_colorb[k-1] 335 if winds: all_windu[k] = getfield(ncref,uchar) ; all_windv[k] = getfield(ncref,vchar) 336 else: errormess("fileref is missing!") 337 if ope == "-": all_var[k+1]= all_var[k-1] - all_var[k] 338 elif ope == "+": all_var[k+1]= all_var[k-1] + all_var[k] 339 elif ope == "-%": 340 masked = np.ma.masked_where(all_var[k] == 0,all_var[k]) 341 masked.set_fill_value([np.NaN]) 342 all_var[k+1]= 100.*(all_var[k-1] - masked)/masked 343 all_varname[k+1] = all_varname[k] ; all_time[k+1] = all_time[k] ; all_namefile[k+1] = all_namefile[k] ; all_var2[k+1] = all_var2[k] ; numplot = numplot+2 344 if len(clb) >= zelen: all_colorb[k+1] = clb[-1] # last additional user-defined color is for operation plot 345 else: all_colorb[k+1] = "RdBu_r" # if no additional user-defined color... set a good default one 346 if winds: all_windu[k+1] = all_windu[k-1]-all_windu[k] ; all_windv[k+1] = all_windv[k-1] - all_windv[k] 347 elif ope in ["cat"]: 348 tabtime = all_time[0];tab = all_var[0];k = 1 349 if var2: tab2 = all_var2[0] 350 while k != len(namefiles) and len(all_time[k]) != 0: 351 if var2: tab2 = np.append(tab2,all_var2[k],axis=0) 352 tabtime = np.append(tabtime,all_time[k]) ; tab = np.append(tab,all_var[k],axis=0) ; k += 1 353 all_time[0] = np.array(tabtime) ; all_var[0] = np.array(tab) ; numplot = 1 354 if var2: all_var2[0] = np.array(tab2) 355 else: errormess(ope+" : non-implemented operation. Check pp.py --help") 356 else: 357 if len(namefiles) > 1: errormess("for this operation... please set only one file !") 358 if len(var) > 2: errormess("not sure this works for more than 2 vars... please check.") 359 if "div_var" in ope: all_var[k] = all_var[k-2] / all_var[k-1] ; insert = '_div_' 360 elif "mul_var" in ope: all_var[k] = all_var[k-2] * all_var[k-1] ; insert = '_mul_' 361 elif "add_var" in ope: all_var[k] = all_var[k-2] + all_var[k-1] ; insert = '_add_' 362 elif "sub_var" in ope: all_var[k] = all_var[k-2] - all_var[k-1] ; insert = '_sub_' 363 else: errormess(ope+" : non-implemented operation. Check pp.py --help") 364 numplot = numplot + 1 ; all_time[k] = all_time[k-1] ; all_namefile[k] = all_namefile[k-1] 365 all_varname[k] = all_varname[k-2] + insert + all_varname[k-1] 366 if len(clb) >= zelen: all_colorb[k] = clb[-1] # last additional user-defined color is for operation plot 367 else: all_colorb[k] = all_colorb[k-1] # if no additional user-defined color... set same as var 368 ### only the operation plot. do not mention colorb so that it is user-defined? 369 if "only" in ope: 370 numplot = 1 ; all_var[0] = all_var[k] 371 all_time[0] = all_time[k] ; all_namefile[0] = all_namefile[k] 372 all_varname[0] = all_varname[k-2] + insert + all_varname[k-1] 373 335 ### Operation on files (I) with _var 336 if ope is not None and "var" in ope: 337 print "********** OPERATION: ",ope 338 if len(namefiles) > 1: errormess("for this operation... please set only one file !") 339 if len(var) > 2: errormess("not sure this works for more than 2 vars... please check.") 340 if "div_var" in ope: all_var[k] = all_var[k-2] / all_var[k-1] ; insert = '_div_' 341 elif "mul_var" in ope: all_var[k] = all_var[k-2] * all_var[k-1] ; insert = '_mul_' 342 elif "add_var" in ope: all_var[k] = all_var[k-2] + all_var[k-1] ; insert = '_add_' 343 elif "sub_var" in ope: all_var[k] = all_var[k-2] - all_var[k-1] ; insert = '_sub_' 344 else: errormess(ope+" : non-implemented operation. Check pp.py --help") 345 plot_x[k] = None ; plot_y[k] = None 346 all_time[k] = all_time[k-1] ; all_vert[k] = all_vert[k-1] ; all_lat[k] = all_lat[k-1] ; all_lon[k] = all_lon[k-1] ; all_namefile[k] = all_namefile[k-1] 347 all_varname[k] = all_varname[k-2] + insert + all_varname[k-1] 348 if len(clb) >= zelen: all_colorb[k] = clb[-1] # last additional user-defined color is for operation plot 349 else: all_colorb[k] = all_colorb[k-1] # if no additional user-defined color... set same as var 350 ### only the operation plot. do not mention colorb so that it is user-defined? 351 if "only" in ope: 352 numplot = 1 ; all_var[0] = all_var[k] 353 all_time[0] = all_time[k] ; all_vert[0] = all_vert[k] ; all_lat[0] = all_lat[k] ; all_lon[0] = all_lon[k] ; all_namefile[0] = all_namefile[k] 354 all_varname[0] = all_varname[k-2] + insert + all_varname[k-1] 355 356 357 ################################## 358 ### Operation on files (II) without _var 359 # we re-iterate on the plots to set operation subplots to make it compatible with multifile (using the same ref file) 360 # (k+1)%3==0 is the index of operation plots 361 # (k+2)%3==0 is the index of reference plots 362 # (k+3)%3==0 is the index of first plots 363 opefirstpass=True 364 if ope is not None and "var" not in ope: 365 print "********** OPERATION: ",ope 366 for k in np.arange(zelen): 367 if len(var) > 1: errormess("for this operation... please set only one var !") 368 if ope in ["-","+","-%","-_only","+_only","-%_only","-_histo"]: 369 if fileref is None: errormess("fileref is missing!") 370 else:ncref = Dataset(fileref) 371 372 if opefirstpass: ## first plots 373 for ll in np.arange(len(namefiles)): 374 print "SETTING FIRST PLOT" 375 all_varname[3*ll] = all_varname[ll] ; all_time[3*ll] = all_time[ll] ; all_vert[3*ll] = all_vert[ll] ; all_lat[3*ll] = all_lat[ll] ; all_lon[3*ll] = all_lon[ll] ; all_namefile[3*ll] = all_namefile[ll] ; all_var2[3*ll] = all_var2[ll] ; all_colorb[3*ll] = all_colorb[ll] ; all_var[3*ll] = all_var[ll] 376 if plot_y[ll] is not None: plot_y[3*ll] = plot_y[ll] ; plot_x[3*ll] = plot_x[ll] 377 else: plot_y[3*ll] = None ; plot_x[3*ll] = None 378 opefirstpass=False 379 380 if (k+2)%3==0: ## reference plots 381 print "SETTING REFERENCE PLOT" 382 all_varname[k] = all_varname[k-1] ; all_time[k] = all_time[k-1] ; all_vert[k] = all_vert[k-1] ; all_lat[k] = all_lat[k-1] ; all_lon[k] = all_lon[k-1] ; all_namefile[k] = all_namefile[k-1] ; all_var2[k] = all_var2[k-1] ; all_colorb[k] = all_colorb[k-1] 383 all_var[k], plot_x[k], plot_y[k] = select_getfield(zvarname=all_varname[k-1],znc=ncref,ztypefile=typefile,mode='getvar',ztsat=tsat,ylon=all_lon[k],ylat=all_lat[k],yalt=all_vert[k],ytime=all_time[k],analysis=analysis) 384 if winds: all_windu[k] = getfield(ncref,uchar) ; all_windv[k] = getfield(ncref,vchar) 385 386 if (k+1)%3==0: ## operation plots 387 print "SETTING OPERATION PLOT" 388 all_varname[k] = all_varname[k-1] ; all_time[k] = all_time[k-1] ; all_vert[k] = all_vert[k-1] ; all_lat[k] = all_lat[k-1] ; all_lon[k] = all_lon[k-1] ; all_namefile[k] = all_namefile[k-1] ; all_var2[k] = all_var2[k-1] 389 if ope in ["-","-_only","-_histo"]: 390 all_var[k]= all_var[k-2] - all_var[k-1] 391 if plot_y[k-1] is not None and plot_y[k-2] is not None: plot_y[k] = plot_y[k-2] - plot_y[k-1] 392 if plot_y[k-2] is None: plot_y[k] = None; plot_x[k] = None 393 elif ope in ["+","+_only"]: 394 all_var[k]= all_var[k-2] + all_var[k-1] 395 if plot_y[k-1] is not None and plot_y[k-2] is not None: plot_y[k] = plot_y[k-2] + plot_y[k-1] 396 if plot_y[k-2] is None: plot_y[k] = None; plot_x[k] = None 397 elif ope in ["-%","-%_only"]: 398 masked = np.ma.masked_where(all_var[k-1] == 0,all_var[k-1]) 399 masked.set_fill_value([np.NaN]) 400 all_var[k]= 100.*(all_var[k-2] - masked)/masked 401 if plot_y[k-1] is not None and plot_y[k-2] is not None: 402 masked = np.ma.masked_where(plot_y[k-1] == 0,plot_y[k-1]) 403 masked.set_fill_value([np.NaN]) 404 plot_y[k]= 100.*(plot_y[k-2] - masked)/masked 405 if plot_y[k-2] is None: plot_y[k] = None; plot_x[k] = None 406 if len(clb) >= zelen: all_colorb[k] = clb[-1] 407 else: all_colorb[k] = "RdBu_r" # if no additional user-defined color... set a good default one 408 if winds: all_windu[k] = all_windu[k-2]-all_windu[k-1] ; all_windv[k] = all_windv[k-2] - all_windv[k-1] 409 410 elif ope in ["cat"]: 411 tabtime = all_time[0];tab = all_var[0];k = 1 412 if var2: tab2 = all_var2[0] 413 while k != len(namefiles) and len(all_time[k]) != 0: 414 if var2: tab2 = np.append(tab2,all_var2[k],axis=0) 415 tabtime = np.append(tabtime,all_time[k]) ; tab = np.append(tab,all_var[k],axis=0) ; k += 1 416 all_time[0] = np.array(tabtime) ; all_var[0] = np.array(tab) ; numplot = 1 417 if var2: all_var2[0] = np.array(tab2) 418 else: errormess(ope+" : non-implemented operation. Check pp.py --help") 419 if "only" in ope: 420 numplot = 1 ; all_var[0] = all_var[k] 421 all_time[0] = all_time[k] ; all_vert[0] = all_vert[k] ; all_lat[0] = all_lat[k] ; all_lon[0] = all_lon[k] ; all_namefile[0] = all_namefile[k] ; plot_x[0]=plot_x[k] ; plot_y[0]=plot_y[k] 422 all_varname[0] = all_varname[k] 374 423 375 424 ################################## … … 377 426 fig = figure() 378 427 subv,subh = definesubplot( numplot, fig ) 379 if ope in ['-','-%']: subv,subh = 2,2 428 if ope in ['-','-%','-_histo'] and len(namefiles) ==1 : subv,subh = 2,2 429 elif ope in ['-','-%'] and len(namefiles)>1 : subv, subh = len(namefiles), 3 380 430 381 431 ################################# 382 432 ### Time loop for plotting device 383 nplot = 1 ; error = False 433 nplot = 1 ; error = False ; firstpass = True 384 434 if lstyle is not None: linecycler = cycle(lstyle) 385 435 else: linecycler = cycle(["-","--","-.",":"]) … … 387 437 while error is False: 388 438 389 print "********** NPLOT", nplot439 print "********** PLOT", nplot, " OF ",numplot 390 440 if nplot > numplot: break 391 441 … … 393 443 ## get all indexes to be taken into account for this subplot and then reduce field 394 444 ## We plot 1) all lon slices 2) all lat slices 3) all vert slices 4) all time slices and then go to the next slice 445 if ope is not None: 446 if fileref is not None: index_f = ((nplot-1)//(nlon*nlat*nvert*ntime))%(3*len(namefiles)) ## OK only 1 var, see test in the beginning 447 elif "var" in ope: index_f = ((nplot-1)//(nlon*nlat*nvert*ntime))%(len(var)+1) ## OK only 1 file, see test in the beginning 448 elif "cat" in ope: index_f = 0 449 elif not firstpass: 450 if len(namefiles) > 1 and len(var) == 1 and which == "unidim": pass 451 else: yeah = len(namefiles)*len(var) ; index_f = ((nplot-1)//(nlon*nlat*nvert*ntime))%yeah 452 else: yeah = len(namefiles)*len(var) ; index_f = ((nplot-1)//(nlon*nlat*nvert*ntime))%yeah 453 time = all_time[index_f] ; vert = all_vert[index_f] ; lat = all_lat[index_f] ; lon = all_lon[index_f] 395 454 indexlon = getsindex(sslon,(nplot-1)%nlon,lon) 396 455 indexlat = getsindex(sslat,((nplot-1)//nlon)%nlat,lat) 397 indexvert = getsindex(svert,((nplot-1)//(nlon*nlat))%nvert,vert) 398 if ope is not None: 399 if fileref is not None: index_f = ((nplot-1)//(nlon*nlat*nvert*ntime))%(len(namefiles)+2) ## OK only 1 var, see test in the beginning 400 elif "var" in ope: index_f = ((nplot-1)//(nlon*nlat*nvert*ntime))%(len(var)+1) ## OK only 1 file, see test in the beginning 401 elif "cat" in ope: index_f = 0 402 else: yeah = len(namefiles)*len(var) ; index_f = ((nplot-1)//(nlon*nlat*nvert*ntime))%yeah 403 time = all_time[index_f] 456 indexvert = getsindex(svert,((nplot-1)//(nlon*nlat))%nvert,vert) 457 plotx=plot_x[index_f] ; ploty=plot_y[index_f] 404 458 if mrate is not None: indextime = None 405 459 else: indextime = getsindex(stime,((nplot-1)//(nlon*nlat*nvert))%ntime,time) 406 460 ltst = None 407 if typefile in ['meso'] and indextime is not None : ltst = localtime ( interv[0]+indextime*interv[1], 0.5*(wlon[0]+wlon[1]) )461 if typefile in ['meso'] and indextime is not None and len(indextime) < 2: ltst = localtime ( indextime, slon , nc) 408 462 print "********** INDEX LON:",indexlon," LAT:",indexlat," VERT:",indexvert," TIME:",indextime 409 463 ##var = nc.variables["phisinit"][:,:] … … 419 473 error = False 420 474 varname = all_varname[index_f] 475 which='' 421 476 if varname: ### what is shaded. 422 477 what_I_plot, error = reducefield( all_var[index_f], d4=indextime, d1=indexlon, d2=indexlat, d3=indexvert, \ … … 432 487 vecy, error = reducefield( all_windv[index_f], d4=indextime, d3=indexvert, yint=yintegral, alt=vert) 433 488 if varname in [uchar,vchar]: what_I_plot = np.sqrt( np.square(vecx) + np.square(vecy) ) ; varname = "wind" 434 489 490 if plotx is not None: 491 plotx, error = reducefield( plotx, d4=indextime, d1=indexlon, d2=indexlat, d3=indexvert, \ 492 yint=yintegral, alt=vert, anomaly=anomaly, redope=redope, mesharea=area, unidim=is1d) 493 ploty, error = reducefield( ploty, d4=indextime, d1=indexlon, d2=indexlat, d3=indexvert, \ 494 yint=yintegral, alt=vert, anomaly=anomaly, redope=redope, mesharea=area, unidim=is1d) 495 which='xy' 435 496 ##################################################################### 436 497 #if truc: … … 452 513 #################################################################### 453 514 ### General plot settings 454 changesubplot = (numplot > 1) and (len(what_I_plot.shape) != 1) ## default for 1D plots: superimposed. to be reworked for better flexibility.515 changesubplot = (numplot > 1) and (len(what_I_plot.shape) != 1) and (which != "xy") ## default for 1D plots: superimposed. to be reworked for better flexibility. 455 516 if changesubplot: subplot(subv,subh,nplot) #; subplots_adjust(wspace=0,hspace=0) 456 517 colorb = all_colorb[index_f] … … 474 535 if slat is not None: lonyeah = lon2d[0,:] 475 536 what_I_plot, x, y = define_axis(lonyeah,latyeah,vert,time,indexlon,indexlat,indexvert,\ 476 itime,what_I_plot, len(all_var[index_f].shape),vertmode )537 itime,what_I_plot, len(all_var[index_f].shape),vertmode,redope) 477 538 ### 478 if (fileref is not None) and ( index_f == numplot-1): zevmin, zevmax = calculate_bounds(what_I_plot,vmin=minop,vmax=maxop)539 if (fileref is not None) and ((index_f+1)%3 == 0): zevmin, zevmax = calculate_bounds(what_I_plot,vmin=minop,vmax=maxop) 479 540 else: zevmin, zevmax = calculate_bounds(what_I_plot,vmin=vmin,vmax=vmax) 480 541 #if (fileref is not None) and (index_f == numplot-1): colorb = "RdBu_r" … … 493 554 if mrate is not None: iend=len(time)-1 494 555 else: iend=0 495 imov = 0 496 if len(what_I_plot.shape) == 3: 497 if var2: which = "contour" ## have to start with contours rather than shading 498 else: which = "regular" 556 imov = 0 557 if analysis in ['density','histo','fft','histodensity']: which="xy" 558 elif len(what_I_plot.shape) == 3: 559 if var2 and which == '': which = "contour" ## have to start with contours rather than shading 560 elif which == '': which = "regular" 499 561 if mrate is None: errormess("3D field. Use --rate RATE for movie or specify --time TIME. Exit.") 500 562 elif len(what_I_plot.shape) == 2: 501 if var2 : which = "contour" ## have to start with contours rather than shading502 el se:which = "regular"503 if mrate is not None : which = "unidim"504 elif len(what_I_plot.shape) == 1 :563 if var2 and which == '': which = "contour" ## have to start with contours rather than shading 564 elif which == '': which = "regular" 565 if mrate is not None and which == '': which = "unidim" 566 elif len(what_I_plot.shape) == 1 and which == '' : 505 567 which = "unidim" 506 568 if what_I_plot.shape[-1] == 1: print "VALUE VALUE VALUE VALUE ::: ", what_I_plot[0] ; save = 'donothing' 569 ## if which == "unidim" and len(namefiles) > 1: numplot = 1 # this case is similar to several vars from one file 507 570 ##### IMOV LOOP #### IMOV LOOP 508 571 while imov <= iend: … … 522 585 #if mrate is not None: 523 586 if mapmode == 1: 524 525 587 m = define_proj(proj,wlon,wlat,back=back,blat=blat,blon=blon) ## this is dirty, defined above but out of imov loop 588 x, y = m(lon2d, lat2d) ## this is dirty, defined above but out of imov loop 526 589 if typefile in ['meso'] and mapmode == 1: what_I_plot_frame = dumpbdy(what_I_plot_frame,6,condition=True) 527 590 # if typefile in ['mesoideal']: what_I_plot_frame = dumpbdy(what_I_plot_frame,0,stag='W',condition=dumped_vert_stag) 528 591 529 592 if which == "unidim": 530 if lbls is not None: lbl=lbls[nplot-1] 593 # if lbls is not None: lbl=lbls[nplot-1] 594 if lbls is not None: lbl=lbls[index_f] 531 595 else: 532 596 lbl = "" … … 549 613 if indextime is None and axtime is not None and xlab is None: xlabel(axtime.upper()) ## define the right label 550 614 if save == 'txt': writeascii(np.transpose([x,np.transpose(what_I_plot)]),'profile'+str(nplot*1000+imov)+'.txt') 615 616 elif which == "xy": 617 if lbls is not None: lbl=lbls[index_f] 618 else: lbl=None 619 if analysis is not None: 620 if analysis == 'histo': 621 if zelen == 1: 622 mpl.pyplot.hist(ploty.flatten(),bins=ndiv,normed=True, alpha=0.67, facecolor = 'green', label = lbls) 623 mpl.pyplot.legend() 624 mpl.pyplot.grid(True) 625 mpl.pyplot.title(zetitle) 626 else: 627 multiplot[index_f]=ploty.flatten() 628 if index_f == zelen-1: 629 if ope is not None: multiplot = getVar(multiplot,3*np.arange((index_f+1)/3)+2) ## we only compute histograms for the operation plots 630 mpl.pyplot.hist(multiplot,bins=ndiv,normed=True, alpha=0.75, label = lbls) 631 mpl.pyplot.legend() 632 mpl.pyplot.grid(True) 633 mpl.pyplot.title(zetitle) 634 elif analysis in ['density','histodensity']: 635 if ope is not None and (index_f+1)%3 !=0: pass 636 else: 637 plotx = np.linspace(min(ploty.flatten()),max(ploty.flatten()),1000) 638 density = gaussian_kde(ploty.flatten()) 639 # density.covariance_factor = lambda : .25 # adjust the covariance factor to change the bandwidth if needed 640 # density._compute_covariance() 641 # display the mean and variance of the kde: 642 sample = density.resample(size=20000) 643 n, (smin, smax), sm, sv, ss, sk = describe(sample[0]) 644 mpl.pyplot.plot(plotx,density(plotx), label = lbl+'\nmean: '+str(sm)[0:5]+' std: '+str(np.sqrt(sv))[0:5]+'\nskewness: '+str(ss)[0:5]+' kurtosis: '+str(sk)[0:5]) 645 if analysis == 'histodensity': # plot both histo and density (to assess the rightness of the kernel density estimate for exemple) and display the estimated variance 646 mpl.pyplot.hist(ploty.flatten(),bins=ndiv,normed=True, alpha=0.30, label = lbl) 647 if index_f == zelen-1: mpl.pyplot.legend() ; mpl.pyplot.title(zetitle) 648 else: 649 plot(plotx,ploty,label = lbl) 650 if index_f == zelen-1: mpl.pyplot.legend() ; mpl.pyplot.title(zetitle) 651 mpl.pyplot.grid(True) 652 else: 653 plot(plotx,ploty,label = lbl) 654 if index_f == zelen-1: mpl.pyplot.legend() ; mpl.pyplot.title(zetitle) 655 if varname == 'hodograph': 656 a=0 657 for ii in np.arange(len(time)): 658 if a%6 == 0: mpl.pyplot.text(plotx[ii],ploty[ii],time[ii]) 659 a=a+1 660 mpl.pyplot.grid(True) 551 661 552 662 elif which == "regular": … … 590 700 591 701 if colorb not in ['nobar','onebar']: 592 if (fileref is not None) and ( index_f == numplot-1): daformat = "%.3f"702 if (fileref is not None) and ((index_f+1)%3 == 0): daformat = "%.3f" 593 703 elif mult != 1: daformat = "%.1f" 594 704 else: daformat = fmtvar(fvar.upper()) … … 614 724 #200. ## or csmooth=stride 615 725 ### THIS IS A QUITE SPECIFIC PIECE (does not work for mesoscale files) 616 if ope == '- ' and nplot == numplot: # this should work as long as ope is '-' guarantees 3 plots for 4 panels without contour726 if ope == '-_histo' and nplot == numplot: # this should work as long as ope is '-' guarantees 3 plots for 4 panels without contour 617 727 subplot(subv,subh,nplot+1) 618 728 rcParams["legend.fontsize"] = 'xx-large' … … 632 742 plot(zebins, zegauss, linewidth=1, color='r',label="mean: "+str(zemean)[0:5]+"\nstd: "+str(zestd)[0:5]) 633 743 legend(loc=0,frameon=False) 634 title("Histogram fig(1) "+ope+" fig(2)")635 744 subplot(subv,subh,nplot) # go back to last plot for title of contour difference 745 if ope is not None and "only" not in ope: title("fig(1) "+ope+" fig(2)") 746 elif ope is not None and "only" in ope: title("fig(1) "+ope[0]+" fig(2)") 636 747 637 748 elif which == "contour": … … 647 758 if mapmode == 0: 648 759 what_I_plot_frame, x, y = define_axis( lonyeah,latyeah,vert,time,indexlon,indexlat,indexvert,\ 649 itime,what_I_plot_frame, len(all_var2[index_f].shape),vertmode 760 itime,what_I_plot_frame, len(all_var2[index_f].shape),vertmode,redope) 650 761 ## is this needed? only if len(all_var2[index_f].shape) != len(all_var[index_f].shape) 651 762 cs = contour( x,y,what_I_plot_frame, zelevels, colors='k', linewidths = 0.33)#, alpha=0.5, linestyles='solid') … … 655 766 cs = m.contour( x,y,what_I_plot_frame, zelevels, colors='k', linewidths = 0.33)#, alpha=0.5, linestyles='solid') 656 767 #clabel(cs, inline=0, fontsize = rcParams['font.size'], fmt="%.0f") #fmtvar(var2.upper())) 657 if which in ["regular","unidim" ]:658 659 if nplot > 1 and which == "unidim":768 if which in ["regular","unidim","xy"]: 769 770 if nplot > 1 and which in ["unidim","xy"]: 660 771 pass ## because we superimpose nplot instances 661 772 else: … … 666 777 if zymin is not None: mpl.pyplot.ylim(ymin=zymin) 667 778 if zymax is not None: mpl.pyplot.ylim(ymax=zymax) 668 if ylog: mpl.pyplot.semilogy() 779 if ylog and not xlog: mpl.pyplot.semilogy() 780 if xlog and not ylog: mpl.pyplot.semilogx() 781 if xlog and ylog: 782 mpl.pyplot.xscale('log') 783 mpl.pyplot.yscale('log') 669 784 if invert_y: ax = mpl.pyplot.gca() ; ax.set_ylim(ax.get_ylim()[::-1]) 670 785 if xlab is not None: xlabel(xlab) … … 715 830 else: 716 831 if fileref is not None: 717 if index_f is numplot-1: plottitle = basename+' '+"fig(1) "+ope+" fig(2)"718 elif index_f is numplot-2: plottitle = basename+' '+fileref719 832 if (index_f+1)%3 == 0: plottitle = basename+' '+"fig(1) "+ope+" fig(2)" 833 elif (index_f+2)%3 == 0: plottitle = basename+' '+fileref 834 else: plottitle = basename+' '+all_namefile[index_f] 720 835 else: plottitle = basename+' '+all_namefile[index_f] 721 836 if mult != 1: plottitle = '{:.0e}'.format(mult) + "*" + plottitle … … 724 839 else: plottitle = zetitle[0] 725 840 if titleref is "fill": titleref=zetitle[index_f] 726 if fileref is not None :727 if index_f is numplot-2: plottitle = titleref728 if index_f is numplot-1: plottitle = "fig(1) "+ope+" fig(2)"841 if fileref is not None and which != "xy": 842 if (index_f+2)%3 == 0: plottitle = titleref 843 if (index_f+1)%3 == 0: plottitle = "fig(1) "+ope+" fig(2)" 729 844 # if indexlon is not None: plottitle = plottitle + " lon: " + str(min(lon[indexlon])) +" "+ str(max(lon[indexlon])) 730 845 # if indexlat is not None: plottitle = plottitle + " lat: " + str(min(lat[indexlat])) +" "+ str(max(lat[indexlat])) … … 734 849 if nplot >= numplot: error = True 735 850 nplot += 1 851 852 if len(namefiles) > 1 and len(var) == 1 and which == "unidim": index_f=index_f+1 853 firstpass=False 736 854 737 855 if colorb == "onebar": -
trunk/UTIL/PYTHON/pp.py
r760 r763 57 57 if opt.var is None: opt.var = ["HGT"] #; opt.clb = "nobar" # otherwise breaks the automatic one-var file capability 58 58 elif typefile in ["geo"]: 59 [lschar,zehour,zehourin] = ["",0,0]59 lschar="" 60 60 if opt.var is None: opt.var = ["HGT_M"] ; opt.clb = "nobar" 61 else: 62 [lschar,zehour,zehourin] = ["",0,0]61 else: 62 lschar="" 63 63 if opt.var is None: 64 64 opt.var = ["phisinit"] ; opt.clb = "nobar" … … 106 106 if opt.winds : zefields = 'uvmet' 107 107 elif opt.var[j] in ['deltat','DELTAT'] : zefields = 'tk,TSURF' 108 elif opt.var[j] in ['uv','UV','hodograph','hodograph_2'] : zefields = 'U,V' 108 109 else : zefields = '' 109 110 ### var or no var … … 163 164 proj=opt.proj,back=opt.back,target=opt.tgt,stride=opt.ste,var=zevars,\ 164 165 clb=separatenames(opt.clb),winds=opt.winds,\ 165 addchar=lschar, interv=[zehour,zehourin],vmin=zevmin,vmax=zevmax,\166 addchar=lschar,vmin=zevmin,vmax=zevmax,\ 166 167 tile=opt.tile,zoom=opt.zoom,display=opt.display,\ 167 168 hole=opt.hole,save=opt.save,\ … … 171 172 outputname=opt.out,resolution=opt.res,\ 172 173 ope=opt.operat,fileref=reffile,minop=opt.vminope,maxop=opt.vmaxope,titleref=opt.titref,\ 173 invert_y=opt.inverty,xaxis=zexaxis,yaxis=zeyaxis,ylog=opt.logy, yintegral=opt.column,\174 invert_y=opt.inverty,xaxis=zexaxis,yaxis=zeyaxis,ylog=opt.logy,xlog=opt.logx,yintegral=opt.column,\ 174 175 blat=opt.blat,blon=opt.blon,tsat=opt.tsat,flagnolow=opt.nolow,\ 175 176 mrate=opt.rate,mquality=opt.quality,trans=opt.trans,zarea=opt.area,axtime=opt.axtime,\ 176 177 redope=opt.redope,seevar=opt.seevar,xlab=opt.xlab,ylab=opt.ylab,lbls=separatenames(opt.labels),\ 177 178 lstyle=separatenames(opt.linestyle),cross=readslices(opt.mark),facwind=opt.facwind,\ 178 trycol=opt.trycol,streamflag=opt.stream )179 trycol=opt.trycol,streamflag=opt.stream,analysis=opt.analysis) 179 180 print 'DONE: '+name 180 181 system("rm -f to_be_erased")
Note: See TracChangeset
for help on using the changeset viewer.