Changeset 3529 for trunk/LMDZ.GENERIC/utilities/photochemistry
- Timestamp:
- Nov 26, 2024, 11:23:38 AM (2 days ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/LMDZ.GENERIC/utilities/photochemistry/Photochem_Visualizer.ipynb
r3528 r3529 122 122 { 123 123 "cell_type": "code", 124 "execution_count": null,124 "execution_count": 4, 125 125 "id": "776388e6-0506-428b-a99c-f02283bad4d8", 126 126 "metadata": {}, 127 127 "outputs": [], 128 128 "source": [ 129 "my "129 "my_sim.compute_rates()" 130 130 ] 131 131 }, … … 149 149 { 150 150 "cell_type": "code", 151 "execution_count": 4,151 "execution_count": 5, 152 152 "id": "f34cbcfa-339b-46dd-b33e-4c699a118f60", 153 153 "metadata": {}, … … 167 167 { 168 168 "cell_type": "code", 169 "execution_count": 5,169 "execution_count": 6, 170 170 "id": "f54ea828-ea01-4f8c-9349-e5f051ef7043", 171 171 "metadata": {}, … … 208 208 { 209 209 "cell_type": "code", 210 "execution_count": 6,210 "execution_count": 7, 211 211 "id": "2328745a-55e1-40d9-86c7-41f04bea872c", 212 212 "metadata": {}, … … 249 249 { 250 250 "cell_type": "code", 251 "execution_count": 7,251 "execution_count": 8, 252 252 "id": "4f544843-012d-41a6-8d7a-c4b40f45a5e1", 253 253 "metadata": {}, … … 293 293 { 294 294 "cell_type": "code", 295 "execution_count": 8,295 "execution_count": 9, 296 296 "id": "56b07967-3900-4454-ac0d-29cfae7cc1f9", 297 297 "metadata": {}, … … 326 326 { 327 327 "cell_type": "code", 328 "execution_count": 9,328 "execution_count": 10, 329 329 "id": "56e81d82-fd55-464c-a746-66cf23822957", 330 330 "metadata": {}, … … 333 333 "data": { 334 334 "application/vnd.jupyter.widget-view+json": { 335 "model_id": " 09d636f9d1544e818b3d65401146cc63",335 "model_id": "14ac96bee52944c99e53df9d8fd6ed33", 336 336 "version_major": 2, 337 337 "version_minor": 0 … … 341 341 ] 342 342 }, 343 "execution_count": 9,343 "execution_count": 10, 344 344 "metadata": {}, 345 345 "output_type": "execute_result" … … 369 369 { 370 370 "cell_type": "code", 371 "execution_count": 1 0,371 "execution_count": 11, 372 372 "id": "fd7b4103-0436-4bda-bb39-96666c39f332", 373 373 "metadata": {}, … … 376 376 "data": { 377 377 "application/vnd.jupyter.widget-view+json": { 378 "model_id": " c11050a864054709a98c962bcc721bb9",378 "model_id": "7931087537c2471289e1e968f1d99fc2", 379 379 "version_major": 2, 380 380 "version_minor": 0 … … 384 384 ] 385 385 }, 386 "execution_count": 1 0,386 "execution_count": 11, 387 387 "metadata": {}, 388 388 "output_type": "execute_result" … … 412 412 { 413 413 "cell_type": "code", 414 "execution_count": 1 1,414 "execution_count": 12, 415 415 "id": "e4691cae-637b-4555-ac87-d556521a4c3f", 416 416 "metadata": {}, … … 419 419 "data": { 420 420 "application/vnd.jupyter.widget-view+json": { 421 "model_id": " 8df03ed7eb3d46609f51c8c87fb3ff24",421 "model_id": "be3fdd341c364ae6a89147d4941723b6", 422 422 "version_major": 2, 423 423 "version_minor": 0 … … 427 427 ] 428 428 }, 429 "execution_count": 1 1,429 "execution_count": 12, 430 430 "metadata": {}, 431 431 "output_type": "execute_result" … … 459 459 { 460 460 "cell_type": "code", 461 "execution_count": 1 2,461 "execution_count": 13, 462 462 "id": "e4db2d8b-6183-4fbe-8ca1-940ef15aaa28", 463 463 "metadata": {}, … … 466 466 "data": { 467 467 "application/vnd.jupyter.widget-view+json": { 468 "model_id": " 5b689b68c4f34343989f2921d6600425",468 "model_id": "ec9ab05df80e4da2964b3ee2dc436940", 469 469 "version_major": 2, 470 470 "version_minor": 0 … … 474 474 ] 475 475 }, 476 "execution_count": 1 2,476 "execution_count": 13, 477 477 "metadata": {}, 478 478 "output_type": "execute_result" … … 512 512 { 513 513 "cell_type": "code", 514 "execution_count": 1 3,514 "execution_count": 14, 515 515 "id": "9dd59a1c-58c4-41f0-9730-9e97d2607c6a", 516 516 "metadata": {}, … … 519 519 "data": { 520 520 "application/vnd.jupyter.widget-view+json": { 521 "model_id": " b3c1d194f8d1489180e781b65a599d19",521 "model_id": "07740f3642a44b72bbd6bf3777dad80f", 522 522 "version_major": 2, 523 523 "version_minor": 0 … … 527 527 ] 528 528 }, 529 "execution_count": 1 3,529 "execution_count": 14, 530 530 "metadata": {}, 531 531 "output_type": "execute_result" … … 562 562 { 563 563 "cell_type": "code", 564 "execution_count": 1 4,564 "execution_count": 15, 565 565 "id": "ff21a3dc-d44a-4f0e-9aa4-211741bb592d", 566 566 "metadata": {}, … … 569 569 "data": { 570 570 "application/vnd.jupyter.widget-view+json": { 571 "model_id": " 70c2af3118d84892a85767a0ee9eb9ac",571 "model_id": "42b9e7928f514fed9754edfcbce8e897", 572 572 "version_major": 2, 573 573 "version_minor": 0 … … 577 577 ] 578 578 }, 579 "execution_count": 1 4,579 "execution_count": 15, 580 580 "metadata": {}, 581 581 "output_type": "execute_result" … … 610 610 { 611 611 "cell_type": "code", 612 "execution_count": 1 5,612 "execution_count": 16, 613 613 "id": "b5b73171-0101-4656-b2ce-7e398070ebbb", 614 614 "metadata": {}, … … 617 617 "data": { 618 618 "application/vnd.jupyter.widget-view+json": { 619 "model_id": " e7ddfcdad6234de69570d4d3e44cec4a",619 "model_id": "71f016cdee32419b92bbaee7409e9925", 620 620 "version_major": 2, 621 621 "version_minor": 0 … … 625 625 ] 626 626 }, 627 "execution_count": 1 5,627 "execution_count": 16, 628 628 "metadata": {}, 629 629 "output_type": "execute_result" … … 666 666 { 667 667 "cell_type": "code", 668 "execution_count": 1 6,668 "execution_count": 17, 669 669 "id": "c849fda1-3969-4709-bb17-fdcaff5cbf86", 670 670 "metadata": {}, … … 673 673 "data": { 674 674 "application/vnd.jupyter.widget-view+json": { 675 "model_id": " 69b988d5c7954448b2cd33e27d568329",675 "model_id": "5066b8d918a54391973628bb36173d9e", 676 676 "version_major": 2, 677 677 "version_minor": 0 … … 681 681 ] 682 682 }, 683 "execution_count": 1 6,683 "execution_count": 17, 684 684 "metadata": {}, 685 685 "output_type": "execute_result" 686 },687 {688 "data": {689 "image/png": "iVBORw0KGgoAAAANSUhEUgAAASAAAAGiCAYAAABH+xtTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAYvklEQVR4nO3cb2yV9f3/8VdbOKcYacF1PS3sYAMG/0Nnka4gIS5nNtHUcWOxE0M74p+pnVFONqEiVEQpc4w1kSKxU/GGjjqjxkhTp52NUbuQFJroBAwWbWd2DjSOc1iRFno+3xv7cfzVtspV275beD6S60Y/uz7nend6np5/PSnOOScAMJBqPQCA8xcBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJgxnOA3n33XZWUlGjGjBlKSUnRa6+99p17mpubdc0118jv9+uSSy7Rzp07hzEqgHON5wB1d3dr/vz5qq2tPavzDx8+rJtuuknXX3+92tra9MADD+iOO+7Qm2++6XlYAOeWlO/zx6gpKSl69dVXtWzZsiHPWb16tXbv3q2PPvooufbLX/5Sx44dU2Nj43AvDeAcMGm0L9DS0qJQKNRvrbi4WA888MCQe3p6etTT05P8OZFI6Msvv9QPfvADpaSkjNaoAIbgnNPx48c1Y8YMpaaO3EvHox6gSCSiQCDQby0QCCgej+urr77SlClTBuyprq7Whg0bRns0AB51dnbqRz/60Yjd3qgHaDgqKysVDoeTP8diMc2aNUudnZ3KyMgwnAw4P8XjcQWDQU2dOnVEb3fUA5STk6NoNNpvLRqNKiMjY9BHP5Lk9/vl9/sHrGdkZBAgwNBIvwQy6p8DKioqUlNTU7+1t956S0VFRaN9aQDjnOcA/fe//1VbW5va2tok/e9t9ra2NnV0dEj639OnsrKy5Pl333232tvb9eCDD+rAgQPavn27XnrpJa1atWpkfgMAE5fz6J133nGSBhzl5eXOOefKy8vd0qVLB+zJz893Pp/PzZ492z333HOerhmLxZwkF4vFvI4LYASM1n3we30OaKzE43FlZmYqFovxGhBgYLTug/wtGAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMDCtAtbW1ysvLU3p6ugoLC7Vnz55vPb+mpkaXXnqppkyZomAwqFWrVunkyZPDGhjAucNzgOrr6xUOh1VVVaW9e/dq/vz5Ki4u1pEjRwY9/8UXX9SaNWtUVVWl/fv365lnnlF9fb0eeuih7z08gInNc4C2bt2qO++8UytXrtQVV1yhHTt26IILLtCzzz476PkffPCBFi9erOXLlysvL0833HCDbr311u981ATg3OcpQL29vWptbVUoFPr6BlJTFQqF1NLSMuieRYsWqbW1NRmc9vZ2NTQ06MYbbxzyOj09PYrH4/0OAOeeSV5O7urqUl9fnwKBQL/1QCCgAwcODLpn+fLl6urq0nXXXSfnnE6fPq277777W5+CVVdXa8OGDV5GAzABjfq7YM3Nzdq0aZO2b9+uvXv36pVXXtHu3bu1cePGIfdUVlYqFoslj87OztEeE4ABT4+AsrKylJaWpmg02m89Go0qJydn0D3r1q3TihUrdMcdd0iSrr76anV3d+uuu+7S2rVrlZo6sIF+v19+v9/LaAAmIE+PgHw+nwoKCtTU1JRcSyQSampqUlFR0aB7Tpw4MSAyaWlpkiTnnNd5AZxDPD0CkqRwOKzy8nItWLBACxcuVE1Njbq7u7Vy5UpJUllZmWbOnKnq6mpJUklJibZu3aof//jHKiws1KFDh7Ru3TqVlJQkQwTg/OQ5QKWlpTp69KjWr1+vSCSi/Px8NTY2Jl+Y7ujo6PeI5+GHH1ZKSooefvhhffHFF/rhD3+okpISPf744yP3WwCYkFLcBHgeFI/HlZmZqVgspoyMDOtxgPPOaN0H+VswAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJgZVoBqa2uVl5en9PR0FRYWas+ePd96/rFjx1RRUaHc3Fz5/X7NnTtXDQ0NwxoYwLljktcN9fX1CofD2rFjhwoLC1VTU6Pi4mIdPHhQ2dnZA87v7e3Vz372M2VnZ+vll1/WzJkz9fnnn2vatGkjMT+ACSzFOee8bCgsLNS1116rbdu2SZISiYSCwaDuu+8+rVmzZsD5O3bs0B/+8AcdOHBAkydPHtaQ8XhcmZmZisViysjIGNZtABi+0boPenoK1tvbq9bWVoVCoa9vIDVVoVBILS0tg+55/fXXVVRUpIqKCgUCAV111VXatGmT+vr6hrxOT0+P4vF4vwPAucdTgLq6utTX16dAINBvPRAIKBKJDLqnvb1dL7/8svr6+tTQ0KB169bpj3/8ox577LEhr1NdXa3MzMzkEQwGvYwJYIIY9XfBEomEsrOz9fTTT6ugoEClpaVau3atduzYMeSeyspKxWKx5NHZ2TnaYwIw4OlF6KysLKWlpSkajfZbj0ajysnJGXRPbm6uJk+erLS0tOTa5Zdfrkgkot7eXvl8vgF7/H6//H6/l9EATECeHgH5fD4VFBSoqakpuZZIJNTU1KSioqJB9yxevFiHDh1SIpFIrn3yySfKzc0dND4Azh+en4KFw2HV1dXp+eef1/79+3XPPfeou7tbK1eulCSVlZWpsrIyef4999yjL7/8Uvfff78++eQT7d69W5s2bVJFRcXI/RYAJiTPnwMqLS3V0aNHtX79ekUiEeXn56uxsTH5wnRHR4dSU7/uWjAY1JtvvqlVq1Zp3rx5mjlzpu6//36tXr165H4LABOS588BWeBzQICtcfE5IAAYSQQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzAwrQLW1tcrLy1N6eroKCwu1Z8+es9q3a9cupaSkaNmyZcO5LIBzjOcA1dfXKxwOq6qqSnv37tX8+fNVXFysI0eOfOu+zz77TL/97W+1ZMmSYQ8L4NziOUBbt27VnXfeqZUrV+qKK67Qjh07dMEFF+jZZ58dck9fX59uu+02bdiwQbNnz/7Oa/T09Cgej/c7AJx7PAWot7dXra2tCoVCX99AaqpCoZBaWlqG3Pfoo48qOztbt99++1ldp7q6WpmZmckjGAx6GRPABOEpQF1dXerr61MgEOi3HggEFIlEBt3z3nvv6ZlnnlFdXd1ZX6eyslKxWCx5dHZ2ehkTwAQxaTRv/Pjx41qxYoXq6uqUlZV11vv8fr/8fv8oTgZgPPAUoKysLKWlpSkajfZbj0ajysnJGXD+p59+qs8++0wlJSXJtUQi8b8LT5qkgwcPas6cOcOZG8A5wNNTMJ/Pp4KCAjU1NSXXEomEmpqaVFRUNOD8yy67TB9++KHa2tqSx80336zrr79ebW1tvLYDnOc8PwULh8MqLy/XggULtHDhQtXU1Ki7u1srV66UJJWVlWnmzJmqrq5Wenq6rrrqqn77p02bJkkD1gGcfzwHqLS0VEePHtX69esViUSUn5+vxsbG5AvTHR0dSk3lA9YAvluKc85ZD/Fd4vG4MjMzFYvFlJGRYT0OcN4ZrfsgD1UAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYGZYAaqtrVVeXp7S09NVWFioPXv2DHluXV2dlixZounTp2v69OkKhULfej6A84fnANXX1yscDquqqkp79+7V/PnzVVxcrCNHjgx6fnNzs2699Va98847amlpUTAY1A033KAvvvjiew8PYGJLcc45LxsKCwt17bXXatu2bZKkRCKhYDCo++67T2vWrPnO/X19fZo+fbq2bdumsrKyQc/p6elRT09P8ud4PK5gMKhYLKaMjAwv4wIYAfF4XJmZmSN+H/T0CKi3t1etra0KhUJf30BqqkKhkFpaWs7qNk6cOKFTp07poosuGvKc6upqZWZmJo9gMOhlTAAThKcAdXV1qa+vT4FAoN96IBBQJBI5q9tYvXq1ZsyY0S9i31RZWalYLJY8Ojs7vYwJYIKYNJYX27x5s3bt2qXm5malp6cPeZ7f75ff7x/DyQBY8BSgrKwspaWlKRqN9luPRqPKycn51r1btmzR5s2b9fbbb2vevHneJwVwzvH0FMzn86mgoEBNTU3JtUQioaamJhUVFQ2574knntDGjRvV2NioBQsWDH9aAOcUz0/BwuGwysvLtWDBAi1cuFA1NTXq7u7WypUrJUllZWWaOXOmqqurJUm///3vtX79er344ovKy8tLvlZ04YUX6sILLxzBXwXAROM5QKWlpTp69KjWr1+vSCSi/Px8NTY2Jl+Y7ujoUGrq1w+snnrqKfX29uoXv/hFv9upqqrSI4888v2mBzChef4ckIXR+gwCgLMzLj4HBAAjiQABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAmWEFqLa2Vnl5eUpPT1dhYaH27Nnzref/9a9/1WWXXab09HRdffXVamhoGNawAM4tngNUX1+vcDisqqoq7d27V/Pnz1dxcbGOHDky6PkffPCBbr31Vt1+++3at2+fli1bpmXLlumjjz763sMDmNhSnHPOy4bCwkJde+212rZtmyQpkUgoGAzqvvvu05o1awacX1paqu7ubr3xxhvJtZ/85CfKz8/Xjh07Br1GT0+Penp6kj/HYjHNmjVLnZ2dysjI8DIugBEQj8cVDAZ17NgxZWZmjtwNOw96enpcWlqae/XVV/utl5WVuZtvvnnQPcFg0P3pT3/qt7Z+/Xo3b968Ia9TVVXlJHFwcIyz49NPP/WSjO80SR50dXWpr69PgUCg33ogENCBAwcG3ROJRAY9PxKJDHmdyspKhcPh5M/Hjh3TxRdfrI6OjpGt7yg681+MifSojZnHxkSc+cyzkIsuumhEb9dTgMaK3++X3+8fsJ6ZmTlh/oGdkZGRwcxjgJnHRmrqyL5x7unWsrKylJaWpmg02m89Go0qJydn0D05OTmezgdw/vAUIJ/Pp4KCAjU1NSXXEomEmpqaVFRUNOieoqKifudL0ltvvTXk+QDOI15fNNq1a5fz+/1u586d7uOPP3Z33XWXmzZtmotEIs4551asWOHWrFmTPP/99993kyZNclu2bHH79+93VVVVbvLkye7DDz8862uePHnSVVVVuZMnT3od1wwzjw1mHhujNbPnADnn3JNPPulmzZrlfD6fW7hwofvHP/6R/N+WLl3qysvL+53/0ksvublz5zqfz+euvPJKt3v37u81NIBzg+fPAQHASOFvwQCYIUAAzBAgAGYIEAAz4yZAE/ErPrzMXFdXpyVLlmj69OmaPn26QqHQd/6Oo8Hr/89n7Nq1SykpKVq2bNnoDjgIrzMfO3ZMFRUVys3Nld/v19y5c8f83w+vM9fU1OjSSy/VlClTFAwGtWrVKp08eXKMppXeffddlZSUaMaMGUpJSdFrr732nXuam5t1zTXXyO/365JLLtHOnTu9X9j6bTjn/vfZIp/P55599ln3z3/+0915551u2rRpLhqNDnr++++/79LS0twTTzzhPv74Y/fwww97/mzRWM+8fPlyV1tb6/bt2+f279/vfvWrX7nMzEz3r3/9a9zOfMbhw4fdzJkz3ZIlS9zPf/7zsRn2//E6c09Pj1uwYIG78cYb3XvvvecOHz7smpubXVtb27id+YUXXnB+v9+98MIL7vDhw+7NN990ubm5btWqVWM2c0NDg1u7dq175ZVXnKQBf3D+Te3t7e6CCy5w4XDYffzxx+7JJ590aWlprrGx0dN1x0WAFi5c6CoqKpI/9/X1uRkzZrjq6upBz7/lllvcTTfd1G+tsLDQ/frXvx7VOf9/Xmf+ptOnT7upU6e6559/frRGHGA4M58+fdotWrTI/fnPf3bl5eVjHiCvMz/11FNu9uzZrre3d6xGHMDrzBUVFe6nP/1pv7VwOOwWL148qnMO5WwC9OCDD7orr7yy31ppaakrLi72dC3zp2C9vb1qbW1VKBRKrqWmpioUCqmlpWXQPS0tLf3Ol6Ti4uIhzx9pw5n5m06cOKFTp06N+F8XD2W4Mz/66KPKzs7W7bffPhZj9jOcmV9//XUVFRWpoqJCgUBAV111lTZt2qS+vr5xO/OiRYvU2tqafJrW3t6uhoYG3XjjjWMy83CM1H3Q/K/hx+orPkbScGb+ptWrV2vGjBkD/iGOluHM/N577+mZZ55RW1vbGEw40HBmbm9v19///nfddtttamho0KFDh3Tvvffq1KlTqqqqGpczL1++XF1dXbruuuvknNPp06d1991366GHHhr1eYdrqPtgPB7XV199pSlTppzV7Zg/Ajofbd68Wbt27dKrr76q9PR063EGdfz4ca1YsUJ1dXXKysqyHuesJRIJZWdn6+mnn1ZBQYFKS0u1du3aIb99czxobm7Wpk2btH37du3du1evvPKKdu/erY0bN1qPNurMHwFNxK/4GM7MZ2zZskWbN2/W22+/rXnz5o3mmP14nfnTTz/VZ599ppKSkuRaIpGQJE2aNEkHDx7UnDlzxtXMkpSbm6vJkycrLS0tuXb55ZcrEomot7dXPp9v3M28bt06rVixQnfccYck6eqrr1Z3d7fuuusurV27dsS/g2ckDHUfzMjIOOtHP9I4eAQ0Eb/iYzgzS9ITTzyhjRs3qrGxUQsWLBiLUZO8znzZZZfpww8/VFtbW/K4+eabdf3116utrU3BYHDczSxJixcv1qFDh5KxlKRPPvlEubm5ox6f4c584sSJAZE5E1A3Tv9Uc8Tug95eHx8dFl/xMdYzb9682fl8Pvfyyy+7f//738nj+PHj43bmb7J4F8zrzB0dHW7q1KnuN7/5jTt48KB74403XHZ2tnvsscfG7cxVVVVu6tSp7i9/+Ytrb293f/vb39ycOXPcLbfcMmYzHz9+3O3bt8/t27fPSXJbt251+/btc59//rlzzrk1a9a4FStWJM8/8zb87373O7d//35XW1s7cd+Gd25ifsWHl5kvvvjiQb/ku6qqatzO/E0WAXLO+8wffPCBKywsdH6/382ePds9/vjj7vTp0+N25lOnTrlHHnnEzZkzx6Wnp7tgMOjuvfde95///GfM5n3nnXcG/ffzzJzl5eVu6dKlA/bk5+c7n8/nZs+e7Z577jnP1+XrOACYMX8NCMD5iwABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACY+T+wEjtFJei6JAAAAABJRU5ErkJggg==",690 "text/plain": [691 "<Figure size 640x480 with 1 Axes>"692 ]693 },694 "metadata": {},695 "output_type": "display_data"696 686 } 697 687 ], … … 746 736 { 747 737 "cell_type": "code", 748 "execution_count": 1 7,738 "execution_count": 18, 749 739 "id": "e25768d8-914b-4409-947d-b3aa3f3d9c87", 750 740 "metadata": {}, … … 798 788 { 799 789 "cell_type": "code", 800 "execution_count": 1 8,790 "execution_count": 19, 801 791 "id": "1e1585ff-dc78-44ae-9e38-3025fde45a59", 802 792 "metadata": {}, … … 891 881 { 892 882 "cell_type": "code", 893 "execution_count": 2 1,883 "execution_count": 20, 894 884 "id": "513f6d4e-a0e2-4095-9a7c-acafc79a465b", 895 885 "metadata": {}, … … 898 888 "data": { 899 889 "application/vnd.jupyter.widget-view+json": { 900 "model_id": " d69273658f144d8f952fe3dc40004e67",890 "model_id": "93b44294c8a743239d62dda010335241", 901 891 "version_major": 2, 902 892 "version_minor": 0 … … 906 896 ] 907 897 }, 908 "execution_count": 2 1,898 "execution_count": 20, 909 899 "metadata": {}, 910 900 "output_type": "execute_result"
Note: See TracChangeset
for help on using the changeset viewer.