Changeset 3528 for trunk/LMDZ.GENERIC


Ignore:
Timestamp:
Nov 26, 2024, 11:20:48 AM (2 weeks ago)
Author:
mmaurice
Message:

Generic PCM:

Python postprocessing: cleaner implementation, add automatic network
import and export from and to various format (Generic PCM, vulcan) and
more practical tools to handle networks. Updated the python notebook
with additional examples of use.

MM

Location:
trunk/LMDZ.GENERIC/utilities/photochemistry
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • trunk/LMDZ.GENERIC/utilities/photochemistry/Photochem_Visualizer.ipynb

    r3511 r3528  
    33  {
    44   "cell_type": "markdown",
    5    "id": "e95cb3d6-faab-4db6-84e0-3ff64cb9dfeb",
     5   "id": "99703d03-5db7-4850-add9-77033d4c6217",
    66   "metadata": {},
    77   "source": [
     
    2323   "source": [
    2424    "## Loading simulation and calculating reaction rates"
     25   ]
     26  },
     27  {
     28   "cell_type": "markdown",
     29   "id": "50a0abe3-e224-4b07-95dc-a424dd35cdcc",
     30   "metadata": {},
     31   "source": [
     32    "If you do not have a simulation with photochemistry at hand, you can download an example file with:    \n",
     33    "```\n",
     34    "wget https://web.lmd.jussieu.fr/~mmaurice/photochem_example.zip\n",
     35    "unzip photochem_example.zip\n",
     36    "```"
    2537   ]
    2638  },
     
    3547     "output_type": "stream",
    3648     "text": [
    37       "H2O2/3D/start_no_CO/diagfi61 loaded, simulations lasts 60.541668 sols\n"
     49      "./photochem_example/diagfi.nc loaded, simulations lasts 1.0 sols\n"
    3850     ]
    3951    }
     
    4254    "import photochem_postproc as pcpp\n",
    4355    "\n",
    44     "sim_path        = 'H2O2/3D/start_no_CO'\n",
    45     "NetCDF_filename = 'diagfi61'\n",
     56    "sim_path        = './photochem_example'\n",
     57    "NetCDF_filename = 'diagfi.nc'\n",
    4658    "\n",
    4759    "# The simu class is just a wrapper for xr.Dataset\n",
     
    5466   "metadata": {},
    5567   "source": [
    56     "Now let's try to calculate automatically the rates of all reactions found in the reactfile"
     68    "Now let's load the chemical network. Notice that unlike in this example, the reaction network is normally located in a ***chemnetwork/reactfile*** file."
    5769   ]
    5870  },
     
    6072   "cell_type": "code",
    6173   "execution_count": 2,
    62    "id": "80f1c90a-7bfc-4e95-b614-c6e8432c53b3",
     74   "id": "355df458-41a8-4d48-a21c-49a427f94ea5",
    6375   "metadata": {},
    6476   "outputs": [
     
    6880     "text": [
    6981      "reaction  no + hv -> n + o seems to be hard-coded. Add it manually if needed.\n",
    70       "reaction  co + oh -> co2 + h seems to be hard-coded. Add it manually if needed.\n",
    71       "['o2', 'o', 'o1d', 'o3', 'h2o2', 'oh', 'h2o_vap', 'h', 'co2', 'co', 'ho2', 'h2']\n"
     82      "reaction  co + oh -> co2 + h seems to be hard-coded. Add it manually if needed.\n"
    7283     ]
    7384    }
    7485   ],
    7586   "source": [
    76     "my_sim = pcpp.compute_rates(my_sim)\n",
    77     "\n",
    78     "# We can see that species list have been added\n",
    79     "# to the simu object (as well as reactions dict)\n",
    80     "print(my_sim.species)"
     87    "my_sim.network = pcpp.network.from_file(my_sim.path+'/network.def')"
    8188   ]
    8289  },
     
    9198  {
    9299   "cell_type": "code",
    93    "execution_count": 4,
    94    "id": "e1ed253d-9186-4871-bf93-5ba0fc5f6a66",
     100   "execution_count": 3,
     101   "id": "bf9f8c56-6615-4f9f-acae-c788a9543770",
    95102   "metadata": {},
    96103   "outputs": [],
    97104   "source": [
    98105    "# First load the parametrization for its rate\n",
    99     "from reaction_rate_lib import k_JPL_2015\n",
     106    "from reaction_rate_lib import k_CO_OH_to_CO2_H_JPL_2015\n",
    100107    "\n",
    101108    "# Then create the reaction objet (here for the reaction co + oh -> co2 + h):\n",
    102     "hard_coded_reaction = pcpp.reaction(['co','oh'],['co2','h'],k_JPL_2015)\n",
    103     "\n",
    104     "# Finally, add it to the reactions of my_sim\n",
    105     "my_sim = pcpp.compute_rates(my_sim,{'co + oh -> co2 + h':hard_coded_reaction})"
     109    "hard_coded_reaction = pcpp.reaction(['co','oh'],['co2','h'],k_CO_OH_to_CO2_H_JPL_2015)\n",
     110    "\n",
     111    "my_sim.network.append(hard_coded_reaction)"
     112   ]
     113  },
     114  {
     115   "cell_type": "markdown",
     116   "id": "5b193a59-9338-487e-977e-35556a7a405a",
     117   "metadata": {},
     118   "source": [
     119    "We are now ready to compute the rates (be careful with memory, as it will add 2 4D fields per chemical species, and 2 4D fields per reaction!)"
     120   ]
     121  },
     122  {
     123   "cell_type": "code",
     124   "execution_count": null,
     125   "id": "776388e6-0506-428b-a99c-f02283bad4d8",
     126   "metadata": {},
     127   "outputs": [],
     128   "source": [
     129    "my"
    106130   ]
    107131  },
     
    125149  {
    126150   "cell_type": "code",
     151   "execution_count": 4,
     152   "id": "f34cbcfa-339b-46dd-b33e-4c699a118f60",
     153   "metadata": {},
     154   "outputs": [],
     155   "source": [
     156    "import matplotlib.pyplot as plt"
     157   ]
     158  },
     159  {
     160   "cell_type": "markdown",
     161   "id": "779d0619-582e-4628-8161-5c0d9d943261",
     162   "metadata": {},
     163   "source": [
     164    "#### Meridional slice"
     165   ]
     166  },
     167  {
     168   "cell_type": "code",
    127169   "execution_count": 5,
    128    "id": "f34cbcfa-339b-46dd-b33e-4c699a118f60",
    129    "metadata": {},
    130    "outputs": [],
    131    "source": [
    132     "import matplotlib.pyplot as plt"
    133    ]
    134   },
    135   {
    136    "cell_type": "markdown",
    137    "id": "779d0619-582e-4628-8161-5c0d9d943261",
    138    "metadata": {},
    139    "source": [
    140     "#### Meridional slice"
    141    ]
    142   },
    143   {
    144    "cell_type": "code",
    145    "execution_count": 6,
    146170   "id": "f54ea828-ea01-4f8c-9349-e5f051ef7043",
    147171   "metadata": {},
     
    149173    {
    150174     "data": {
    151       "image/png": "iVBORw0KGgoAAAANSUhEUgAABRUAAAHHCAYAAAAhwb9EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8XUlEQVR4nO3de3QU9f3/8VcSyAVCAuGSEAg3b9wkqSAxXgEjERBFUNGqDWjRVlAxokL9CqgIXoGq0agVUCsV8YIXWrykIKIgJRCqVajYIAgkgMgl4RJI5veHvywsue1sdndmdp+Pc3IOOzs7+97Znc+Lee/sTJhhGIYAAAAAAAAAwEPhVhcAAAAAAAAAwFloKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgbAqFGj1KlTJ6vLsJVOnTpp1KhR9c4XFhamqVOn+r0eTyxbtkxhYWFatmxZQJ6vX79+6tevX0CeC4BzkTH2QK7Vj1wD4CmyzR7ItvoFW7YdOXLE6hLgMDQVvRQWFubRX6AGM1hj/vz5mj17ttVlAAgyZIy7l19+Wd26dVN0dLROO+00PfPMM1aXFLTINQD+Qra5I9sCJ5Szbe/evbrlllvUunVrNW3aVP3799fatWurzVdUVKT09HRFR0erV69e+ve//21BtXCiRlYX4FSvvfaa2+1XX31Vn3zySbXp3bp100svvaTKyspAlgc/uPDCC3Xo0CFFRka6ps2fP1/ffPONxo8fb11hAIIOGXPcCy+8oD/84Q8aMWKEcnJy9Pnnn+uOO+7QwYMHdd9991ldnqORawACiWw7jmzzH7LtuMrKSg0ZMkTr16/XPffco1atWum5555Tv379VFBQoNNOO8017y233KL27dvr/vvv1+LFi3Xttdfq22+/tbB6OAVNRS/dcMMNbrdXrVqlTz75pNp0BI/w8HBFR0dbXUZQMAxDhw8fVkxMjNWlALZExvzq0KFDuv/++zVkyBC99dZbkqQxY8aosrJSDz/8sG655Ra1aNHC4iqdi1zzHXINqB/Z9iuyzb/ItuPeeustffnll1q4cKGuuuoqSdI111yj008/XVOmTNH8+fNd865cuVLbtm1TfHy8Lr/8ciUkJOjnn39Wy5YtrSofDsHPnwPg5HOCbN68WWFhYXryySeVm5urLl26qEmTJho4cKC2bt0qwzD08MMPq3379oqJidEVV1yhPXv2VFvuP/7xD11wwQVq2rSpmjVrpiFDhug///mP13X++OOPuu2223TGGWcoJiZGLVu21NVXX63Nmze7zTdv3jyFhYXpiy++UE5OjutQ6iuvvFK7du1ym9cwDE2bNk3t27dXkyZN1L9//wbVKEnr1q3ToEGDFBcXp9jYWF188cVatWqV1zVWVlZq6tSpSk5OdtX47bffVjuHyMnn5+jXr58WL16sH3/80fVzjar3uer5T153tZ3j48UXX9Qpp5yimJgY9e3bV59//nmNr/3IkSOaMmWKTj31VEVFRSklJUX33nuvx+e+ePLJJ3XuueeqZcuWiomJUe/evV3/manSs2dP9e/fv9pjKysr1a5dO1cgVU2bPXu2evTooejoaCUmJurWW2/VL7/84vbYTp066bLLLtNHH32kPn36KCYmRi+88IIkae7cuRowYIDatGmjqKgode/eXc8//3yNz+/J+yT9epj/+PHjlZKSoqioKJ166ql67LHHgvobb4Qup2SMN5YuXaqff/5Zt912m9v0sWPHqqysTIsXL67z8eQauSaRa4ATkW21I9uCP9t85a233lJiYqKGDx/umta6dWtdc801eu+999zq6dKli5544gkVFRXpueeeU3h4uBISEgJaL5yJIxUt9Prrr6u8vFy333679uzZo8cff1zXXHONBgwYoGXLlum+++7Tpk2b9Mwzz2jChAmaM2eO67GvvfaasrOzlZWVpccee0wHDx7U888/r/PPP1/r1q3z6sTG//rXv/Tll1/q2muvVfv27bV582Y9//zz6tevn7799ls1adLEbf7bb79dLVq00JQpU7R582bNnj1b48aN04IFC1zzTJ48WdOmTdPgwYM1ePBgrV27VgMHDlR5eblX6+w///mPLrjgAsXFxenee+9V48aN9cILL6hfv3767LPPlJ6ebrrGSZMm6fHHH9fQoUOVlZWl9evXKysrS4cPH66zlvvvv1/79u3TTz/9pFmzZkmSYmNjTb+ml19+WbfeeqvOPfdcjR8/Xv/73/9c3w6lpKS45qusrNTll1+uFStW6JZbblG3bt309ddfa9asWfrvf/+rRYsW1ftcf/7zn3X55Zfr+uuvV3l5ud544w1dffXV+vDDDzVkyBBJ0siRIzV16lQVFxcrKSnJ9dgVK1Zo+/btuvbaa13Tbr31Vs2bN0+jR4/WHXfcoaKiIj377LNat26dvvjiCzVu3Ng178aNG3Xdddfp1ltv1ZgxY3TGGWdIkp5//nn16NFDl19+uRo1aqQPPvhAt912myorKzV27FjX4z19nw4ePKiLLrpI27Zt06233qoOHTroyy+/1KRJk7Rjx46QPZ8KQo9VGVNZWVnjjlxN4uPj3caJk61bt06S1KdPH7fpvXv3Vnh4uNatW1fnES7kGrkmkWtAMCHbyLZgz7aDBw/q4MGD9dYTERFR7xGt69at01lnnaXwcPdjyfr27asXX3xR//3vf3XmmWdK+jVPr7zySj3yyCNq0qSJ/vrXvyosLKzeOgAZ8ImxY8cata3O7Oxso2PHjq7bRUVFhiSjdevWxt69e13TJ02aZEgyUlNTjaNHj7qmX3fddUZkZKRx+PBhwzAM48CBA0bz5s2NMWPGuD1PcXGxER8fX226pw4ePFht2sqVKw1JxquvvuqaNnfuXEOSkZmZaVRWVrqm33XXXUZERITrNe3cudOIjIw0hgwZ4jbfn/70J0OSkZ2dXW9NkowpU6a4bg8bNsyIjIw0fvjhB9e07du3G82aNTMuvPBC0zUWFxcbjRo1MoYNG+b2vFOnTq1W49KlSw1JxtKlS13ThgwZ4vbenvz8RUVFbtNPXkZ5ebnRpk0bIy0tzThy5IhrvhdffNGQZFx00UWuaa+99poRHh5ufP75527LzMvLMyQZX3zxRbU6Tnbye1xeXm707NnTGDBggGvaxo0bDUnGM8884zbvbbfdZsTGxrqW8fnnnxuSjNdff91tviVLllSb3rFjR0OSsWTJknprMgzDyMrKMrp06eK6beZ9evjhh42mTZsa//3vf93mnThxohEREWFs2bKl2vMBduekjKl6fk/+ThxPa3vdERERNd7XunVr49prr63z8eTaceQauQbYDdlWHdlWc42hlG1Tpkzx6HNW0+s5WdOmTY2bbrqp2vTFixfXmGF79+41Vq1aZfz888/1Lhuows+fLXT11VcrPj7edbvqG5sbbrhBjRo1cpteXl6ubdu2SZI++eQT7d27V9ddd512797t+ouIiFB6erqWLl3qVT0nngfo6NGj+vnnn3XqqaeqefPmNV4h6pZbbnH79uKCCy5QRUWFfvzxR0nSp59+6vom8cT5vD1BbkVFhT7++GMNGzZMXbp0cU1v27atfvvb32rFihXav3+/qRrz8/N17Nixaj8/uP32272q0aw1a9Zo586d+sMf/uB2MuFRo0a5fTYkaeHCherWrZu6du3q9r4PGDBAkjx63098j3/55Rft27dPF1xwgdv7e/rppystLc3tm8GKigq99dZbGjp0qGsZCxcuVHx8vC655BK3enr37q3Y2Nhq9XTu3FlZWVl11rRv3z7t3r1bF110kf73v/9p3759ksy9TwsXLtQFF1ygFi1auNWVmZmpiooKLV++vN71BAQDqzImKSlJn3zyiUd/qampdS7r5BOtnyg6OlqHDh2q8/Hk2nHkGrkGBAOyjWw7UTBm2+9+9zuPPmevv/56vXUfOnRIUVFR1aZXnXPy5M9afHy80tPT+dkzTOHnzxbq0KGD2+2qAenEw6dPnF51Pp/vv/9eklwD08ni4uIk/TpIVP3ntcqJP/s52aFDhzRjxgzNnTtX27Ztk2EYrvtOXk5N9Vcdfl1VZ1UInHhVKenX8zh4c/LhXbt26eDBg66fF52oW7duqqys1NatW9WjRw/TNZ566qlu8yUkJATkBMm1raPGjRu7hbD06/v+3XffqXXr1jUua+fOnZKkPXv2uP1UISYmxvUZ+vDDDzVt2jQVFha6nUPj5EPbR44cqT/96U/atm2b2rVrp2XLlmnnzp0aOXKkWz379u1TmzZt6qynSufOnWuc74svvtCUKVO0cuXKaof679u3T/Hx8abep++//17//ve/611PQLDzd8bUJjo6WpmZmeYLrkFMTEytP73y5KIY5Npx5Bq5BgQDso1sO5GTs602Xbp0qbZMb8XExNR4Hseqn4xzcTH4Ak1FC0VERJiaXhUYVSflfu2112psElZ9S7dgwQKNHj26xmXU5Pbbb9fcuXM1fvx4ZWRkKD4+XmFhYbr22mtrPBF4fXXagVU11nb+iYqKCq+XWVlZqTPPPFMzZ86s8f6q/0wNHz5cn332mWt6dna25s2bp88//1yXX365LrzwQj333HNq27atGjdurLlz57pd+Uv6dedr0qRJWrhwocaPH68333xT8fHxuvTSS93qadOmTa3fkp0cpDWF1g8//KCLL75YXbt21cyZM5WSkqLIyEj9/e9/16xZs7w6AX1lZaUuueQS3XvvvTXef/rpp5teJuBE/s6Y2lRUVFQ7uXptEhISaj1aQ/r1qIaKigrt3LnTrdFTXl6un3/+WcnJyXUun1zzHXKNXAPsgGwj23zJymyrTWlpqUpLS+t9noiIiFobl1Xatm2rHTt2VJteNa2+zxrgCZqKDnTKKadIktq0aVPnN2ZZWVn65JNPPF7uW2+9pezsbD311FOuaYcPH9bevXu9qrNjx46Sfv225sRvW3bt2lXtKoqeaN26tZo0aaKNGzdWu2/Dhg0KDw+vd5CurcZNmza5HXHw888/e1RjbUFU9Y3Zyeuu6luuk5//+++/d/vm9OjRoyoqKnL7+cQpp5yi9evX6+KLL67zpLlPPfWUW+1VYfH2228rOjpaH330kdth8HPnzq22jM6dO6tv375asGCBxo0bp3feeUfDhg1ze9wpp5yiTz/9VOedd57X33J98MEHOnLkiN5//323byhP/lmAmffplFNOUWlpqc++TQZCjacZU5utW7fWegTXyZYuXap+/frVen9aWpqkX392NHjwYNf0NWvWqLKy0nV/bcg1cq0KuQaENrKtdmSbNdlWmyeffFIPPvhgvfN17Nix2lWrT5aWlqbPP/9clZWVbhdr+eqrr9SkSRO+lIJPcE5FB8rKylJcXJymT5+uo0ePVru/6lu0tm3bKjMz0+2vLhEREdW+DXrmmWe8/qYmMzNTjRs31jPPPOO2XG+vUhgREaGBAwfqvffecxtAS0pKNH/+fJ1//vn1/nThZBdffLEaNWqk559/3m36s88+69HjmzZtWuPPDKr+43LieY4qKir04osvus3Xp08ftW7dWnl5eW4/g5g3b161cLvmmmu0bds2vfTSS9We79ChQyorK5P065XjTnzPu3fvLunX9RcWFub2fm7evLnWK5CNHDlSq1at0pw5c7R79263n4hV1VNRUaGHH3642mOPHTvm0X9sqr6VPPlnGyfvEJp5n6655hqtXLlSH330UbX79u7dq2PHjtVbFxDKPM2Y2vjyvFMDBgxQQkJCtW3/+eefV5MmTVxX960NuXYcuUauAaGMbKsd2WZNttXGl+dUvOqqq1RSUqJ33nnHNW337t1auHChhg4dWuP5FgGzOFLRgeLi4vT888/rxhtv1FlnnaVrr71WrVu31pYtW7R48WKdd955Hg+wJ7rsssv02muvKT4+Xt27d9fKlSv16aefqmXLll7V2bp1a02YMEEzZszQZZddpsGDB2vdunX6xz/+oVatWnm1zGnTpumTTz7R+eefr9tuu02NGjXSCy+8oCNHjujxxx83vbzExETdeeedeuqpp3T55Zfr0ksv1fr161011vftUu/evbVgwQLl5OTo7LPPVmxsrIYOHaoePXronHPO0aRJk7Rnzx4lJCTojTfeqPYf/8aNG2vatGm69dZbNWDAAI0cOVJFRUWaO3dutXNp3HjjjXrzzTf1hz/8QUuXLtV5552niooKbdiwQW+++aY++ugj9enTp9ZahwwZopkzZ+rSSy/Vb3/7W+3cuVO5ubk69dRT9e9//7va/Ndcc40mTJigCRMmKCEhoVpT+qKLLtKtt96qGTNmqLCwUAMHDlTjxo31/fffa+HChfrzn/+sq666qs71N3DgQEVGRmro0KG69dZbVVpaqpdeeklt2rRxO1TfzPt0zz336P3339dll12mUaNGqXfv3iorK9PXX3+tt956S5s3b/b68weEgoZmjK/PO/Xwww9r7Nixuvrqq5WVlaXPP/9cf/3rX/XII4/UeyJxco1cOxG5BoQusq12ZJu9ss2X51S86qqrdM4552j06NH69ttv1apVKz333HOqqKjw6GhIwCMBvdZ0EBs7dqxR2+rMzs52u+R7UVGRIcl44okn3OarunT9woUL3aZXXer+X//6V7X5s7KyjPj4eCM6Oto45ZRTjFGjRhlr1qzx6jX88ssvxujRo41WrVoZsbGxRlZWlrFhwwajY8eORnZ2tkf1SDKWLl3qmlZRUWE8+OCDRtu2bY2YmBijX79+xjfffFNtmbWRZEyZMsVt2tq1a42srCwjNjbWaNKkidG/f3/jyy+/dJvHTI3Hjh0zHnjgASMpKcmIiYkxBgwYYHz33XdGy5YtjT/84Q91Pra0tNT47W9/azRv3tyQ5PY+//DDD0ZmZqYRFRVlJCYmGn/605+MTz75pNoyDMMwnnvuOaNz585GVFSU0adPH2P58uXGRRddZFx00UVu85WXlxuPPfaY0aNHDyMqKspo0aKF0bt3b+PBBx809u3bV+/6fPnll43TTjvNiIqKMrp27WrMnTvXmDJlSq2f3fPOO8+QZPz+97+vdZkvvvii0bt3byMmJsZo1qyZceaZZxr33nuvsX37dtc8HTt2NIYMGVLj499//32jV69eRnR0tNGpUyfjscceM+bMmWNIMoqKilzzefo+GYZhHDhwwJg0aZJx6qmnGpGRkUarVq2Mc88913jyySeN8vLyetcTYDfBkDEN8eKLLxpnnHGGERkZaZxyyinGrFmzjMrKynofR66Raycj1wD7INvINrLN//bs2WPcfPPNRsuWLY0mTZoYF110UbX1DTREmGHY6AytgE3s3btXLVq00LRp03T//fdbXQ5qwfsEAJ5hvHQG3icA8BxjJmA9zqmIkHfo0KFq06rOIVLXSZYRWLxPAOAZxktn4H0CAM8xZgL2xDkVEfIWLFigefPmafDgwYqNjdWKFSv0t7/9TQMHDtR5551ndXn4/3ifnG3r1q268cYbtXPnTjVq1EgPPPCArr76aqvLAoIS46Uz8D7ZA/kEOANjJkKJk7KJnz8j5K1du1b33nuvCgsLtX//fiUmJmrEiBGaNm2aYmNjrS4P/x/vk7Pt2LFDJSUlSktLU3FxsXr37q3//ve/atq0qdWlAUGH8dIZeJ/sgXwCnIExE6HESdlEUxEAEHCpqan68MMPlZKSYnUpAAC4kE8AALuxczZxTkUAgJYvX66hQ4cqOTlZYWFhWrRoUbV5cnNz1alTJ0VHRys9PV2rV6/26rkKCgpUUVFhy1AEANgL+QQAsBuy6TiaigAAlZWVKTU1Vbm5uTXev2DBAuXk5GjKlClau3atUlNTlZWVpZ07d7rmSUtLU8+ePav9bd++3TXPnj179Lvf/U4vvvii318TAMD5yCcAgN2QTccF/c+fKysrtX37djVr1kxhYWFWlwMgCBmGoQMHDig5OVnh4Q37rubw4cMqLy/3SU0nj3lRUVGKioqq97FhYWF69913NWzYMNe09PR0nX322Xr22Wcl/Tq2pqSk6Pbbb9fEiRM9qunIkSO65JJLNGbMGN14442ev5ggRDYBCARf5ZOvsqmqJvLJvsgnAP7GvlNwZVPQX/15+/bttj1MFEBw2bp1q9q3b+/14w8fPqwOHZtq187KBtcSGxur0tJSt2lTpkzR1KlTTS+rvLxcBQUFmjRpkmtaeHi4MjMztXLlSo+WYRiGRo0apQEDBtg6FAOFbAIQSA3JJ19mk0Q+2R35BCBQ2HeqnZOyKeibis2aNZMk9Uu4QY3CIy2uJjCOdW5rdQlASDlWcUQr1j7pGm+8VV5erl07K7V8dRvFxnp/dEBpqaEL++7U1q1bFRcX55ruyTdtNdm9e7cqKiqUmJjoNj0xMVEbNmzwaBlffPGFFixYoF69ernOOfLaa6/pzDPP9Komp7NrNpEfgHcaFe2wuoQaHass17I9f21QPvkqmyTyyQnsmE9kE+DOrpnjKV9kk8S+k10EfVOx6hDWRuGRtglGv2sUbXUFQEjy1c+EYmPDFNusIT8F+PXburi4OLdgtNL555+vykrfHOUSDGybTeQH4J3TOrv+2eiHbRYWUjNf5FPDs0kin+zPbvl07JR2wb/DCphkh23TF9h3qp2TsokLtQSZY6e0s7oEAEGmVatWioiIUElJidv0kpISJSUlWVQVfI38AHzj2Cnt2J4ChHwKbmxHAJwo1LKJpmIQIXgB+ENkZKR69+6t/Px817TKykrl5+crIyPDwsoAwL5oLvof+QQAsJtQyyaOJg8S/KcVQEOUlpZq06ZNrttFRUUqLCxUQkKCOnTooJycHGVnZ6tPnz7q27evZs+erbKyMo0ePdrCqgHA/qr+j2bHn0U7AfkUmti3AWp37JR2ZIrFyKbjaCoGAUIXQEOtWbNG/fv3d93OycmRJGVnZ2vevHkaOXKkdu3apcmTJ6u4uFhpaWlasmRJtRMQw5nIEcD/aC56h3wKPWQSALsjm46jqQgAUL9+/WQYRp3zjBs3TuPGjQtQRQgUdt6AwOIIE3PIJwCA3ZBNx3FORYdjZxAAAMBZON8iUDO2C8AzbCuwC5qKDsZAAgBoCHIEsBbbIHAc2wMAOA9NRYcidAEAAJyPoxYBAIBT0VR0IP7jCQBoKLIEsBe2SYQyPv8A4Ew0FR2Eb7IBAL5AlgD2xLaJUMTnHvAO2w7sgKaiQzBgAAAABD/+z4dQwucdAJyNpqIDELYAAF8hUwD749cpCAV8xoGGIy9gNZqKNscAAQAAEJr4fyCCFZ9twLfYpmAVmoo2xTcOAABfIlcAZ2K7RbDhMw34B9sWrEBT0WbY6QMA+Bq5Ajgb/z9EsOBzDPgX2xgCrZHVBeBXbPwAAH8gX4DgceyUdmr0wzarywBMI4uAwKna3sgLBAJNRYsRsAAAfyFjgODDziKchiwCrHHitkdmwF9oKlqAYAUA+BM5AwQ/mouwO7IIsI+atkfyA75AUzFACFUAgD+RM0BoorkIuyGPAGeobVslT2AGTUUfIkABAIFC5gA40cljAjuFCBTyCAgunmzTZAyqhExT8VjntlKjaKvLAADAhWwC4C/HTmmnY8cOS7utrgRORD4BqEtDvkwgm4JLuNUFAAAAAAAAAHAWmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAL/bu3ev+vTpo7S0NPXs2VMvvfSS1SUBAEA+AQBsx0nZ1MjqAgAAwa9Zs2Zavny5mjRporKyMvXs2VPDhw9Xy5YtrS4NABDCyCcAgN04KZs4UhEA4HcRERFq0qSJJOnIkSMyDEOGYVhcFQAg1JFPAAC7cVI20VQEAGj58uUaOnSokpOTFRYWpkWLFlWbJzc3V506dVJ0dLTS09O1evVqU8+xd+9epaamqn379rrnnnvUqlUrH1UPAAhW5BMAwG7IpuNoKgIAVFZWptTUVOXm5tZ4/4IFC5STk6MpU6Zo7dq1Sk1NVVZWlnbu3Omap+qcHyf/bd++XZLUvHlzrV+/XkVFRZo/f75KSkoC8toAAM5FPgEA7IZsOo5zKgJAkNq/f7/b7aioKEVFRdU476BBgzRo0KBalzVz5kyNGTNGo0ePliTl5eVp8eLFmjNnjiZOnChJKiws9KiuxMREpaam6vPPP9dVV13l0WMAAMGDfAIA2A3Z5B2aigBgMx+XdVV0mPfD8+GyY5JKlJKS4jZ9ypQpmjp1qunllZeXq6CgQJMmTXJNCw8PV2ZmplauXOnRMkpKStSkSRM1a9ZM+/bt0/Lly/XHP/7RdC0AAGs0NJsk8gkA4HvsO1mLpiIABKmtW7cqLi7Odbu2b9rqs3v3blVUVCgxMdFtemJiojZs2ODRMn788UfdcsstrpMM33777TrzzDO9qgcA4GzkEwDAbsgm79BUBIAgFRcX5xaMVurbt6/Hh/gDAIIb+QQAsBuyyTtcqAUAUKdWrVopIiKi2smBS0pKlJSUZFFVAIBQRz4BAOwm1LLJ8qbitm3bdMMNN6hly5aKiYnRmWeeqTVr1rjuNwxDkydPVtu2bRUTE6PMzEx9//33FlYMAKElMjJSvXv3Vn5+vmtaZWWl8vPzlZGRYWFl/kM2AYD9kU/kEwDYTahlk6VNxV9++UXnnXeeGjdurH/84x/69ttv9dRTT6lFixaueR5//HE9/fTTysvL01dffaWmTZsqKytLhw8ftrByAAgupaWlKiwsdB1mX1RUpMLCQm3ZskWSlJOTo5deekmvvPKKvvvuO/3xj39UWVmZ64pmwYRsAgD7IJ+OI58AwB7IpuMsPafiY489ppSUFM2dO9c1rXPnzq5/G4ah2bNn6//+7/90xRVXSJJeffVVJSYmatGiRbr22msDXjMABKM1a9aof//+rts5OTmSpOzsbM2bN08jR47Url27NHnyZBUXFystLU1LliypdgLiYEA2AYB9kE/HkU8AYA9k03GWHqn4/vvvq0+fPrr66qvVpk0b/eY3v9FLL73kur+oqEjFxcXKzMx0TYuPj1d6enqtl+I+cuSI9u/f7/YHAKhbv379XFcXO/Fv3rx5rnnGjRunH3/8UUeOHNFXX32l9PR06wr2I7IJAOyDfDqOfAIAeyCbjrO0qfi///1Pzz//vE477TR99NFH+uMf/6g77rhDr7zyiiSpuLhYkmq8FHfVfSebMWOG4uPjXX8pKSn+fREAgKBCNgEA7Ih8AgDYjaVNxcrKSp111lmaPn26fvOb3+iWW27RmDFjlJeX5/UyJ02apH379rn+tm7d6sOKAQDBjmwCANgR+QQAsBtLm4pt27ZV9+7d3aZ169bNdXLLqsttm7kUd1RUlOLi4tz+AADwFNkEALAj8gkAYDeWNhXPO+88bdy40W3af//7X3Xs2FHSryceTkpKcrsU9/79+/XVV18F5aW4AQDWI5sAAHZEPgEA7MbSqz/fddddOvfcczV9+nRdc801Wr16tV588UW9+OKLkqSwsDCNHz9e06ZN02mnnabOnTvrgQceUHJysoYNG2Zl6QCAIEU2AQDsiHwCANiNpU3Fs88+W++++64mTZqkhx56SJ07d9bs2bN1/fXXu+a59957VVZWpltuuUV79+7V+eefryVLlig6OtrCygEAwYpsAgDYEfkEALAbS5uKknTZZZfpsssuq/X+sLAwPfTQQ3rooYcCWBUAIJSRTQAAOyKfAAB2Yuk5FQEAAAAAAAA4D01FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAACAIHWgc4wOdI6xugwEoUZWFwAAAAAAAADfO7GZWFtjsVnRoUCVgyDDkYoAAAAAAABBxMzRiRzFCG/RVAQAAAAAAAgC3v7UmcYivMHPnwEAAAAPeLrDxc/IAABWaGhj8EDnGDIMpnCkIgAgYA4ePKiOHTtqwoQJVpcCAB6pOuLDzI4aR3s4D/kEwOl8lT1kmH04IZtoKgIAAuaRRx7ROeecY3UZAFCvhl4pk50yZyGfADiZrzOHDLMHJ2QTTUUAQEB8//332rBhgwYNGmR1KQBQJ472CC3kEwAn81fWkGHWcko20VQEAGj58uUaOnSokpOTFRYWpkWLFlWbJzc3V506dVJ0dLTS09O1evVqU88xYcIEzZgxw0cVA4DvNfToxNqWCe+RTwBQO39nDBlWM7LpOJqKABztxHNdeXPeK/yqrKxMqampys3NrfH+BQsWKCcnR1OmTNHatWuVmpqqrKws7dy50zVPWlqaevbsWe1v+/bteu+993T66afr9NNPD9RLAgBT/Jkd5JL3yCcAqBnZYh2y6Tiu/gzAUTwNz6r5QvnqZfv373e7HRUVpaioqBrnHTRoUJ2H1s+cOVNjxozR6NGjJUl5eXlavHix5syZo4kTJ0qSCgsLa338qlWr9MYbb2jhwoUqLS3V0aNHFRcXp8mTJ5t8VQDge+yYBRb5BAANQ275HtnkHZqKABzB2+A80DnGcY3Fz34+XY0PR3r9+KNl5ZI+U0pKitv0KVOmaOrUqaaXV15eroKCAk2aNMk1LTw8XJmZmVq5cqVHy5gxY4br8P158+bpm2++sWUoAgg9gdoxc2Ienaih2SSRTwDgC4FuKNo9v9h3shZNRQC25ovQDNWjFrdu3aq4uDjX7dq+aavP7t27VVFRocTERLfpiYmJ2rBhQ4NqBAArcaSHNcgnAPAOueU/ZJN3aCoCsCV/BKbdv2Xztbi4OLdgtItRo0ZZXQIAsGNmIfIJAMwjt/yLbPIOF2oBYCv+vtAKF3Ixr1WrVoqIiFBJSYnb9JKSEiUlJVlUFQB4z6ocIH98i3wCECrID+cItWyiqQjAFgLd7COYPRcZGanevXsrPz/fNa2yslL5+fnKyMiwsDIAMIcvloIL+QQg2Nklt+xQg1OEWjbx82cAlrIyoELt59B1KS0t1aZNm1y3i4qKVFhYqISEBHXo0EE5OTnKzs5Wnz591LdvX82ePVtlZWWuK5oBgN2xQ+RM5BP85cQxgf8Pwm7ILHsjm46jqQjAEnYJShqLv1qzZo369+/vup2TkyNJys7O1rx58zRy5Ejt2rVLkydPVnFxsdLS0rRkyZJqJyAGADuyS+ZI5I5Z5BN8rabx4ORpbKOwip3yCrUjm46jqQggoOwYlKF6degT9evXT4Zh1DnPuHHjNG7cuABVhGBQ2/YeytsaAs+OuQPPkU/wFTNjAf83RCA5Jaf4Uuw4suk4mooA/M5JQSnxH0jAG97srFVhm4O/OCV/APhPQ8YBmijwB7IJwYSmIgC/cWpg0lwEPOOrbZxtDr5m9/yhUQH4HxkFu7F7NgHeoKkIwOeCJTA5mgqozp/bNztu8IVgySAA3vHXGMCXAfAWuYRgRlMRgE8Fc2jW9tqOHQ2T/hXgYoAACvR2zY4bvBXMGQSgdoHa9vnyC2YEYybxfzScjKYiAJ8IxtAEQp2V2zX/aYUZTswgPuNAw1m17bP9oi5OzCTAWzQVATQIoQkEFztt0+y0wRN2+swC8D+7bPNkFE5ml88mEEg0FQF4hdAEgotdt2l22lAXu35uAfiH3bZ5MgqS/T6XQCCFW10AAOchOIHgYvdt2u71IfAOdI7hcwGEGLtu83atC4ERiu9/KL5m1I6mIgCPsRMHBB+nbNNOqRP+F0yfhWB6LYA/2X1bsXt98A/ed8DipuLUqVMVFhbm9te1a1fX/YcPH9bYsWPVsmVLxcbGasSIESopKbGwYiA00UxEKAmlbHLadu20euF7fAYQykIpn07klO3eKXWi4dg3Ao6z/EjFHj16aMeOHa6/FStWuO6766679MEHH2jhwoX67LPPtH37dg0fPtzCaoHQQ2AiFIVCNrFtw2n4zAKhkU8nctp277R6YR7vMeDO8gu1NGrUSElJSdWm79u3Ty+//LLmz5+vAQMGSJLmzp2rbt26adWqVTrnnHMCXSoQcghNhKpgzyYnb9ucFD80OfkzWx8+0zAj2PPpRMG83cOZ+EweR3ahiuVHKn7//fdKTk5Wly5ddP3112vLli2SpIKCAh09elSZmZmuebt27aoOHTpo5cqVtS7vyJEj2r9/v9sfAHM4pB+hLpizKRi27WB4DfAMeQS4C+Z8ChaMWcGJ9xWomaVNxfT0dM2bN09LlizR888/r6KiIl1wwQU6cOCAiouLFRkZqebNm7s9JjExUcXFxbUuc8aMGYqPj3f9paSk+PlVAMGFwESoC+ZsYvuGk4TS5zWUXiu8F8z5dDKnbxNOrx/ueD+B2ln68+dBgwa5/t2rVy+lp6erY8eOevPNNxUT492GO2nSJOXk5Lhu79+/3zbhCNgZYQn8KlizKdi2cX52E9yC7fMK+EKw5tPJgmX7J6eCQ7B8Hv2BzzgkG/z8+UTNmzfX6aefrk2bNikpKUnl5eXau3ev2zwlJSU1nkekSlRUlOLi4tz+ANSNsARqFwzZxDYOJ+HzCngmGPLpZGz/sBM+j0D9bNVULC0t1Q8//KC2bduqd+/eaty4sfLz8133b9y4UVu2bFFGRoaFVQLBg3NVAfVzejYF8zYezK8tFIV6JoXya4d3nJ5PoYDt2rl47wDPWPrz5wkTJmjo0KHq2LGjtm/frilTpigiIkLXXXed4uPjdfPNNysnJ0cJCQmKi4vT7bffroyMDEdevQywCwISqBvZ5Cz89Mb5yKXj+DyjLsGeT8E6FlS9LrZt+wvWz6A/kVuwtKn4008/6brrrtPPP/+s1q1b6/zzz9eqVavUunVrSdKsWbMUHh6uESNG6MiRI8rKytJzzz1nZcmA4xCOgDnBlE2hsv2zw+Y8ofLZ9AY7aKhNMOXTyUJhTCCr7CkUPnuAP1naVHzjjTfqvD86Olq5ubnKzc0NUEXOZWYwJMiCG8EINEywZFMojgXssNlbKH4mvUVjETUJlnw6WaiNDWSVtULt8xYIZFZos7SpCM/5cvCrb1kMCM5AIAKoTaiPD/zn1nqh/hn0BT7HCHahPk7QXAyMUP+cAf5GU9GGrB74anp+ws46Vn8eADgLY8av2FkLHD5z/sPnGMGKceM4tnPf4/MVeHwRFrpoKlrMKQMejUb/ccpnAIC9MZbU7MT1Qm55h8+W9fgcI5gwptSM7dx7fKbsgc9waKKpGGDBNODRaKxdML3PAOyPMccz/Gf3OD4zzlXbexfqn2nYH+OO58irmvEZcg4+w6GDpqKfhdrAF8jzNYbaugWAmjAWeufk9ebP//DyHiEQavqcHTsaJv3LgmKA/4/xr+F8dSAH7wWscvJnj2wKLjQVfYiBun6sIwBoOMZS32OdAoBvMJ76H+sYgF3QVDSBwRsAYBUyCABgB+QRAKBKyDQVD3SKUaPG0VaXAQAhq1OnToqLi1N4eLhatGihpUuXWl2S5cgmALAe+VQd+QQA1nJKNoVMUxEAYL0vv/xSsbGxVpcBAIAb8gkAYDdOyKZwqwsAAAAAAAAA4Cw0FQEAWr58uYYOHark5GSFhYVp0aJF1ebJzc1Vp06dFB0drfT0dK1evdrUc4SFhemiiy7S2Wefrddff91HlQMAghn5BACwG7LpOH7+DABQWVmZUlNTddNNN2n48OHV7l+wYIFycnKUl5en9PR0zZ49W1lZWdq4caPatGkjSUpLS9OxY8eqPfbjjz9WcnKyVqxYoXbt2mnHjh3KzMzUmWeeqV69evn9tQEAnIt8AgDYDdl0HE1FAAhS+/fvd7sdFRWlqKioGucdNGiQBg0aVOuyZs6cqTFjxmj06NGSpLy8PC1evFhz5szRxIkTJUmFhYV11tOuXTtJUtu2bTV48GCtXbvWlsEIAPAv8gkAYDdkk3doKgKAzWwsaa2IJt5fcbHi4GFJUkpKitv0KVOmaOrUqaaXV15eroKCAk2aNMk1LTw8XJmZmVq5cqVHyygrK1NlZaWaNWum0tJS/fOf/9Q111xjuhYAgDUamk0S+QQA8D32naxFUxEAgtTWrVsVFxfnul3bN2312b17tyoqKpSYmOg2PTExURs2bPBoGSUlJbryyislSRUVFRozZozOPvtsr+oBADgb+QQAsBuyyTs0FQEgSMXFxbkFo5W6dOmi9evXW10GAMAGyCcAgN2QTd7h6s8AgDq1atVKERERKikpcZteUlKipKQki6oCAIQ68gkAYDehlk00FQEAdYqMjFTv3r2Vn5/vmlZZWan8/HxlZGRYWBkAIJSRTwAAuwm1bOLnzwAAlZaWatOmTa7bRUVFKiwsVEJCgjp06KCcnBxlZ2erT58+6tu3r2bPnq2ysjLXFc0AAPAH8gkAYDdk03E0FQEAWrNmjfr37++6nZOTI0nKzs7WvHnzNHLkSO3atUuTJ09WcXGx0tLStGTJkmonIAYAwJfIJwCA3ZBNx9FUBACoX79+MgyjznnGjRuncePGBagiAADIJwCA/ZBNx3FORQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYEojT2Z6//33TS/4kksuUUxMjOnHAQDgKfIJAGA3ZBMAIFR41FQcNmyYqYWGhYXp+++/V5cuXbypCQAAj5BPAAC7IZsAAKHC458/FxcXq7Ky0qO/Jk2a+LNmAABcyCcAgN2QTQCAUOBRUzE7O9vU4fg33HCD4uLivC4KAABPkE8AALshmwAAocKjnz/PnTvX1EKff/55r4oBAMAM8gkAYDdkEwAgVHD1ZwAAAAAAAACmeHSk4okOHz6sZ555RkuXLtXOnTtVWVnpdv/atWt9VhwAAJ4inwAAdkM2AQCCmemm4s0336yPP/5YV111lfr27auwsDB/1AUAgCnkEwDAbsgmAEAwM91U/PDDD/X3v/9d5513nj/qAQDAK+QTAMBuyCYAQDAzfU7Fdu3aqVmzZv6oBQAAr5FPAAC7IZsAAMHMdFPxqaee0n333acff/zRH/UAAOAV8gkAYDdkEwAgmJluKvbp00eHDx9Wly5d1KxZMyUkJLj9eevRRx9VWFiYxo8f75p2+PBhjR07Vi1btlRsbKxGjBihkpISr58DABC8yCcAgN2QTQCAYGb6nIrXXXedtm3bpunTpysxMdEnJxv+17/+pRdeeEG9evVym37XXXdp8eLFWrhwoeLj4zVu3DgNHz5cX3zxRYOfEwAQXMgnAIDdkE0AgGBmuqn45ZdfauXKlUpNTfVJAaWlpbr++uv10ksvadq0aa7p+/bt08svv6z58+drwIABkqS5c+eqW7duWrVqlc455xyfPD8AIDiQTwAAuyGbAADBzPTPn7t27apDhw75rICxY8dqyJAhyszMdJteUFCgo0ePuk3v2rWrOnTooJUrV9a6vCNHjmj//v1ufwCA4GfnfCKbACA02TmbJPIJANAwppuKjz76qO6++24tW7ZMP//8c4NC6I033tDatWs1Y8aMavcVFxcrMjJSzZs3d5uemJio4uLiWpc5Y8YMxcfHu/5SUlJM1QQAcCY75xPZBAChyc7ZJJFPAICGMf3z50svvVSSdPHFF7tNNwxDYWFhqqio8Gg5W7du1Z133qlPPvlE0dHRZsuo1aRJk5STk+O6vX//fsIRAEKAnfOJbAKA0GTnbJLIJwBAw5huKi5dutQnT1xQUKCdO3fqrLPOck2rqKjQ8uXL9eyzz+qjjz5SeXm59u7d6/aNW0lJiZKSkmpdblRUlKKionxSIwDAd4qKinTTTTeppKREERERWrVqlZo2beqz5ds5n8gmALAvf+aTnbNJIp8AwK78ve/kK6abiueee64aN25c4327d+/2eDkXX3yxvv76a7dpo0ePVteuXXXfffcpJSVFjRs3Vn5+vkaMGCFJ2rhxo7Zs2aKMjAyzZQMALDZq1ChNmzZNF1xwgfbs2ePznRjyCQDgDX/mE9kEAPCGv/edfMV0U/Haa6/VW2+9pbCwMLfpJSUluvjii/XNN994tJxmzZqpZ8+ebtOaNm2qli1buqbffPPNysnJUUJCguLi4nT77bcrIyODq5cBgMP85z//UePGjXXBBRdIkhISEny6/Pz8fN1www2KiYlRWFiYunXrpvHjxyszM5N8AgDUyp/5RDYBALwRiH2nWbNm6bvvvpMkt3wyy/SFWrZs2aLf//73btN27Nihfv36qWvXrqYLqMusWbN02WWXacSIEbrwwguVlJSkd955x6fPAQCQli9frqFDhyo5OVlhYWFatGhRtXlyc3PVqVMnRUdHKz09XatXr/Z4+d9//71iY2M1dOhQnXXWWZo+fbrPan/uued06aWXqry8XG3atNGdd96puLg4DR48WNOnTyefAMDBnJpPZBMABC+nZpN0PJ+aNWumO++80y2fcnNzTS/P9JGKf//733XhhRcqJydHM2fO1Pbt29W/f3+lpqbqjTfeMF3AiZYtW+Z2Ozo6Wrm5uV69MACA58rKypSamqqbbrpJw4cPr3b/ggULlJOTo7y8PKWnp2v27NnKysrSxo0b1aZNG0lSWlqajh07Vu2xH3/8sY4dO6bPP/9chYWFatOmjS699FKdffbZuuSSSxpc+/Tp0zVr1iyNHDlSF154oTZv3qz58+erR48emjx5soYPH04+AYBDOTWfyCYACF5OzSbpeD6NGzfONe2OO+7Qeeedp+nTp2vs2LGmlme6qdi6dWt9/PHHOv/88yVJH374oc466yy9/vrrCg83feAjAMBP9u/f73a7rpOxDxo0SIMGDap1WTNnztSYMWM0evRoSVJeXp4WL16sOXPmaOLEiZKkwsLCWh/frl079enTx3VFycGDB6uwsNAnwbh3715deuml1fLp3XfflST97W9/I58AwEZCIZ/IJgBwllDIJul4Pp1s4MCBuu+++0wvz6skS0lJ0SeffKLXX39dffv21d/+9jdFRER4sygAwEkqipvo2Hbv/yqKm0j6dayOj493/c2YMcOresrLy1VQUOB2jo3w8HBlZmZq5cqVHi3j7LPP1s6dO/XLL7+osrJSy5cvV7du3byq52SXX365ayftxHxq0aKFRowYQT4BgA80NJtCLZ/IJgAIDPadzDkxn0703nvv6bLLLjO9PI+OVGzRokW1C7NI0sGDB/XBBx+oZcuWrml79uwxXQQAwPe2bt2quLg4121vrxi2e/duVVRUKDEx0W16YmKiNmzY4NEyGjVqpOnTp+vCCy+UYRgaOHCgV6F1shYtWujIkSN64403dP/996tRo19j7ciRI9q5c6c2bNigpk2bSpJmzJihO+64o8HPCQBomGDPJ7IJAJwn2LOpSvfu3fXII49o2bJlysjIkCStWrVKX3zxhe6++249/fTTrnk9ySePmoqzZ8/2rloAgGXi4uLcgtFq9f1MwBuzZ8/WhAkTXDtnVU6+XTUvO24AYL1gzyeyCQCcJ9izqcrLL7+sFi1a6Ntvv9W3337rmt68eXO9/PLLrtthYWG+aypmZ2d7USoAIBi0atVKERERKikpcZteUlKipKQki6r6VXZ2NhkFACHKrvlENgFA6LJrNlUpKiry6fI8OqfiySesrM+BAwe8KgYAYD+RkZHq3bu38vPzXdMqKyuVn5/vOmTeKuQTAIQuu+YT2QQAocuu2eQvHp9TcceOHa5LX9enXbt2KiwsVJcuXRpUHAAgMEpLS7Vp0ybX7aKiIhUWFiohIUEdOnRQTk6OsrOz1adPH/Xt21ezZ89WWVmZ64pmVqnKp/Lycr3//vvasmWLysvL3eaZOXOm69/kEwA4ixPziWwCgODmxGw60U8//eRRPnnCo6aiYRj6y1/+otjYWI8WevToUVNFAACstWbNGvXv3991OycnR9KvP+GaN2+eRo4cqV27dmny5MkqLi5WWlqalixZUu0ExIFmGIYmTZqk1157Ta1atVJJSYnatm2rPXv2yDAMpaSkqFOnTq75yScAcBYn5hPZBADBzYnZVCU/P1+XX365unTpog0bNqhnz57avHmzDMPQWWedZXp5HjUVO3TooJdeesnjhSYlJalx48amiwEAWKNfv34yDKPOecaNG6dx48YFqCLPdOjQQX/961/VtGlTRUVFyTAMhYWFqU2bNtq1a5f27NmjWbNmueYnnwDAWZyYT2QTAAQ3J2ZTlUmTJmnChAl68MEH1axZM7399ttq06aNrr/+el166aWml+dRU3Hz5s2mFwwAgL9t3rxZzZo105o1a3TKKaeoRYsWWrJkiXr06KH169friiuu8PnJiAEAqAvZBACwq++++05/+9vfJEmNGjXSoUOHFBsbq4ceekhXXHGF/vjHP5pankcXagEAwK6aNm3qOhdI27Zt9cMPP7ju2717t1VlAQBCGNkEALAjX+eTR0cqAgBgV+ecc45WrFihbt26afDgwbr77rv19ddf65133tE555xjdXkAgBBENgEA7MjX+URTEQDgaDNnzlRpaakk6cEHH1RpaakWLFig0047zfTVywAA8AWyCQBgR77OJ5qKAABH69Kli+vfTZs2VV5enoXVAABANgEA7MnX+cQ5FQEAjvb73/9ey5Yts7oMAABcyCYAgB35Op+8aip+/vnnuuGGG5SRkaFt27ZJkl577TWtWLHCZ4UBAOCJXbt26dJLL1VKSoquu+46DRkyhHwCAFiKbAIA2NGJ+XTPPfdo/fr1DVqe6abi22+/raysLMXExGjdunU6cuSIJGnfvn2aPn16g4oBAMCs9957Tzt27NCQIUP05ptv6u9//7u++uorzZo1S5s3byafAAABRzYBAOyoKp8eeOAB/etf/9JZZ52lHj16aPr06dq8ebPp5ZluKk6bNk15eXl66aWX1LhxY9f08847T2vXrjVdAAAADdWiRQt99dVXmjt3rrZu3arGjRvr3Xff1amnnko+AQAsQTYBAOyoRYsWuuWWW7Rs2TL9+OOPGjVqlF577TWdeuqpppdluqm4ceNGXXjhhdWmx8fHa+/evaYLAADAFzZu3KiMjAytWbNGlZWV+umnn5SYmEg+AQAsQzYBAOzq6NGjWrNmjb766itt3rxZiYmJppdhuqmYlJSkTZs2VZu+YsUKt6vIAAAQKEuXLlWjRo101llnadSoUZKkv/zlL/rpp5/IJwCAJcgmAIAdLV26VGPGjFFiYqJGjRqluLg4ffjhh/rpp59ML8t0U3HMmDG688479dVXXyksLEzbt2/X66+/rgkTJuiPf/yj6QIAAGiIdu3aafDgwUpJSVHz5s31wQcfKCYmRp07d9b8+fPJJwBAwJFNAAA7qsqn3bt368UXX1RJSYnmzJmjiy++WGFhYaaX18jsAyZOnKjKykpdfPHFOnjwoC688EJFRUVpwoQJuv32200XAABAQ0ydOlVXX3214uPjNX36dA0aNKjGfPrpp5+UnJys8HDT36cBAGAK2QQAsKOqfGrevHmd83maT6abimFhYbr//vt1zz33aNOmTSotLVX37t0VGxtrdlEAADTYmDFjXP+uK5+6d++uwsJCfm4GAPA7sgkAYEcn5lNdPM0n003FKpGRkerevbu3DwcAwC9qyyfDMCyoBgAAsgkA4Cye5pNHTcXhw4d7/MTvvPOOx/MCANAQZvIJAIBAIJsAAKHCo5N3xMfHu/7i4uKUn5+vNWvWuO4vKChQfn6+4uPj/VYoAAAnI58AAHZDNgEAQoVHRyrOnTvX9e/77rtP11xzjfLy8hQRESFJqqio0G233aa4uDj/VAkAQA3IJwCA3ZBNAIBQYfqcinPmzNGKFStcoShJERERysnJ0bnnnqsnnnjCpwUCAOCJ+vIpLCzMwuoAAKGIbAIAOJGn+eTRz59PdOzYMW3YsKHa9A0bNqiystLs4gAA8In68omT4QMAAo1sAgA4kU8v1HKi0aNH6+abb9YPP/ygvn37SpK++uorPfrooxo9erTZxQEA4BOjR4/W6NGjNW7cOA0cOFCSez7dddddSk5OtrhKAEAoIZsAAHb1008/SZLat29f7b5vv/3Wo3wy3VR88sknlZSUpKeeeko7duyQJLVt21b33HOP7r77brOLAwCgQSorKzVt2jT95S9/UWlpqR5++GE9/PDDCgsLc8unE396BgCAP5FNAAA7qsqnp556SqWlpZKkZs2a6e6779b999+v8PBff9CckpLi0fJMNxXDw8N177336t5779X+/fsliZMMAwAsc//99+vll1/WY489pvPOO0+S9Mknn2jGjBkaNWqU7r33XosrBACEGrIJAGBHVfn06KOPuvJpxYoVmjp1qg4fPqxHHnnE1PJMNxVPRDMRAGC1V155RX/5y190+eWXu6b16tVLp556qm677TbTwQgAQEORTQAAO6otn9q1a+dVPpluKnbu3LnOq8D873//M7tIAAC8tmfPHnXt2rVaPh09elQ7duxQly5dJJFPAIDAIZsAAHZUlU8n69q1q/bs2WN6eaabiuPHj3e7ffToUa1bt05LlizRPffcY7oAAAAaIjU1Vc8++2y1fHrzzTd16NAh7du3j3wCAAQU2QQAsKOqfHr66afdpj/77LNKTU01vTzTTcU777yzxum5ublas2aN6QIAAGiIxx9/XEOGDFGHDh2UkZEhSVq5cqW2bt2qv//97/r3v/9NPgEAAopsAgDYUVU+ffrppzXmk1nhvips0KBBevvtt321OABAENm4caPS0tJcfzExMVq0aJFPln3RRRfpv//9r6688krt3btXe/fu1fDhw7Vx40ZdcMEF5BMAoFb+yieyCQDgLSv3ncxq0IVaTvTWW28pISHBV4sDAASRM844Q4WFhZKk0tJSderUSZdcconPlp+cnFzrSYXJJwBAbfyZT2QTAMAbVu47mWW6qfib3/zG7WTDhmGouLhYu3bt0nPPPeeTogAAwev999/XxRdfrKZNm/pkeZWVlQoPD68xn7Zt26Y9e/aQTwCAevkyn8gmAIAv+GvfqabpP/30kzp06GBqeaZ//nzFFVe4/Q0fPlxTpkzRN998o1tuucXs4gAANrB8+XINHTpUycnJCgsLq/Hw+tzcXHXq1EnR0dFKT0/X6tWrvXquN998UyNHjmxgxdL+/ft1zTXXqGnTpkpMTFRcXJyGDh3qyqeBAwdq9+7d5BMAOJjT8olsAoDg57Rskqrn0+TJk1VRUeG6f9euXercubPp5Zo+UnHq1KmmnwQAYG9lZWVKTU3VTTfdpOHDh1e7f8GCBcrJyVFeXp7S09M1e/ZsZWVlaePGjWrTpo0kKS0tTceOHav22I8//ljJycmSfg2zL7/8Um+88UaDa37ggQe0fv16vfbaa9q7d6+mTZumgoICvfPOO4qMjFRJSYmeeOIJde3atcHPBQCwhtPyiWwCgODntGySas6ntWvXuvJJ+vVoerNMNxUjIiK0Y8cO14qo8vPPP6tNmzZunU4AgHX279/vdjsqKkpRUVE1zjto0CANGjSo1mXNnDlTY8aM0ejRoyVJeXl5Wrx4sebMmaOJEydKkuu8H3V57733NHDgQEVHR3v4Kmq3aNEivfLKK+rXr58k6dZbb1VCQoKGDh2q999/X5IUFhZGPgGAzQRzPpFNAOBMwZxNUvV8GjZsmIYMGVItn8wy/fPn2jqXR44ccXU3PfX888+rV69eiouLU1xcnDIyMvSPf/zDdf/hw4c1duxYtWzZUrGxsRoxYoRKSkrMlgwAjhKzLVxNfvL+L2bbr0N7SkqK4uPjXX8zZszwqp7y8nIVFBQoMzPTNS08PFyZmZlauXKlqWX56vB96ddD9Dt27Oi6bRiG3nrrLR04cECDBw/WwYMHJZnPJ7IJAKpraDaFSj75K5sk8gkAasK+k2dOzqdWrVrp008/rZZPZnl8pOLTTz8t6dfO5V/+8hfFxsa67quoqNDy5ctNH8bfvn17PfroozrttNNkGIZeeeUVXXHFFVq3bp169Oihu+66S4sXL9bChQsVHx+vcePGafjw4friiy9MPQ8AhKKtW7cqLi7Odbu2b9rqs3v3blVUVCgxMdFtemJiojZs2ODxcvbt26fVq1fr7bff9qqOk3Xo0EHfffedPvjgA0m/5tMbb7yhK6+8Us8995zOP/98GYahsWPHmsonsgkA/CuY88lf2SSRTwDgT8GcTdLxfDrxvInNmjXTxx9/rIEDB+rKK6/0arkeNxVnzZol6ddv2/Ly8hQREeG6LzIyUp06dVJeXp6pJx86dKjb7UceeUTPP/+8Vq1apfbt2+vll1/W/PnzNWDAAEnS3Llz1a1bN61atUrnnHOOqecCgFBTdSSDXcTHx/v0iImBAwdq7ty5WrNmjST3fDIMQz///LMMw9DBgwdN5RPZBAD+Fcz55K9sksgnAPCnYM4m6Xg+DR482G16bGysPvroI11yySVeLdfjpmJRUZEkqX///nrnnXfUokULr56wNhUVFVq4cKHKysqUkZGhgoICHT161O2Q0a5du6pDhw5auXIlwQgAAdKqVStFRERUC7WSkhIlJSVZVJX04IMPavv27erRo4ek6vl04MABrV27VhdddJHXz0E2AYB92TGfApFNEvkEAHZlx2ySjudTTZo1a6ZPPvlEa9euNb1c0xdqWbp0qeknqcvXX3+tjIwMHT58WLGxsXr33XfVvXt3FRYWKjIyUs2bN3ebPzExUcXFxbUu78iRIzpy5Ijr9skn2wQAmBMZGanevXsrPz9fw4YNkyRVVlYqPz9f48aNs6yuFi1auHbS8vPzlZGRoXvuuUeVlZVu83mz40Y2AYD92TGf/JlNEvkEAHZnx2ySqudTfn6+du7c2eB88qipmJOTo4cfflhNmzZVTk5OnfPOnDnTVAFnnHGGCgsLtW/fPr311lvKzs7WZ599ZmoZJ5oxY4YefPBBrx8PAKGotLRUmzZtct0uKipSYWGhEhIS1KFDB+Xk5Cg7O1t9+vRR3759NXv2bJWVlbmuaGaVnJwcxcTE6NFHH1Xr1q3dzvd74jySuXwimwDAHpyYT/7KJol8AgA7cGI2VXnwwQf10EMPqU+fPmrbtq1XV3w+kUdNxXXr1uno0aOSpLVr1zb4SU8UGRmpU089VZLUu3dv/etf/9Kf//xnjRw5UuXl5dq7d6/bN271HTI6adIkt8bn/v37lZKS4rN6ASAYrVmzRv3793fdrhpHs7OzNW/ePI0cOVK7du3S5MmTVVxcrLS0NC1ZsqTaCYgDbd26dfr22281b948vfzyyzXm07p160wvl2wCAHtwYj75K5sk8gkA7MCJ2VQlLy9P8+bN04033uiT5XnUVDzxJ8/Lli3zyRPXprKyUkeOHFHv3r3VuHFj5efna8SIEZKkjRs3asuWLcrIyKj18VFRUV5fpQcAQlW/fv1kGEad84wbN87SQ/ZrsnTpUrVs2VLnnnuuz4KxJmQTAFjDifkUqGySyCcAsIITs6lKeXm5zj33XJ8tL9zsA2666SYdOHCg2vSysjLddNNNppY1adIkLV++XJs3b9bXX3+tSZMmadmyZbr++usVHx+vm2++WTk5OVq6dKkKCgo0evRoZWRkcKJhAIDL73//e82fP99n+UQ2AQAaytfZJJFPAICGq8onXzF9oZZXXnlFjz76qJo1a+Y2/dChQ3r11Vc1Z84cj5e1c+dO/e53v9OOHTsUHx+vXr16uV3KetasWQoPD9eIESN05MgRZWVl6bnnnjNbMgAgyJz4U63Kykq9+OKL2rt3r8LCwhQfH+8275/+9CdT+UQ2AQC84c9sksgnAIB3asqnTz/9VL169VLjxo3d5jV7rl+Pm4r79++XYRgyDEMHDhxQdHS0676Kigr9/e9/V5s2bUw9+csvv1zn/dHR0crNzVVubq6p5QIAgtuJ56I6duyYevbsqRUrVug///lPtWA0m09kEwDAG/7MJol8AgB45+Tz+KalpUmSvvnmG7fp3lw/xeOmYvPmzRUWFqawsDCdfvrp1e4PCwvjymEAgIA48Vy/4eHhCgsLU3h4uP71r39Vm3flypXkEwDA78gmAIAdnZhPvuZxU3Hp0qUyDEMDBgzQ22+/rYSEBNd9kZGR6tixo5KTk/1SJAAAtSGfAAB2QzYBAEKBx03Fiy66SJJUVFSkDh06eHVYJAAAvkY+AQDshmwCAIQCj5qK//73v91uf/3117XO26tXr4ZVBACAh8gnAIDdkE0AgFDhUVMxLS1NYWFhMgyjzvnCwsJUUVHhk8IAAKgP+QQAsBuyCQAQKjxqKhYVFfm7DgAATCOfAAB2QzYBAEKFR03Fjh07+rsOAABMI58AAHZDNgEAQoXHF2o52bfffqstW7aovLzcbfrll1/e4KIAAPAW+QQAsBuyCQAQjEw3Ff/3v//pyiuv1Ndff+12rpCqK5pxXhAAgBXIJwCA3ZBNAIBgFm72AXfeeac6d+6snTt3qkmTJvrPf/6j5cuXq0+fPlq2bJkfSgQAoH7kEwDAbsgmAEAwM32k4sqVK/XPf/5TrVq1Unh4uMLDw3X++edrxowZuuOOO7Ru3Tp/1AkAQJ3IJwCA3ZBNAIBgZvpIxYqKCjVr1kyS1KpVK23fvl3Sryck3rhxo2+rAwDAQ+QTAMBuyCYAQDAzfaRiz549tX79enXu3Fnp6el6/PHHFRkZqRdffFFdunTxR40AANSLfAIA2A3ZBAAIZqabiv/3f/+nsrIySdJDDz2kyy67TBdccIFatmypBQsW+LxAAAA8QT4BAOyGbAIABDPTTcWsrCzXv0899VRt2LBBe/bsUYsWLVxXMQMAINDIJwCA3ZBNAIBgZrqpWJOEhARfLAYAAJ8inwAAdkM2AQCChekLtQAAAAAAAAAIbTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJjSyOoCAAAAAABAaCpt5/mxTrHbKv1YCQCzaCoCAAAAAICAMdNIrO1xNBgB6/HzZwAAAAAA4Hel7cK9bijWtCwA1mIrBAAExKxZs9SjRw91795dd9xxhwzDsLokAADIJyBA/NEEpLGIYOWUbGILBAD43a5du/Tss8+qoKBAX3/9tQoKCrRq1SqrywIAhDjyCQgMfzb/aCwi2DgpmzinIuBHdQUc5wBBqDl27JgOHz4sSTp69KjatGljcUVAaOKE+IA78glwvtJ24WQWgopTsomWPuBjVecJqW+nzZfnEwEaavny5Ro6dKiSk5MVFhamRYsWVZsnNzdXnTp1UnR0tNLT07V69WqPl9+6dWtNmDBBHTp0UHJysjIzM3XKKaf48BUA8ITZ3PE00wB/IZ8A5yNDEGzIpuPYugEf8Xani5012EFZWZlSU1OVm5tb4/0LFixQTk6OpkyZorVr1yo1NVVZWVnauXOna560tDT17Nmz2t/27dv1yy+/6MMPP9TmzZu1bds2ffnll1q+fHmgXh4ANXynjqyCFcgnwNkCmR3kFAKFbDqOnz8DDeTrq5dx2D58Zf/+/W63o6KiFBUVVeO8gwYN0qBBg2pd1syZMzVmzBiNHj1akpSXl6fFixdrzpw5mjhxoiSpsLCw1scvXLhQp556qhISEiRJQ4YM0apVq3ThhReaeUkAvERWwU7IJyA0WNHk42fQ8BbZ5B2aioCX/BWSBCGa7qhUo8befwaOHf31sSkpKW7Tp0yZoqlTp5peXnl5uQoKCjRp0iTXtPDwcGVmZmrlypUeLSMlJUVffvmlDh8+rMaNG2vZsmW65ZZbTNcCwDx/XW2TrAotDc0miXwCQglHDSJQ2HeyFk1FwKRABCQ7a/CFrVu3Ki4uznW7tm/a6rN7925VVFQoMTHRbXpiYqI2bNjg0TLOOeccDR48WL/5zW8UHh6uiy++WJdffrlX9QDwXCCutklewSzyCYA/sS8Fb5BN3qGpCHgo0N+2EYZoqLi4OLdgtNojjzyiRx55xOoygJARqNwir2AW+QQEN45ShBORTd5hawdsjECGHbRq1UoREREqKSlxm15SUqKkpCSLqgJQGysuAEZewQrkEwDAbkItm/gfIOABK3eW2FGD1SIjI9W7d2/l5+e7plVWVio/P18ZGRkWVgbgZFbnFZmFQCKfAPuxSw7YpQ6EnlDLJn7+DNTDDoHET8vgb6Wlpdq0aZPrdlFRkQoLC5WQkKAOHTooJydH2dnZ6tOnj/r27avZs2errKzMdUUzANazQ15JZBZ8i3wCANgN2XQcTUWgDnbZQZPYSYN/rVmzRv3793fdzsnJkSRlZ2dr3rx5GjlypHbt2qXJkyeruLhYaWlpWrJkSbUTEAOwhp3ySiKz4DvkE+AcZBFCBdl0HE1FoBZ2C0WJYIT/9OvXT4Zh1DnPuHHjNG7cuABVBMBTdswricyCb5BPgDPYNYsAfyCbjqOpiJDj9MCrqf5Q2Gnz9/sWCusQgPMEU2YxzgKAczk1j5z6BZdT17cT1zUahqYiHMWpg6u/Wb3TFgzvS0NeQ8UR579+AJ4LhjHPClXrjZwKHPIJQH1CdXz0JdbhcZ6sC7IpuNBUhC0xMHvPXw1G3hMAoYZxzz/8cdQI7xUAHMeY6I7cAfyHpiJsg4HZ97w9KoT3AkCoYdwLrIYetcj7BSBUMN7ZB+8FUJ2lW8WMGTN09tlnq1mzZmrTpo2GDRumjRs3us1z+PBhjR07Vi1btlRsbKxGjBihkpISiyqGL5W2C3f7g/94sq55L4BfkU2hg3HPembWP+8XQh355Hwn/5/ckz/4RkPXJe8FUDNLt4zPPvtMY8eO1apVq/TJJ5/o6NGjGjhwoMrKylzz3HXXXfrggw+0cOFCffbZZ9q+fbuGDx9uYdVoCALSHvgPC1A7sim4Me7ZkydfegGhjnxyHv6/bS/evge8d0DtLP3585IlS9xuz5s3T23atFFBQYEuvPBC7du3Ty+//LLmz5+vAQMGSJLmzp2rbt26adWqVTrnnHOsKNuv/DFgWX0FJgZhAE4Sitlk13HaF/ll19eGmvF+AbUL5XyqLQ/MjBkNyRTGpuBh9vyKvPdA3Wx1TsV9+/ZJkhISEiRJBQUFOnr0qDIzM13zdO3aVR06dNDKlStrDMYjR47oyJEjrtv79+/3c9UNE4hBytPnYOcNAKoLxmxyyljtlDoBwArBmE9VTh7/fZEHZs/lSgaFNt5/wDO2aSpWVlZq/PjxOu+889SzZ09JUnFxsSIjI9W8eXO3eRMTE1VcXFzjcmbMmKEHH3zQ3+U2iF0HKLvWBQBWcXI2MaYDQPBycj7Vx9/5deLyqxqMZGZoqe9oRT4PgOds01QcO3asvvnmG61YsaJBy5k0aZJycnJct/fv36+UlJSGlucTDE4A4CxWZxO5AQCoidX55C+Bzj1yNnTV1Fjk8wCYZ4um4rhx4/Thhx9q+fLlat++vWt6UlKSysvLtXfvXrdv3EpKSpSUlFTjsqKiohQVFeXvkj3GwAQAzmRFNpEZAID6OHHfqbZ840hBWOnExiKfQcA7ljYVDcPQ7bffrnfffVfLli1T586d3e7v3bu3GjdurPz8fI0YMUKStHHjRm3ZskUZGRlWlOwxBiUAcKZAZlNZ23BFRJEXAID6BXrfydv9GTNNGvaZYDU+g0DDWNpUHDt2rObPn6/33ntPzZo1c53rIz4+XjExMYqPj9fNN9+snJwcJSQkKC4uTrfffrsyMjJse/UyBiUAcLZgzCYAgPMFMp/K2oYrwss62R8CgNBhaVPx+eeflyT169fPbfrcuXM1atQoSdKsWbMUHh6uESNG6MiRI8rKytJzzz0X4ErrRnACQPAIlmwCAAQX8gkAYDeW//y5PtHR0crNzVVubm4AKqofDUQACG5OzCYAQPAjnwAAdmOLC7XYFQ1EAAAAAAAAoDqaiiegiQgAAAAAAADUL2SailxhEwAAAAAAAPANumwAAAAAAAAATAmZIxUBAAAAAIA5B9tXev3YJj9xHBMQzGgqIig1JPh8jSAFgOBmp8wxi4wCgNATyNwy+1zkEuAsNBXhKE7ccfOkZl+E58nP449lhgr+MwOgNsE2Ltb1epw+FjrtvXL6+gZgT04bC0+s167jYqD27zx9Lk/ZdX3C2WgqwtacFoLe8sfrDJV15w9m113lYdY1goe3Y0ew/kc1lMdSf3xZ1RDB/l40dCe1pseTT3Cymj7TVo9DThIMY6bdGoxm1qnZ2gPxfvnrOTx9b6qen2wKLjQVbaxqo7PDABoowRB+AGB3Tvkiw8r8I4+qa8jOHevTN1iPCAV1fc45t1/dgnmMsHLfuKHrta7ag+E9C4bXAO/RVLSQpxufrzZSuwYpgxAA+EawjadWnIcp2Nahv7CeAJjh6VGH/hxbGtKU8sURc56+Nr60qVsgm4u+Xrcn1h5q7xuCF03FALHDoBGIGswe+gwAoexQu0qFRzMe+kpt2WKXnx0BQKjx11GHDVFfU6q+usycqsCb1+hJA5PM8v8Xj4FocAPBgKain4TqQBGqrxsAYF9kEwCYEwpfejmhaUR++U5dR8uyngHv2fP3sA5zsH1ltT8AgLsnn3xSPXr0UM+ePfXXv/7V6nIAAJBEPgGhin132JlTsokjFU1gwAEA73z99deaP3++CgoKZBiG+vfvr8suu0zNmze3ujQAQAgjnwAAduOkbOJIxTpw9CEA+MZ3332njIwMRUdHKyYmRqmpqVqyZInVZQEAQhz5BACwGydlU8g0FQ+1q/4T5fr+ACBULF++XEOHDlVycrLCwsK0aNGiavPk5uaqU6dOio6OVnp6ulavXu3x8nv27Klly5Zp7969+uWXX7Rs2TJt27bNh68AABCMyCcAgN2QTcfx82cAgMrKypSamqqbbrpJw4cPr3b/ggULlJOTo7y8PKWnp2v27NnKysrSxo0b1aZNG0lSWlqajh07Vu2xH3/8sbp376477rhDAwYMUHx8vM455xxFRET4/XUBAJyNfAIA2A3ZdBxNRQAIUvv373e7HRUVpaioqBrnHTRokAYNGlTrsmbOnKkxY8Zo9OjRkqS8vDwtXrxYc+bM0cSJEyVJhYWFddZz66236tZbb5Uk/f73v9dpp53m6UsBAAQR8gkAYDdkk3doKgKAzTTbfEiNGhleP/7YscOSpJSUFLfpU6ZM0dSpU00vr7y8XAUFBZo0aZJrWnh4uDIzM7Vy5UqPl7Nz5061adNGGzdu1OrVq5WXl2e6FgCANRqaTRL5BADwPfadrEVTEQCC1NatWxUXF+e6Xds3bfXZvXu3KioqlJiY6DY9MTFRGzZs8Hg5V1xxhfbt26emTZtq7ty5atSICAKAUEQ+AQDshmzyjj2rAgA0WFxcnFswWs3MN3MAgOBFPgEA7IZs8g5NRQBAnVq1aqWIiAiVlJS4TS8pKVFSUpJFVQHO1Sj5YECe59j2JgF5HsAq5BPgvUBlUW3IKASrUMsmmopwNKvD8GT+DEe7vVYcV3HwsNUl+FVkZKR69+6t/Px8DRs2TJJUWVmp/Px8jRs3ztriAIs4YUw+uUYrduCcsJ6CGfkEJztx/AiWBlRtY6IvX59Txt2qOn393tb3+n3xfP54DiveNzN1evN/itpeE9kUXGgqWiwQg0cwhLDTwvFkZt8Dp7xeBI/S0lJt2rTJdbuoqEiFhYVKSEhQhw4dlJOTo+zsbPXp00d9+/bV7NmzVVZW5rqiGZwhFMeWUNxRq42/duBOXDbga+STc/lyXPDm/9ieNn7sMH75Yh/CDq/DG75qHnv6+muaryENsvrmrW3Zdni/GlKDHeq3Etl0HE1FP7DbBhboegIRBk4TrK8LwWPNmjXq37+/63ZOTo4kKTs7W/PmzdPIkSO1a9cuTZ48WcXFxUpLS9OSJUuqnYAY5kQkHVREk0qrywhqDTlaL1jHbl/swAXruoH9kE/WcEo+BXtTxNPx2gmvxRONkg9acjBGfV+6BfvnDOaRTcfRVKwDA4B3WG+A8/Tr10+GYdQ5z7hx44LykH2EFjLKnSdHL7LOYCXyCfhVTeN1MI7Pnh5V74/XfvJzB+P6hW+QTceFTFPRKd+2AQAABBo7TgDgDKEyXtd01GKgXnuorGPAF0KmqQgAAAAAAJyB5h5gf+FWFwAAAAAAAADAWWgqAgAAAAAAADCFpiIAAAAAAAAAU2gqAgAAAAAAADCFpiIAAAAAAAAAU2gqAgAAAAAAADCFpiIAAAAAAAAAU2gqAgAAAAAAADCFpiIAAAAAAAAAUxpZXQAA87ollVhdgmN9V5xodQkAEFKsyqyGjvc11U2GAIC91ZY5Thi/A5WXTlgXcA6aigga/hyErR54aSL6jj/W5dGycv3P50sF7IlGS3VObZr5g53yyh+12On1eYJ8gp2cuP3UN36dvK3Zcbyria/HCDOvuyHP7ZT1W5+61oE/mo0N/T+RVZlidZaRTcGFpqIFrN6IT+S0ALHTwOvvdWenzwkA5/PnmOKE8cqXY7ZdXq9ddrrtsj4ABFZDtn2zjw3Vcaa+fRBfrZduSSWO2y88mbfrwtNmt6fLD9XPKkIXTUUfcerg4a+6fRVKdl6v/tiZs/PrBeB7ZyTuUuOmkVaXERIaOmY7YXyuqjEQO4ZOWB8AvEc+2Ze/xl8nNxZ92VyVjucoWQfUj6biSRg4fCMU16OZn3TU9jgAQGAE89jrz+ZiMK83AAh1Tm4s+hJZB3jO0qs/L1++XEOHDlVycrLCwsK0aNEit/sNw9DkyZPVtm1bxcTEKDMzU99//71Xz3VG4i51Syqp9w/whZo+T3zmAOcIZD4B/uLLIzfILMB6ZBMCwczPfO2wf002AdaytKlYVlam1NRU5ebm1nj/448/rqefflp5eXn66quv1LRpU2VlZenw4cMBrhTwDjtigDORTwgWDc0f8guwD7IJgWKHZqEn7FIHEMos/fnzoEGDNGjQoBrvMwxDs2fP1v/93//piiuukCS9+uqrSkxM1KJFi3TttdcGslQAQAghnxBMvP05GztrgL2QTXAif/2kmowC7MHSIxXrUlRUpOLiYmVmZrqmxcfHKz09XStXrqz1cUeOHNH+/fvd/gAA8BVv8olsgtOwswY4C/tOAAAr2LapWFxcLElKTHT/ViMxMdF1X01mzJih+Ph4119KSopf6wQAhBZv8olsgtXMNAlpKALOw74TQgk5BdiHbZuK3po0aZL27dvn+tu6davVJQEAQhzZBDvwZCeMHTUgtJBPCASyBQhetm0qJiUlSZJKStwHoJKSEtd9NYmKilJcXJzbHwAAvuJNPpFNcAJ2+gDnYt8JoYKsAuzFtk3Fzp07KykpSfn5+a5p+/fv11dffaWMjAwLKwMAhDLyCU528s6Y3a7kCcA7ZBPsjpwBgpOlV38uLS3Vpk2bXLeLiopUWFiohIQEdejQQePHj9e0adN02mmnqXPnznrggQeUnJysYcOGWVc0ACDokU8IZuzYAc5ENiHUkV+A/VjaVFyzZo369+/vup2TkyNJys7O1rx583TvvfeqrKxMt9xyi/bu3avzzz9fS5YsUXR0tFUlAwBCAPkEALAbsgmhimYiYF+WNhX79esnwzBqvT8sLEwPPfSQHnrooQBWBQAIdeQTAMBuyCY4XbekEn1XnFj/jCfMD8DebHtORQDmDWi1odY/wGpXXnmlWrRooauuuqrafR9++KHOOOMMnXbaafrLX/5iQXUAgFBFPgH2Q0MRoc4p2WTpkYoAGsZMs9AXjcV/7u7a4GUgdN1555266aab9Morr7hNP3bsmHJycrR06VLFx8erd+/euvLKK9WyZUuLKgXga4H6coucgjfIJ8A+aCb6R1UOk5PO4ZRsoqkIOJBVRx466YhHAtN++vXrp2XLllWbvnr1avXo0UPt2rWTJA0aNEgff/yxrrvuugBXCPhWbWNmKI1Pgc4Ns8/nj/fixBpC6b12MvIJwcKTMdDqcam2n0D7oplY3+u3+rUHWk3rY0CrDQ1aDw19PDznlGyiqQg4iJOaelazw46lkyxfvlxPPPGECgoKtGPHDr377rvVrhaZm5urJ554QsXFxUpNTdUzzzyjvn37Nvi5t2/f7gpFSWrXrp22bdvW4OUCgebpuFPTfME2Bjklr/xdp6fLD7b335fIJ+dr6HbG9uEZbzLILus2UEcn+rohdvI6b+iyvakvkHlb9Vw0FsmmE9FURFAKxoaSU3bQnCrUd/zKysqUmpqqm266ScOHD692/4IFC5STk6O8vDylp6dr9uzZysrK0saNG9WmTRtJUlpamo4dO1btsR9//LGSk5P9/hpgjq/HlGDdNjzhi3UZLD9LIqu8w1GttSOfnMUfY0AgGxih1gC1ujlkxU+dG5K3/sq4E5dbX9PXV//nsKIBGkzIpuNoKtpAMDbAAq2hg6vdjxphJ80+anovDkcf0z8sqKU++/fvd7sdFRWlqKioGucdNGiQBg0aVOuyZs6cqTFjxmj06NGSpLy8PC1evFhz5szRxIkTJUmFhYVe1ZmcnOz27dq2bdt88i0ejgvEGOLv57DTmHwiX79uOx5B4imyyveCdaeNfHI+K05tUN+20JDx01evx6p9iobUb8U4449motl1YPZ1e7J8Xx9p6M/tzBevP9gyimzyDk3FAPHlgODtsoJpg6/i74G2ilXrjh200NSoaIcahUd6v4DKcklSSkqK2+QpU6Zo6tSpphdXXl6ugoICTZo0yTUtPDxcmZmZWrlypfd1/n99+/bVN998o23btik+Pl7/+Mc/9MADDzR4ucEolMcEu50nKZCNWifkdyh/Nv3NLjttDc4miXxyOKu389q2hdqaHVL942egv3Tz93lcYY6n46vZi2P6epn+4qRa68K+k7XZRFPRD+y60QXTEZFWnvjdKT+/ALZu3aq4uDjX7dq+aavP7t27VVFRocRE95NqJyYmasMGzz+nmZmZWr9+vcrKytS+fXstXLhQGRkZatSokZ566in1799flZWVuvfee0P6ypps+94J5NEhVmWQXXOZz6z/2aWx6Cvkk7PYaRs/cVvw9MgxO/H1eO7LIyydPMbY7UjNupZpx89kXa+/vnqd/tk5EdnkHZqKHrLbxh8Idb3mUD5yLxADpx1eJ5wvLi7OLRit9umnn9Z63+WXX67LL788gNXYC9u8f/ijGWfle2XH/7jz2Q0cO77/3iKfnMGu27dd6zIjmLbnYOCPJmBNy7TrZ9fMUcBmHu80ZJN3aCrKvhu3nVlxvhA7vU/+PGrETq8TkKRWrVopIiJCJSXu578pKSlRUlKSRVUFh4ta/lfRsUSxv/lizLbL2Gyn/7jbZZ2EEju9/3ZAPvnPRS3/K3YV/auh27M/zunrxPHF1+fDPHEd+OK8/f/c3dURednQX+Y59fPjD6GWTSGTFOy4+Z+vj2x02uB7MqtOEA34WmRkpHr37q38/HwNGzZMklRZWan8/HyNGzfO2uIAE04eZ516HiFvXoc/nx+BZYdzPtsF+QSnM7M9B+r8j6E+rvjzAmxO0ZCjM2sTSp+rUMsmumwICCcOpg0Viq8ZzlVaWqpNmza5bhcVFamwsFAJCQnq0KGDcnJylJ2drT59+qhv376aPXu2ysrKXFc0A5woWMbpQP0nPljWVzAJhQYj+YRQYZcx1kmNRbusM9TvxPfqcPQx/cPCWnyBbDqOpiIAQGvWrFH//v1dt3NyciRJ2dnZmjdvnkaOHKldu3Zp8uTJKi4uVlpampYsWVLtBMQA7MUXDUd22pyhpvcpGHbcyCcg8JzUWASsQDYdR1MRAKB+/frJMIw65xk3blxQHrIPhKqafkZNAxF2Qz4B1rC6sVjfl2LkFaxENh1HUxEAAADsoAEA3AS6sWjmasMA7IGmIgAAAAAAqKamqyL76zkAOA9NRQAAAAAAUCtfH7VIIxEIDjQVAQAAAABAnTw5apFmIRBaaCoCAAAAAACPnNg4rGow0kwEQhNNRQAAAAAAYBrNRCC0hVtdAAAAAAAAAABnoakIAAAAAAAAwBSaigAAAAAAAABMoakIAAAAAAAAwBSaigAAAAAAAKjT4NhvrS4BNkNTEQAAAAAAALWqaijSWMSJaCoCAAAAAACgRic3EmksokojqwsAAAAAAADO4E1D6e+l3f1QCepz8ntl9n2o670eHPst7ytoKiI0+fqblWAZTPnGyTulRqUmWl0EgKDDTlt1oZ5Twf7+AidiDLQPX4y9Jy6D96k6M+u4tvXnyTLMNAI9XV5dNSH40VRE0ArkjodTB9NQ3zkDULvaxgenjXNO4MuxuKFHJNgVefUrs+uBL73gVN5u8/4YKxragHHyOOyvsbem5Tp1PTW0WerNOm7o+1JfY9HfNZFNwYWmIhzNbjsZTjkE3G7rDYC1zIwJVu6wOZHV461TcqkmVq87AIFnx+3ejjXVp76afd1Q8gUnHMlY37oxc6CJ1Z+r2v5/YHVdcB6aihaycoO160BdF6cMcHY+atEp6xCA/9hxHPBFTYEec+24Hmtj51yqiZPWLQDfCdZtP1Bf7njzBeHfS7vbcr3b8ah7b9evt8sIhJM/m3arD85AU9GP7LxR+qs2Xw34dl53nrLTTlwwrE8gGA1sukGxseFWlxEU/PlTqmAZQ51w1GKwrGvA6erKJ1+PI6Gw3ftr/PXFz2CdwOqfS9vp5/i+5oQaYW80FWvBxuUd1lt1Vu7E8X4ACGVmz28VCmOmnb7wOlkorH8gGPjq3IGhts37Yp8g1NZZXQKRZ6xvoH4h01TkaBBYyYrGIiEIADVjfLTXUYu8H0BwYFuun9mxl3XqO6x7wD9CpqkIWM2O51MBAIQuOzQWySwAYCxsCF9nGe8FYA5NRSCA/L0DRwgCAMzgFB0AEFiMfb5XX5Z5us55bwDz+D0wEAQGx35LCAIAvBLo/CCzAABWqCt7yCXAOxypCASYr08qTAACABqKU3QAAILRyblDDgG+xZGKgEUaGmgc6QEA8CV/ZgqZBQDwJzIGsAZHKgIWMnvUImEJAPAnjqYHAAQLMgjwP45UBGyg6giO+v4AJ7vyyivVokULXXXVVabuAxB4Dc0dcgtOQj4BwYcMgtM5JZtoKgIAAuLOO+/Uq6++avo+ANbx9EsvvgSDk5FPAAC7cUo20VQEAAREv3791KxZM9P3AQDgT+QTEFz4cgvBwCnZRFMRAKDly5dr6NChSk5OVlhYmBYtWlRtntzcXHXq1EnR0dFKT0/X6tWrA18oACCkkE8AzKChiEAgm46jqQgAUFlZmVJTU5Wbm1vj/QsWLFBOTo6mTJmitWvXKjU1VVlZWdq5c6drnrS0NPXs2bPa3/bt2wP1MgAAQYZ8AuApGooIFLLpuKC/+rNhGJKk0tJKiysBEKyqxpeq8aahjhnlUgOGrGNGuSRp//79btOjoqIUFRVV42MGDRqkQYMG1brMmTNnasyYMRo9erQkKS8vT4sXL9acOXM0ceJESVJhYaH3RYcYsglAIPgynxqaTa5liHyyM/IJgL+x7xRc2RT0TcUDBw5Iki7su8viSgAEuwMHDig+Pt7rx0dGRiopKUnLiv/a4FpiY2OVkpLiNm3KlCmaOnWq6WWVl5eroKBAkyZNck0LDw9XZmamVq5c2dBSQxLZBCCQGpJPvswmiXyyO/IJQKCw7xQcgr6pmJycrK1bt6pZs2YKCwuzupyA2r9/v1JSUrR161bFxcVZXY5jsN68F6rrzjAMHThwQMnJyQ1aTnR0tIqKilReXu6Tmk4e82r7pq0+u3fvVkVFhRITE92mJyYmasOGDR4vJzMzU+vXr1dZWZnat2+vhQsXKiMjo977ghHZFHrjhC+w7rwTyuvNF/nky2yqqol8si/yKTTHioZgvXkvVNcd+06ecUo2BX1TMTw8XO3bt7e6DEvFxcWF1CDlK6w374XiumvIt2wnio6OVnR0tE+WZTeffvqpV/cFI7IpNMcJX2HdeSdU15sv8imYs0kin05EPoXuWNFQrDfvheK6Y9+pfk7JJi7UAgCoU6tWrRQREaGSkhK36SUlJUpKSrKoKgBAqCOfAAB2E2rZRFMRAFCnyMhI9e7dW/n5+a5plZWVys/PD+qfgAEA7I18AgDYTahlU9D//DmURUVFacqUKV6fCyBUsd68x7pzrtLSUm3atMl1u6ioSIWFhUpISFCHDh2Uk5Oj7Oxs9enTR3379tXs2bNVVlbmuqIZ4CnGCe+x7rzDenM28gmBwljhHdab91h3zkU2HRdm+Oo63gAAx1q2bJn69+9fbXp2drbmzZsnSXr22Wf1xBNPqLi4WGlpaXr66aeVnp4e4EoBAKGEfAIA2A3ZdBxNRQAAAAAAAACmcE5FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAxSnTp1UlhYmNvfo48+6jbPv//9b11wwQWKjo5WSkqKHn/8cYuqtZfc3Fx16tRJ0dHRSk9P1+rVq60uyVamTp1a7bPVtWtX1/2HDx/W2LFj1bJlS8XGxmrEiBEqKSmxsGIAdkE2eY9sqhvZBKAhyCfvkU91I58Q7GgqBrGHHnpIO3bscP3dfvvtrvv279+vgQMHqmPHjiooKNATTzyhqVOn6sUXX7SwYustWLBAOTk5mjJlitauXavU1FRlZWVp586dVpdmKz169HD7bK1YscJ131133aUPPvhACxcu1Geffabt27dr+PDhFlYLwE7IJvPIJs+QTQAagnwyj3zyDPmEoGYgKHXs2NGYNWtWrfc/99xzRosWLYwjR464pt13333GGWecEYDq7Ktv377G2LFjXbcrKiqM5ORkY8aMGRZWZS9TpkwxUlNTa7xv7969RuPGjY2FCxe6pn333XeGJGPlypUBqhCAXZFN3iGb6kc2AWgI8sk75FP9yCcEO45UDGKPPvqoWrZsqd/85jd64okndOzYMdd9K1eu1IUXXqjIyEjXtKysLG3cuFG//PKLFeVarry8XAUFBcrMzHRNCw8PV2ZmplauXGlhZfbz/fffKzk5WV26dNH111+vLVu2SJIKCgp09OhRt3XYtWtXdejQgXUIQBLZZBbZ5DmyCUBDkE/mkE+eI58QzBpZXQD844477tBZZ52lhIQEffnll5o0aZJ27NihmTNnSpKKi4vVuXNnt8ckJia67mvRokXAa7ba7t27VVFR4VoPVRITE7VhwwaLqrKf9PR0zZs3T2eccYZ27NihBx98UBdccIG++eYbFRcXKzIyUs2bN3d7TGJiooqLi60pGIBtkE3mkU2eIZsANAT5ZB755BnyCcGOpqKDTJw4UY899lid83z33Xfq2rWrcnJyXNN69eqlyMhI3XrrrZoxY4aioqL8XSqC2KBBg1z/7tWrl9LT09WxY0e9+eabiomJsbAyAFYgm2AHZBOAk5FPsAPyCcGOpqKD3H333Ro1alSd83Tp0qXG6enp6Tp27Jg2b96sM844Q0lJSdWuKlV1OykpySf1Ok2rVq0UERFR43oJ1XXiiebNm+v000/Xpk2bdMkll6i8vFx79+51+8aNdQgEL7LJv8gm75BNAMgn/yKfvEM+IdhwTkUHad26tbp27Vrn34nn+ThRYWGhwsPD1aZNG0lSRkaGli9frqNHj7rm+eSTT3TGGWeE5OH7khQZGanevXsrPz/fNa2yslL5+fnKyMiwsDJ7Ky0t1Q8//KC2bduqd+/eaty4sds63Lhxo7Zs2cI6BIIU2eRfZJN3yCYA5JN/kU/eIZ8QdKy+Ugx878svvzRmzZplFBYWGj/88IPx17/+1WjdurXxu9/9zjXP3r17jcTEROPGG280vvnmG+ONN94wmjRpYrzwwgsWVm69N954w4iKijLmzZtnfPvtt8Ytt9xiNG/e3CguLra6NNu4++67jWXLlhlFRUXGF198YWRmZhqtWrUydu7caRiGYfzhD38wOnToYPzzn/801qxZY2RkZBgZGRkWVw3AamST98im+pFNALxFPnmPfKof+YRgR1MxCBUUFBjp6elGfHy8ER0dbXTr1s2YPn26cfjwYbf51q9fb5x//vlGVFSU0a5dO+PRRx+1qGJ7eeaZZ4wOHToYkZGRRt++fY1Vq1ZZXZKtjBw50mjbtq0RGRlptGvXzhg5cqSxadMm1/2HDh0ybrvtNqNFixZGkyZNjCuvvNLYsWOHhRUDsAOyqWHIprqRTQC8RT41DPlUN/IJwS7MMAzD6qMlAQAAAAAAADgH51QEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRViuX79+Gj9+vG2WU5NRo0Zp2LBhDVpGp06dFBYWprCwMO3du7fe+ZctW+aav6HPDQAwj3yqGfkEANYhm2pGNgHWoKkIx6kKjJPD5Z133tHDDz/sut2pUyfNnj07sMXV46GHHtKOHTsUHx/vmvbSSy+pY8eO+s1vfqOvvvrKNf3cc8/Vjh07dM0111hRKgDAJPIJAGA3ZBMAf2pkdQGAryQkJFhdQr2aNWumpKQk1+0tW7bo8ccf1xtvvKFt27Zp9OjR+vbbbyVJkZGRSkpKUkxMjI4cOWJVyQCABiKfAAB2QzYB8AWOVITtvPbaa+rTp48rRH77299q586dkqTNmzerf//+kqQWLVooLCxMo0aNkuR+CH+/fv30448/6q677nIdBi9JU6dOVVpamtvzzZ49W506dXLdrqioUE5Ojpo3b66WLVvq3nvvlWEYbo+prKzUjBkz1LlzZ8XExCg1NVVvvfWW6de6f/9+NW/eXL169VLv3r116NAh08sAAAQG+QQAsBuyCYCVaCrCdo4ePaqHH35Y69ev16JFi7R582ZX+KWkpOjtt9+WJG3cuFE7duzQn//852rLeOedd9S+fXvXIfM7duzw+PmfeuopzZs3T3PmzNGKFSu0Z88evfvuu27zzJgxQ6+++qry8vL0n//8R3fddZduuOEGffbZZ6Zea8+ePdWrVy/Fx8erR48emjZtmqnHAwACh3wCANgN2QTASvz8GbZz0003uf7dpUsXPf300zr77LNVWlqq2NhY16H6bdq0UfPmzWtcRkJCgiIiIqodMu+J2bNna9KkSRo+fLgkKS8vTx999JHr/iNHjmj69On69NNPlZGR4apzxYoVeuGFF3TRRReZer6XX35Zjz/+uJo0aaKYmBhTjwUABA75BACwG7IJgJVoKsJ2CgoKNHXqVK1fv16//PKLKisrJf16Do3u3bv79bn37dunHTt2KD093TWtUaNG6tOnj+sw/k2bNungwYO65JJL3B5bXl6u3/zmN149b8uWLb0vGgAQEOQTAMBuyCYAVqKpCFspKytTVlaWsrKy9Prrr6t169basmWLsrKyVF5e3uDlh4eHVzvHx9GjR00to7S0VJK0ePFitWvXzu2+qKiohhUIALAl8gkAYDdkEwCr0VSErWzYsEE///yzHn30UaWkpEiS1qxZ4zZPZGSkpF9PClyXyMjIavO0bt1axcXFMgzDdQLiwsJC1/3x8fFq27atvvrqK1144YWSpGPHjqmgoEBnnXWWJKl79+6KiorSli1bTB+uDwBwJvIJAGA3ZBMAq3GhFthKhw4dFBkZqWeeeUb/+9//9P777+vhhx92m6djx44KCwvThx9+qF27drm+/TpZp06dtHz5cm3btk27d++W9OuVzXbt2qXHH39cP/zwg3Jzc/WPf/zD7XF33nmnHn30US1atEgbNmzQbbfdpr1797rub9asmSZMmKC77rpLr7zyin744QetXbtWzzzzjF555RXfrhAAgC2QTwAAuyGbAFiNpiJspXXr1po3b54WLlyo7t2769FHH9WTTz7pNk+7du304IMPauLEiUpMTNS4ceNqXNZDDz2kzZs365RTTlHr1q0lSd26ddNzzz2n3NxcpaamavXq1ZowYYLb4+6++27deOONys7OVkZGhpo1a6Yrr7zSbZ6HH35YDzzwgGbMmKFu3brp0ksv1eLFi9W5c2cfrg0AgF2QTwAAuyGbAFgtzDj5JAkA/KJTp04aP368xo8fb+pxo0aN0t69e7Vo0SK/1AUACG3kEwDAbsgmwBk4UhEIoPvuu0+xsbHat29fvfN+/vnnio2N1euvvx6AygAAoYx8AgDYDdkE2B9HKgIB8uOPP7qultalSxeFh9fd0z906JC2bdsmSYqNjVVSUpLfawQAhB7yCQBgN2QT4Aw0FQEAAAAAAACYws+fAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJjy/wCC3qUyYwQAfQAAAABJRU5ErkJggg==",
     175      "image/png": "iVBORw0KGgoAAAANSUhEUgAABRUAAAHHCAYAAAAhwb9EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB95ElEQVR4nO3de3QTdf7/8Vda6AVKC+XSUig3b9ykXUFqvQJWKiKKoKKrbkEX3RVUrKiwfgVUBK/AqtWqK+C6siJe8IKLly6IKMhSKKursOIWQaAFRKgtl0I7vz/8NTS9ZtIkM0mej3N6DplMJu/MJJ8X885kxmEYhiEAAAAAAAAAcFOY1QUAAAAAAAAACCw0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0Ff1g7Nix6tatm9Vl2Eq3bt00duzYRudzOByaMWOGz+txx8qVK+VwOLRy5Uq/PN+gQYM0aNAgvzwXgMBFxtgDudY4cg2Au8g2eyDbGhds2Xb06FGrS0CAoanoIYfD4dafvwYzWGPRokWaN2+e1WUACDJkjKuXXnpJvXr1UlRUlE455RQ9/fTTVpcUtMg1AL5Ctrki2/wnlLPtwIEDuvnmm9W+fXu1bNlSgwcP1oYNG2rNV1hYqLS0NEVFRalfv37697//bUG1CETNrC4gUL3yyisut//617/q448/rjW9V69eevHFF1VZWenP8uAD559/vg4fPqyIiAjntEWLFunrr7/WpEmTrCsMQNAhY054/vnn9Yc//EGjR49Wdna2PvvsM91+++06dOiQ7r33XqvLC2jkGgB/IttOINt8h2w7obKyUsOHD9emTZt09913q127dnr22Wc1aNAg5efn65RTTnHOe/PNN6tz58667777tGzZMl1zzTX65ptvLKwegYKmooeuv/56l9tr167Vxx9/XGs6gkdYWJiioqKsLiMoGIahI0eOKDo62upSAFsiY351+PBh3XfffRo+fLjeeOMNSdL48eNVWVmphx56SDfffLPatGljcZWBi1zzHnINaBzZ9iuyzbfIthPeeOMNffHFF1qyZImuvPJKSdLVV1+tU089VdOnT9eiRYuc865Zs0Y7d+5UXFycLrvsMsXHx+unn35S27ZtrSofAYKfP/tBzXOCbNu2TQ6HQ0888YRycnLUo0cPtWjRQkOHDtWOHTtkGIYeeughde7cWdHR0br88su1f//+Wsv9xz/+ofPOO08tW7ZUq1atNHz4cP3nP//xuM4ffvhBt956q0477TRFR0erbdu2uuqqq7Rt2zaX+RYuXCiHw6HPP/9c2dnZzkOpr7jiCu3du9dlXsMwNHPmTHXu3FktWrTQ4MGDm1SjJG3cuFHDhg1TbGysYmJidOGFF2rt2rUe11hZWakZM2YoKSnJWeM333xT6xwiNc/PMWjQIC1btkw//PCD8+caVdu56vlrrrv6zvHxwgsv6KSTTlJ0dLQGDhyozz77rM7XfvToUU2fPl0nn3yyIiMjlZycrHvuucftc1888cQTOvvss9W2bVtFR0erf//+zv/MVOnbt68GDx5c67GVlZXq1KmTM5Cqps2bN099+vRRVFSUEhISdMstt+jnn392eWy3bt106aWX6sMPP9SAAQMUHR2t559/XpK0YMECDRkyRB06dFBkZKR69+6t5557rs7nd2c7Sb8e5j9p0iQlJycrMjJSJ598sh599NGg/sYboStQMsYTK1as0E8//aRbb73VZfqECRNUVlamZcuWNfh4co1ck8g1IBCRbfUj24I/27zljTfeUEJCgkaNGuWc1r59e1199dV65513XOrp0aOHHn/8cRUWFurZZ59VWFiY4uPj/VovAhNHKlro1VdfVXl5uW677Tbt379fjz32mK6++moNGTJEK1eu1L333qutW7fq6aef1uTJkzV//nznY1955RVlZWUpMzNTjz76qA4dOqTnnntO5557rjZu3OjRiY3/9a9/6YsvvtA111yjzp07a9u2bXruuec0aNAgffPNN2rRooXL/LfddpvatGmj6dOna9u2bZo3b54mTpyoxYsXO+eZNm2aZs6cqUsuuUSXXHKJNmzYoKFDh6q8vNyjdfaf//xH5513nmJjY3XPPfeoefPmev755zVo0CB9+umnSktLM13j1KlT9dhjj2nEiBHKzMzUpk2blJmZqSNHjjRYy3333aeDBw/qxx9/1Ny5cyVJMTExpl/TSy+9pFtuuUVnn322Jk2apP/973/Ob4eSk5Od81VWVuqyyy7T6tWrdfPNN6tXr1766quvNHfuXP33v//V0qVLG32uP//5z7rssst03XXXqby8XK+99pquuuoqvf/++xo+fLgkacyYMZoxY4aKioqUmJjofOzq1au1a9cuXXPNNc5pt9xyixYuXKhx48bp9ttvV2FhoZ555hlt3LhRn3/+uZo3b+6cd8uWLbr22mt1yy23aPz48TrttNMkSc8995z69Omjyy67TM2aNdN7772nW2+9VZWVlZowYYLz8e5up0OHDumCCy7Qzp07dcstt6hLly764osvNHXqVO3evTtkz6eC0GNVxlRWVta5I1eXuLg4l3Gipo0bN0qSBgwY4DK9f//+CgsL08aNGxs8woVcI9ckcg0IJmQb2Rbs2Xbo0CEdOnSo0XrCw8MbPaJ148aNOuOMMxQW5nos2cCBA/XCCy/ov//9r04//XRJv+bpFVdcoYcfflgtWrTQ3/72NzkcjkbrAGTAKyZMmGDUtzqzsrKMrl27Om8XFhYakoz27dsbBw4ccE6fOnWqIclISUkxjh075px+7bXXGhEREcaRI0cMwzCMX375xWjdurUxfvx4l+cpKioy4uLiak1316FDh2pNW7NmjSHJ+Otf/+qctmDBAkOSkZGRYVRWVjqn33nnnUZ4eLjzNe3Zs8eIiIgwhg8f7jLfn/70J0OSkZWV1WhNkozp06c7b48cOdKIiIgwvv/+e+e0Xbt2Ga1atTLOP/980zUWFRUZzZo1M0aOHOnyvDNmzKhV44oVKwxJxooVK5zThg8f7rJtaz5/YWGhy/SayygvLzc6dOhgpKamGkePHnXO98ILLxiSjAsuuMA57ZVXXjHCwsKMzz77zGWZubm5hiTj888/r1VHTTW3cXl5udG3b19jyJAhzmlbtmwxJBlPP/20y7y33nqrERMT41zGZ599ZkgyXn31VZf5li9fXmt6165dDUnG8uXLG63JMAwjMzPT6NGjh/O2me300EMPGS1btjT++9//usw7ZcoUIzw83Ni+fXut5wPsLpAypur53fmrPp7W97rDw8PrvK99+/bGNddc0+DjybUTyDVyDbAbsq02sq3uGkMp26ZPn+7W+6yu11NTy5YtjRtvvLHW9GXLltWZYQcOHDDWrl1r/PTTT40uG6jCz58tdNVVVykuLs55u+obm+uvv17NmjVzmV5eXq6dO3dKkj7++GMdOHBA1157rfbt2+f8Cw8PV1pamlasWOFRPdXPA3Ts2DH99NNPOvnkk9W6des6rxB18803u3x7cd5556miokI//PCDJOmTTz5xfpNYfT5PT5BbUVGhjz76SCNHjlSPHj2c0zt27Kjf/va3Wr16tUpKSkzVmJeXp+PHj9f6+cFtt93mUY1mrV+/Xnv27NEf/vAHl5MJjx071uW9IUlLlixRr1691LNnT5ftPmTIEElya7tX38Y///yzDh48qPPOO89l+5566qlKTU11+WawoqJCb7zxhkaMGOFcxpIlSxQXF6eLLrrIpZ7+/fsrJiamVj3du3dXZmZmgzUdPHhQ+/bt0wUXXKD//e9/OnjwoCRz22nJkiU677zz1KZNG5e6MjIyVFFRoVWrVjW6noBgYFXGJCYm6uOPP3brLyUlpcFl1TzRenVRUVE6fPhwg48n104g18g1IBiQbWRbdcGYbb/73e/cep+9+uqrjdZ9+PBhRUZG1ppedc7Jmu+1uLg4paWl8bNnmMLPny3UpUsXl9tVA1L1w6erT686n893330nSc6BqabY2FhJvw4SVf95rVL9Zz81HT58WLNnz9aCBQu0c+dOGYbhvK/mcuqqv+rw66o6q0Kg+lWlpF/P4+DJyYf37t2rQ4cOOX9eVF2vXr1UWVmpHTt2qE+fPqZrPPnkk13mi4+P98sJkutbR82bN3cJYenX7f7tt9+qffv2dS5rz549kqT9+/e7/FQhOjra+R56//33NXPmTBUUFLicQ6Pmoe1jxozRn/70J+3cuVOdOnXSypUrtWfPHo0ZM8alnoMHD6pDhw4N1lOle/fudc73+eefa/r06VqzZk2tQ/0PHjyouLg4U9vpu+++07///e9G1xMQ7HydMfWJiopSRkaG+YLrEB0dXe9Pr9y5KAa5dgK5Rq4BwYBsI9uqC+Rsq0+PHj1qLdNT0dHRdZ7Hseon41xcDN5AU9FC4eHhpqZXBUbVSblfeeWVOpuEVd/SLV68WOPGjatzGXW57bbbtGDBAk2aNEnp6emKi4uTw+HQNddcU+eJwBur0w6sqrG+809UVFR4vMzKykqdfvrpmjNnTp33V/1natSoUfr000+d07OysrRw4UJ99tlnuuyyy3T++efr2WefVceOHdW8eXMtWLDA5cpf0q87X1OnTtWSJUs0adIkvf7664qLi9PFF1/sUk+HDh3q/ZasZpDWFVrff/+9LrzwQvXs2VNz5sxRcnKyIiIi9MEHH2ju3LkenYC+srJSF110ke6555467z/11FNNLxMIRL7OmPpUVFTUOrl6feLj4+s9WkP69aiGiooK7dmzx6XRU15erp9++klJSUkNLp9c8x5yjVwD7IBsI9u8ycpsq09paalKS0sbfZ7w8PB6G5dVOnbsqN27d9eaXjWtsfca4A6aigHopJNOkiR16NChwW/MMjMz9fHHH7u93DfeeENZWVl68sknndOOHDmiAwcOeFRn165dJf36bU31b1v27t1b6yqK7mjfvr1atGihLVu21Lpv8+bNCgsLa3SQrq/GrVu3uhxx8NNPP7lVY31BVPWNWc11V/UtV83n/+6771y+OT127JgKCwtdfj5x0kknadOmTbrwwgsbPGnuk08+6VJ7VVi8+eabioqK0ocffuhyGPyCBQtqLaN79+4aOHCgFi9erIkTJ+qtt97SyJEjXR530kkn6ZNPPtE555zj8bdc7733no4ePap3333X5RvKmj8LMLOdTjrpJJWWlnrt22Qg1LibMfXZsWNHvUdw1bRixQoNGjSo3vtTU1Ml/fqzo0suucQ5ff369aqsrHTeXx9yjVyrQq4BoY1sqx/ZZk221eeJJ57QAw880Oh8Xbt2rXXV6ppSU1P12WefqbKy0uViLV9++aVatGjBl1LwCs6pGIAyMzMVGxurWbNm6dixY7Xur/oWrWPHjsrIyHD5a0h4eHitb4Oefvppj7+pycjIUPPmzfX000+7LNfTqxSGh4dr6NCheuedd1wG0OLiYi1atEjnnntuoz9dqOnCCy9Us2bN9Nxzz7lMf+aZZ9x6fMuWLev8mUHVf1yqn+eooqJCL7zwgst8AwYMUPv27ZWbm+vyM4iFCxfWCrerr75aO3fu1Isvvljr+Q4fPqyysjJJv145rvo27927t6Rf15/D4XDZntu2bav3CmRjxozR2rVrNX/+fO3bt8/lJ2JV9VRUVOihhx6q9djjx4+79R+bqm8la/5so+YOoZntdPXVV2vNmjX68MMPa9134MABHT9+vNG6gFDmbsbUx5vnnRoyZIji4+Nrffafe+45tWjRwnl13/qQayeQa+QaEMrItvqRbdZkW328eU7FK6+8UsXFxXrrrbec0/bt26clS5ZoxIgRdZ5vETCLIxUDUGxsrJ577jndcMMNOuOMM3TNNdeoffv22r59u5YtW6ZzzjnH7QG2uksvvVSvvPKK4uLi1Lt3b61Zs0affPKJ2rZt61Gd7du31+TJkzV79mxdeumluuSSS7Rx40b94x//ULt27Txa5syZM/Xxxx/r3HPP1a233qpmzZrp+eef19GjR/XYY4+ZXl5CQoLuuOMOPfnkk7rssst08cUXa9OmTc4aG/t2qX///lq8eLGys7N15plnKiYmRiNGjFCfPn101llnaerUqdq/f7/i4+P12muv1fqPf/PmzTVz5kzdcsstGjJkiMaMGaPCwkItWLCg1rk0brjhBr3++uv6wx/+oBUrVuicc85RRUWFNm/erNdff10ffvihBgwYUG+tw4cP15w5c3TxxRfrt7/9rfbs2aOcnBydfPLJ+ve//11r/quvvlqTJ0/W5MmTFR8fX6spfcEFF+iWW27R7NmzVVBQoKFDh6p58+b67rvvtGTJEv35z3/WlVde2eD6Gzp0qCIiIjRixAjdcsstKi0t1YsvvqgOHTq4HKpvZjvdfffdevfdd3XppZdq7Nix6t+/v8rKyvTVV1/pjTfe0LZt2zx+/wGhoKkZ4+3zTj300EOaMGGCrrrqKmVmZuqzzz7T3/72Nz388MONnkicXCPXqiPXgNBFttWPbLNXtnnznIpXXnmlzjrrLI0bN07ffPON2rVrp2effVYVFRVuHQ0JuMWv15oOYhMmTDDqW51ZWVkul3wvLCw0JBmPP/64y3xVl65fsmSJy/SqS93/61//qjV/ZmamERcXZ0RFRRknnXSSMXbsWGP9+vUevYaff/7ZGDdunNGuXTsjJibGyMzMNDZv3mx07drVyMrKcqseScaKFSuc0yoqKowHHnjA6NixoxEdHW0MGjTI+Prrr2stsz6SjOnTp7tM27Bhg5GZmWnExMQYLVq0MAYPHmx88cUXLvOYqfH48ePG/fffbyQmJhrR0dHGkCFDjG+//dZo27at8Yc//KHBx5aWlhq//e1vjdatWxuSXLbz999/b2RkZBiRkZFGQkKC8ac//cn4+OOPay3DMAzj2WefNbp3725ERkYaAwYMMFatWmVccMEFxgUXXOAyX3l5ufHoo48affr0MSIjI402bdoY/fv3Nx544AHj4MGDja7Pl156yTjllFOMyMhIo2fPnsaCBQuM6dOn1/vePeeccwxJxu9///t6l/nCCy8Y/fv3N6Kjo41WrVoZp59+unHPPfcYu3btcs7TtWtXY/jw4XU+/t133zX69etnREVFGd26dTMeffRRY/78+YYko7Cw0Dmfu9vJMAzjl19+MaZOnWqcfPLJRkREhNGuXTvj7LPPNp544gmjvLy80fUE2E0wZExTvPDCC8Zpp51mREREGCeddJIxd+5co7KystHHkWvkWk3kGmAfZBvZRrb53v79+42bbrrJaNu2rdGiRQvjggsuqLW+gaZwGIaNztAK2MSBAwfUpk0bzZw5U/fdd5/V5aAebCcAcA/jZWBgOwGA+xgzAetxTkWEvMOHD9eaVnUOkYZOsgz/YjsBgHsYLwMD2wkA3MeYCdgT51REyFu8eLEWLlyoSy65RDExMVq9erX+/ve/a+jQoTrnnHOsLg//H9spsO3YsUM33HCD9uzZo2bNmun+++/XVVddZXVZQFBivAwMbCd7IJ+AwMCYiVASSNnEz58R8jZs2KB77rlHBQUFKikpUUJCgkaPHq2ZM2cqJibG6vLw/7GdAtvu3btVXFys1NRUFRUVqX///vrvf/+rli1bWl0aEHQYLwMD28keyCcgMDBmIpQEUjbRVAQA+F1KSoref/99JScnW10KAABO5BMAwG7snE2cUxEAoFWrVmnEiBFKSkqSw+HQ0qVLa82Tk5Ojbt26KSoqSmlpaVq3bp1Hz5Wfn6+KigpbhiIAwF7IJwCA3ZBNJ9BUBACorKxMKSkpysnJqfP+xYsXKzs7W9OnT9eGDRuUkpKizMxM7dmzxzlPamqq+vbtW+tv165dznn279+v3/3ud3rhhRd8/poAAIGPfAIA2A3ZdELQ//y5srJSu3btUqtWreRwOKwuB0AQMgxDv/zyi5KSkhQW1rTvao4cOaLy8nKv1FRzzIuMjFRkZGSjj3U4HHr77bc1cuRI57S0tDSdeeaZeuaZZyT9OrYmJyfrtttu05QpU9yq6ejRo7rooos0fvx43XDDDe6/mCBENgHwB2/lk7eyqaom8sm+yCcAvsa+U3BlU9Bf/XnXrl22PUwUQHDZsWOHOnfu7PHjjxw5oi5dW2rvnsom1xITE6PS0lKXadOnT9eMGTNML6u8vFz5+fmaOnWqc1pYWJgyMjK0Zs0at5ZhGIbGjh2rIUOG2DoU/YVsAuBPTcknb2aTRD7ZHfkEwF/Yd6pfIGVT0DcVW7VqJUkaFH+9moVFWFyNdLx7R6tLAAJCs8LdVpfgtuOV5Vq5/2/O8cZT5eXl2runUqvWdVBMjOdHB5SWGjp/4B7t2LFDsbGxzunufNNWl3379qmiokIJCQku0xMSErR582a3lvH5559r8eLF6tevn/OcI6+88opOP/10j2oKdGQTELhCLZ+8lU0S+RQIyCcgsAVCRrHv1LhAyqagbypWHcLaLCzCFsGoZlFWVwAEhlO6q9n3O62uwhRv/UwoJsahmFZN+SnAr9/WxcbGugSjlc4991xVVnrnKJdgQDYBgcsWn1mTvJFPTc8miXyyPzvl0/GTOgX/zirgbQG0D8W+U/0CKZu4UAsA2zp+UierS4Ckdu3aKTw8XMXFxS7Ti4uLlZiYaFFVAGANssk+yCcAqI2cslaoZRNNRT/iww2Yx+fGehEREerfv7/y8vKc0yorK5WXl6f09HQLK4M38BkDzONzYw/kU/DiMwY0DZ8h64RaNnFEOQDbO35Sp4A5jD9QlZaWauvWrc7bhYWFKigoUHx8vLp06aLs7GxlZWVpwIABGjhwoObNm6eysjKNGzfOwqoBwDpkk3+QTwDgGXLKd8imE2gq+gnfFABNQyj61vr16zV48GDn7ezsbElSVlaWFi5cqDFjxmjv3r2aNm2aioqKlJqaquXLl9c6ATECC9kENA3Z5HvkU+ghmwDvIad8g2w6gaYigIBBKPrOoEGDZBhGg/NMnDhREydO9FNFABAYyCbfIp8AoGnIKe8jm07gnIp+wLdtgPfweQK8g88S4D18ngDv4LME+AafLfgKTUUf48MLeB+fKwCA3ZBNAAA7O35SJ7IKXkdTEUBAIhABz/H5AXyDzxbgOT4/gH/wWYM30VT0IT6sgG/xGQMA2A3ZBJjH5wbwL45ahLfQVAQQ0AhDwBw+M4Dv8TkDAAQC8gpNRVPRR/hwAv7DN20AALshlwD38FkBrMW+FJqCpiKAoEEYAg3jMwL4FztqQMP4fAD2UZVZfC5hRjOrCwhGfAgB61R9/pp9v9PiSgB7IZsA6xw/qRO5BNRALgH2VfPzSYahPjQVvYxwBOyh+meREESoI5sA65FLwAnkEhBYaDKiPjQVvYhwBOyJHTmEMrIJsB9yCQAQyGgyogpNRS9hpw0IDHV9VglBBCuyCbA/cgmhhmwCgg9floUumopeQDACga2hzzChiEBFNgGBq77PL5mEQEc2AcGPBmNooanYRAQjENzc+YwfP35E2ueHYgA3kU1AcOLnZghU5BIQmmgwBj+aih4gFAEAdkQ+AaGFI+1hd+QSgCpV4wEHZAQXmopuIhABAHZEPgGoy/GTOrHjBsuQTQAQGkKmqXi8e0epWZTVZQAA4EQ2AQDsiHwCALgjzOoCAAAAAAAAAAQWmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAAAAAAAATKGpCAAAAAAAAMAUmooAAJ87cOCABgwYoNTUVPXt21cvvvii1SUBAEA+AQBsJ5CyqZnVBQAAgl+rVq20atUqtWjRQmVlZerbt69GjRqltm3bWl0aACCEkU8AALsJpGziSEUAgM+Fh4erRYsWkqSjR4/KMAwZhmFxVQCAUEc+AQDsJpCyiaYiAECrVq3SiBEjlJSUJIfDoaVLl9aaJycnR926dVNUVJTS0tK0bt06U89x4MABpaSkqHPnzrr77rvVrl07L1UPAAhW5BMAwG7IphNoKgIAVFZWppSUFOXk5NR5/+LFi5Wdna3p06drw4YNSklJUWZmpvbs2eOcp+qcHzX/du3aJUlq3bq1Nm3apMLCQi1atEjFxcV+eW0AgMBFPgEA7IZsOoFzKgJAkCopKXG5HRkZqcjIyDrnHTZsmIYNG1bvsubMmaPx48dr3LhxkqTc3FwtW7ZM8+fP15QpUyRJBQUFbtWVkJCglJQUffbZZ7ryyivdegwAIHiQTwAAuyGbPENTEQBs5qOynopyeD48Hyk7LqlYycnJLtOnT5+uGTNmmF5eeXm58vPzNXXqVOe0sLAwZWRkaM2aNW4to7i4WC1atFCrVq108OBBrVq1Sn/84x9N1wIAsEZTs0kinwAA3se+k7VoKgJAkNqxY4diY2Odt+v7pq0x+/btU0VFhRISElymJyQkaPPmzW4t44cfftDNN9/sPMnwbbfdptNPP92jegAAgY18AgDYDdnkGZqKABCkYmNjXYLRSgMHDnT7EH8AQHAjnwAAdkM2eYYLtQAAGtSuXTuFh4fXOjlwcXGxEhMTLaoKABDqyCcAgN2EWjZZ3lTcuXOnrr/+erVt21bR0dE6/fTTtX79euf9hmFo2rRp6tixo6Kjo5WRkaHvvvvOwooBILRERESof//+ysvLc06rrKxUXl6e0tPTLazMd8gmALA/8ol8AgC7CbVssrSp+PPPP+ucc85R8+bN9Y9//EPffPONnnzySbVp08Y5z2OPPaannnpKubm5+vLLL9WyZUtlZmbqyJEjFlYOAMGltLRUBQUFzsPsCwsLVVBQoO3bt0uSsrOz9eKLL+rll1/Wt99+qz/+8Y8qKytzXtEsmJBNAGAf5NMJ5BMA2APZdIKl51R89NFHlZycrAULFjinde/e3flvwzA0b948/d///Z8uv/xySdJf//pXJSQkaOnSpbrmmmv8XjMABKP169dr8ODBztvZ2dmSpKysLC1cuFBjxozR3r17NW3aNBUVFSk1NVXLly+vdQLiYEA2AYB9kE8nkE8AYA9k0wmWHqn47rvvasCAAbrqqqvUoUMH/eY3v9GLL77ovL+wsFBFRUXKyMhwTouLi1NaWlq9l+I+evSoSkpKXP4AAA0bNGiQ8+pi1f8WLlzonGfixIn64YcfdPToUX355ZdKS0uzrmAfIpsAwD7IpxPIJwCwB7LpBEubiv/73//03HPP6ZRTTtGHH36oP/7xj7r99tv18ssvS5KKiookqc5LcVfdV9Ps2bMVFxfn/EtOTvbtiwAABBWyCQBgR+QTAMBuLG0qVlZW6owzztCsWbP0m9/8RjfffLPGjx+v3Nxcj5c5depUHTx40Pm3Y8cOL1YMAAh2ZBMAwI7IJwCA3VjaVOzYsaN69+7tMq1Xr17Ok1tWXW7bzKW4IyMjFRsb6/IHAIC7yCYAgB2RTwAAu7G0qXjOOedoy5YtLtP++9//qmvXrpJ+PfFwYmKiy6W4S0pK9OWXXwblpbgBANYjmwAAdkQ+AQDsxtKrP9955506++yzNWvWLF199dVat26dXnjhBb3wwguSJIfDoUmTJmnmzJk65ZRT1L17d91///1KSkrSyJEjrSwdABCkyCYAgB2RTwAAu7G0qXjmmWfq7bff1tSpU/Xggw+qe/fumjdvnq677jrnPPfcc4/Kysp0880368CBAzr33HO1fPlyRUVFWVg5ACBYkU0AADsinwAAdmNpU1GSLr30Ul166aX13u9wOPTggw/qwQcf9GNVAIBQRjYBAOyIfAIA2Iml51QEAAAAAAAAEHhoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAMBvDh06pK5du2ry5MlWlwIAgBP5BACwm0DIJpqKAAC/efjhh3XWWWdZXQYAAC7IJwCA3QRCNtFUBAD4xXfffafNmzdr2LBhVpcCAIAT+QQAsJtAySaaigAArVq1SiNGjFBSUpIcDoeWLl1aa56cnBx169ZNUVFRSktL07p160w9x+TJkzV79mwvVQwACAXkEwDAbsimE2gqAgBUVlamlJQU5eTk1Hn/4sWLlZ2drenTp2vDhg1KSUlRZmam9uzZ45wnNTVVffv2rfW3a9cuvfPOOzr11FN16qmn+uslAQCCAPkEALAbsumEZlYXAADwjZKSEpfbkZGRioyMrHPeYcOGNXho/Zw5czR+/HiNGzdOkpSbm6tly5Zp/vz5mjJliiSpoKCg3sevXbtWr732mpYsWaLS0lIdO3ZMsbGxmjZtmslXBQAIdOQTAMBuyCbP0FQEAJv59KdT1fxIhMePP1ZWLulTJScnu0yfPn26ZsyYYXp55eXlys/P19SpU53TwsLClJGRoTVr1ri1jNmzZzsP31+4cKG+/vprW4YiAKBuTc0miXwCAHgf+07WoqkIAEFqx44dio2Ndd6u75u2xuzbt08VFRVKSEhwmZ6QkKDNmzc3qUYAQOghnwAAdkM2eYamIgAEqdjYWJdgtIuxY8daXQIAwELkEwDAbsgmz9BUBAA0qF27dgoPD1dxcbHL9OLiYiUmJlpUFQAg1JFP8JZfukfXmtaq8LAFlQAIdKGWTVz9GQDQoIiICPXv3195eXnOaZWVlcrLy1N6erqFlQEAQhn5BE/90j3a5a+heQDAjFDLJo5UBACotLRUW7dudd4uLCxUQUGB4uPj1aVLF2VnZysrK0sDBgzQwIEDNW/ePJWVlTmvaAYAgC+QT/A2s43CX7pHc9QiABdk0wk0FQEAWr9+vQYPHuy8nZ2dLUnKysrSwoULNWbMGO3du1fTpk1TUVGRUlNTtXz58lonIAYaws/LAJhFPsFbmnLUYdVjySwAEtlUHU3FAOdJOBKGAGoaNGiQDMNocJ6JEydq4sSJfqoIgcxMNlWfl3wCUBP5BG/w1s+YOWoRvtLYe5T3nb2QTSfQVAxATQ1FduAAAN7mjR028gkA4E2cExF25+57lIY27IqmYoDwVSAyOAEAPOXLnTXyCQDQFOw/wa5odiOYcPVnm/PHVccY1AAAZvjripjkEwDALK7aDDvzxrk9ATvhSEUbYrAAANgN2QQAsDN/5hRHK8IszuuJYEVT0Uas3GFjcIK3NfR+5r0GBA6rm4nkEwCgPlZnFOAOb79P+b8R7ISmosXsFIQMTmgqMycalmguAnZlp2ySyCd4h7vva95rgL3ZJaPIJriDc3si2NFUtIhdwrAmBid4wtP3M+83wF7smk0S4wU848l7mvcaYF92zimgJt6vCAVcqMXPAuHEwXavD/bhjfdzIHwmgGAXKJ/DQKgR9tHUk+HzfgPsw66fSTvWBHvggnYIFTQV/cSuQQh4yhfnBgHgX2QTgpE339d8PgDr2f1zaPf64H+8JxBKLG0qzpgxQw6Hw+WvZ8+ezvuPHDmiCRMmqG3btoqJidHo0aNVXFxsYcWeCcRBJRBrhn/4sgnB+w52EArZFMjNxECtG/7hi/cH7znYRSjkU018/oCG8RmB1Sw/UrFPnz7avXu382/16tXO++6880699957WrJkiT799FPt2rVLo0aNsrBacwJ5pw2oC4fxI1QEezYBwcbX/+ficwO7COZ8qonPHQIR71uEGssv1NKsWTMlJibWmn7w4EG99NJLWrRokYYMGSJJWrBggXr16qW1a9fqrLPO8neppgTDYMKJylHF3+9n3nuwGtlkb4wRqM5f72ved7CDYM2nmgItrxgfYCXef7CS5Ucqfvfdd0pKSlKPHj103XXXafv27ZKk/Px8HTt2TBkZGc55e/bsqS5dumjNmjX1Lu/o0aMqKSlx+fO3QAvBhgTTa4F5Vh5ty3sPViKbAPuzIqP4HMFqwZhPNfE5Q6DivYtQZGlTMS0tTQsXLtTy5cv13HPPqbCwUOedd55++eUXFRUVKSIiQq1bt3Z5TEJCgoqKiupd5uzZsxUXF+f8S05O9vGrAIKPXX66b4caEHqCMZuC8bMUjK8J7rE6o3jvwSrBmE818flCoLL6vWv18yN0Wfrz52HDhjn/3a9fP6Wlpalr1656/fXXFR3t2Ydi6tSpys7Odt4uKSnxazgG44eZw6lDg13fu7z/4G/BmE1AoLNbRpFNsEKw55PdPudmMS4ACEWWn1OxutatW+vUU0/V1q1bddFFF6m8vFwHDhxw+catuLi4zvOIVImMjFRkZKQfqq0t0IMQoSWQ3q/8Jw1WIpvsi7EhuNn9vcv7D1YL9Hyqzu6fd6AhvH8Ryiw/p2J1paWl+v7779WxY0f1799fzZs3V15envP+LVu2aPv27UpPT7ewyroF+0AS7K8v2FX9VKz6X6AJxJoRHMgmewuF1xgqAjGnAqVOBKdAzqfq+BwhkNnp/WunWhA6LD1ScfLkyRoxYoS6du2qXbt2afr06QoPD9e1116ruLg43XTTTcrOzlZ8fLxiY2N12223KT09PeCuXhYs+Ebe3kIhRKpeI+9D+BLZFHjIJ/sL5owim+AvwZhPwTY2kEehwc7vW96D8DdLm4o//vijrr32Wv30009q3769zj33XK1du1bt27eXJM2dO1dhYWEaPXq0jh49qszMTD377LNWllwnOw8q3sYgZQ+h9J6rS/XXz/sR3kY2BSbyyR5C7X1XHc1F+Fqw5FOVYB0vyKPgE2jvVd6D8CdLm4qvvfZag/dHRUUpJydHOTk5fqrIvEAbYLyB/zT7Vyi+x8zg/QhvI5sCF+OBf4Xq+6wxfPEFXwmGfKoS7OMHTR1rBfv7yx28B+EvtrpQCwILO2++QQh6hp044FeMIfxH2hd4X3mGbAJqC5XxhCzyn1B5T5nF/jr8gaZiEzB4/YrBynO8h3yj5nrlvYlQwZhyAs0cz/E+8g2yCQi98YX9JN8ItfdRU9Hghi/RVPQAg1jd2IGrG+8X6zW0DXivIlgw1tSPfKqN94v1GtsGvFcRTEJ9zKG52DSh/v7xBhqL8BWaiiYxoLkn2HfgeB8ED29sy+PHHNK/vFAM4CHGJPfZ8Wgxth/qQj4hGDC+uaprfdghh+yE94zv1Lduzb4Hm7qNyKbgQlPRBAY4z7DeAMB3GGObhvUHAL7B+OoeX6wnXzYq2a7Bh22KpqCp6AY+ZAAAuyGbAAB2QzbZA9sBgL/QVKwDgzAAwI7IJwCAnZBLABDaQqap+Eu3aDVrHmV1GQAQsrp166bY2FiFhYWpTZs2WrFihdUlWY5sAgDrkU+1kU8AYK1AyaaQaSoCAKz3xRdfKCYmxuoyAABwQT4BAOwmELIpzOoCAAAAAAAAAAQWmooAAK1atUojRoxQUlKSHA6Hli5dWmuenJwcdevWTVFRUUpLS9O6detMPYfD4dAFF1ygM888U6+++qqXKgcABDPyCQBgN2TTCfz8GQCgsrIypaSk6MYbb9SoUaNq3b948WJlZ2crNzdXaWlpmjdvnjIzM7VlyxZ16NBBkpSamqrjx4/XeuxHH32kpKQkrV69Wp06ddLu3buVkZGh008/Xf369fP5awMABC7yCQBgN2TTCTQVASBIlZSUuNyOjIxUZGRknfMOGzZMw4YNq3dZc+bM0fjx4zVu3DhJUm5urpYtW6b58+drypQpkqSCgoIG6+nUqZMkqWPHjrrkkku0YcMGWwYjAMC3yCcAgN2QTZ6hqQgANrOluL3CW3h+xcWKQ0ckScnJyS7Tp0+frhkzZpheXnl5ufLz8zV16lTntLCwMGVkZGjNmjVuLaOsrEyVlZVq1aqVSktL9c9//lNXX3216VoAANZoajZJ5BMAwPvYd7IWTUUACFI7duxQbGys83Z937Q1Zt++faqoqFBCQoLL9ISEBG3evNmtZRQXF+uKK66QJFVUVGj8+PE688wzPaoHABDYyCcAgN2QTZ6hqQgAQSo2NtYlGK3Uo0cPbdq0yeoyAAA2QD4BAOyGbPIMV38GADSoXbt2Cg8PV3Fxscv04uJiJSYmWlQVACDUkU8AALsJtWyiqQgAaFBERIT69++vvLw857TKykrl5eUpPT3dwsoAAKGMfAIA2E2oZRM/fwYAqLS0VFu3bnXeLiwsVEFBgeLj49WlSxdlZ2crKytLAwYM0MCBAzVv3jyVlZU5r2gGAIAvkE8AALshm06gqQgA0Pr16zV48GDn7ezsbElSVlaWFi5cqDFjxmjv3r2aNm2aioqKlJqaquXLl9c6ATEAAN5EPgEA7IZsOoGmIgBAgwYNkmEYDc4zceJETZw40U8VAQBAPgEA7IdsOoFzKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFOauTPTu+++a3rBF110kaKjo00/DgAAd5FPAAC7IZsAAKHCrabiyJEjTS3U4XDou+++U48ePTypCQAAt5BPAAC7IZsAAKHC7Z8/FxUVqbKy0q2/Fi1a+LJmAACcyCcAgN2QTQCAUOBWUzErK8vU4fjXX3+9YmNjPS4KAAB3kE8AALshmwAAocKtnz8vWLDA1EKfe+45j4oBAMAM8gkAYDdkEwAgVHD1ZwAAAAAAAACmuHWkYnVHjhzR008/rRUrVmjPnj2qrKx0uX/Dhg1eKw4AAHeRTwAAuyGbAADBzHRT8aabbtJHH32kK6+8UgMHDpTD4fBFXQAAmEI+AQDshmwCAAQz003F999/Xx988IHOOeccX9QDAIBHyCcAgN2QTQCAYGb6nIqdOnVSq1atfFELAAAeI58AAHZDNgEAgpnppuKTTz6pe++9Vz/88IMv6gEAwCPkEwDAbsgmAEAwM91UHDBggI4cOaIePXqoVatWio+Pd/nz1COPPCKHw6FJkyY5px05ckQTJkxQ27ZtFRMTo9GjR6u4uNjj5wAABC/yCQBgN2QTACCYmT6n4rXXXqudO3dq1qxZSkhI8MrJhv/1r3/p+eefV79+/Vym33nnnVq2bJmWLFmiuLg4TZw4UaNGjdLnn3/e5OcEAAQX8gkAYDdkEwAgmJluKn7xxRdas2aNUlJSvFJAaWmprrvuOr344ouaOXOmc/rBgwf10ksvadGiRRoyZIgkacGCBerVq5fWrl2rs846yyvPDwAIDuQTAMBuyCYAQDAz/fPnnj176vDhw14rYMKECRo+fLgyMjJcpufn5+vYsWMu03v27KkuXbpozZo19S7v6NGjKikpcfkDAAQ/O+cT2QQAocnO2SSRTwCApjHdVHzkkUd01113aeXKlfrpp5+aFEKvvfaaNmzYoNmzZ9e6r6ioSBEREWrdurXL9ISEBBUVFdW7zNmzZysuLs75l5ycbKomAEBgsnM+kU0AEJrsnE0S+QQAaBrTP3+++OKLJUkXXnihy3TDMORwOFRRUeHWcnbs2KE77rhDH3/8saKiosyWUa+pU6cqOzvbebukpIRwBIAQYOd8IpsAIDTZOZsk8gkA0DSmm4orVqzwyhPn5+drz549OuOMM5zTKioqtGrVKj3zzDP68MMPVV5ergMHDrh841ZcXKzExMR6lxsZGanIyEiv1AgA8J7CwkLdeOONKi4uVnh4uNauXauWLVt6bfl2zieyCQDsy5f5ZOdsksgnALArX+87eYvppuLZZ5+t5s2b13nfvn373F7OhRdeqK+++spl2rhx49SzZ0/de++9Sk5OVvPmzZWXl6fRo0dLkrZs2aLt27crPT3dbNkAAIuNHTtWM2fO1Hnnnaf9+/d7fSeGfAIAeMKX+UQ2AQA84et9J28x3VS85ppr9MYbb8jhcLhMLy4u1oUXXqivv/7areW0atVKffv2dZnWsmVLtW3b1jn9pptuUnZ2tuLj4xUbG6vbbrtN6enpXL0MAALMf/7zHzVv3lznnXeeJCk+Pt6ry8/Ly9P111+v6OhoORwO9erVS5MmTVJGRgb5BAColy/ziWwCAHjCH/tOc+fO1bfffitJLvlklukLtWzfvl2///3vXabt3r1bgwYNUs+ePU0X0JC5c+fq0ksv1ejRo3X++ecrMTFRb731llefAwAgrVq1SiNGjFBSUpIcDoeWLl1aa56cnBx169ZNUVFRSktL07p169xe/nfffaeYmBiNGDFCZ5xxhmbNmuW12p999lldfPHFKi8vV4cOHXTHHXcoNjZWl1xyiWbNmkU+AUAAC9R8IpsAIHgFajZJJ/KpVatWuuOOO1zyKScnx/TyTB+p+MEHH+j8889Xdna25syZo127dmnw4MFKSUnRa6+9ZrqA6lauXOlyOyoqSjk5OR69MACA+8rKypSSkqIbb7xRo0aNqnX/4sWLlZ2drdzcXKWlpWnevHnKzMzUli1b1KFDB0lSamqqjh8/XuuxH330kY4fP67PPvtMBQUF6tChgy6++GKdeeaZuuiii5pc+6xZszR37lyNGTNG559/vrZt26ZFixapT58+mjZtmkaNGkU+AUCACtR8IpsAIHgFajZJJ/Jp4sSJzmm33367zjnnHM2aNUsTJkwwtTzTTcX27dvro48+0rnnnitJev/993XGGWfo1VdfVViY6QMfAQA+UlJS4nK7oZOxDxs2TMOGDat3WXPmzNH48eM1btw4SVJubq6WLVum+fPna8qUKZKkgoKCeh/fqVMnDRgwwHlFyUsuuUQFBQVeCcYDBw7o4osvrpVPb7/9tiTp73//O/kEADYSCvlENgFAYAmFbJJO5FNNQ4cO1b333mt6eR4lWXJysj7++GO9+uqrGjhwoP7+978rPDzck0UBAGqoKGqh47s8/6soaiHp17E6Li7O+Td79myP6ikvL1d+fr7LOTbCwsKUkZGhNWvWuLWMM888U3v27NHPP/+syspKrVq1Sr169fKonpouu+wy505a9Xxq06aNRo8eTT4BgBc0NZtCLZ/IJgDwD/adzKmeT9W98847uvTSS00vz60jFdu0aVPrwiySdOjQIb333ntq27atc9r+/ftNFwEA8L4dO3YoNjbWedvTK4bt27dPFRUVSkhIcJmekJCgzZs3u7WMZs2aadasWTr//PNlGIaGDh3qUWjV1KZNGx09elSvvfaa7rvvPjVr9musHT16VHv27NHmzZvVsmVLSdLs2bN1++23N/k5AQBNE+z5RDYBQOAJ9myq0rt3bz388MNauXKl0tPTJUlr167V559/rrvuuktPPfWUc1538smtpuK8efM8qxYAYJnY2FiXYLRaYz8T8MS8efM0efJk585ZlZq3q+Zlxw0ArBfs+UQ2AUDgCfZsqvLSSy+pTZs2+uabb/TNN984p7du3VovvfSS87bD4fBeUzErK8uDUgEAwaBdu3YKDw9XcXGxy/Ti4mIlJiZaVNWvsrKyyCgACFF2zSeyCQBCl12zqUphYaFXl+fWORVrnrCyMb/88otHxQAA7CciIkL9+/dXXl6ec1plZaXy8vKch8xbhXwCgNBl13wimwAgdNk1m3zF7XMq7t6923np68Z06tRJBQUF6tGjR5OKAwD4R2lpqbZu3eq8XVhYqIKCAsXHx6tLly7Kzs5WVlaWBgwYoIEDB2revHkqKytzXtHMKlX5VF5ernfffVfbt29XeXm5yzxz5sxx/pt8AoDAEoj5RDYBQHALxGyq7scff3Qrn9zhVlPRMAz95S9/UUxMjFsLPXbsmKkiAADWWr9+vQYPHuy8nZ2dLenXn3AtXLhQY8aM0d69ezVt2jQVFRUpNTVVy5cvr3UCYn8zDENTp07VK6+8onbt2qm4uFgdO3bU/v37ZRiGkpOT1a1bN+f85BMABJZAzCeyCQCCWyBmU5W8vDxddtll6tGjhzZv3qy+fftq27ZtMgxDZ5xxhunludVU7NKli1588UW3F5qYmKjmzZubLgYAYI1BgwbJMIwG55k4caImTpzop4rc06VLF/3tb39Ty5YtFRkZKcMw5HA41KFDB+3du1f79+/X3LlznfOTTwAQWAIxn8gmAAhugZhNVaZOnarJkyfrgQceUKtWrfTmm2+qQ4cOuu6663TxxRebXp5bTcVt27aZXjAAAL62bds2tWrVSuvXr9dJJ52kNm3aaPny5erTp482bdqkyy+/3OsnIwYAoCFkEwDArr799lv9/e9/lyQ1a9ZMhw8fVkxMjB588EFdfvnl+uMf/2hqeW5dqAUAALtq2bKl81wgHTt21Pfff++8b9++fVaVBQAIYWQTAMCOvJ1Pbh2pCACAXZ111llavXq1evXqpUsuuUR33XWXvvrqK7311ls666yzrC4PABCCyCYAgB15O59oKgIAAtqcOXNUWloqSXrggQdUWlqqxYsX65RTTjF99TIAALyBbAIA2JG384mmIgAgoPXo0cP575YtWyo3N9fCagAAIJsAAPbk7XzinIoAgID2+9//XitXrrS6DAAAnMgmAIAdeTufPGoqfvbZZ7r++uuVnp6unTt3SpJeeeUVrV692muFAQDgjr179+riiy9WcnKyrr32Wg0fPpx8AgBYimwCANhR9Xy6++67tWnTpiYtz3RT8c0331RmZqaio6O1ceNGHT16VJJ08OBBzZo1q0nFAABg1jvvvKPdu3dr+PDhev311/XBBx/oyy+/1Ny5c7Vt2zbyCQDgd2QTAMCOqvLp/vvv17/+9S+dccYZ6tOnj2bNmqVt27aZXp7ppuLMmTOVm5urF198Uc2bN3dOP+ecc7RhwwbTBQAA0FRt2rTRl19+qQULFmjHjh1q3ry53n77bZ188snkEwDAEmQTAMCO2rRpo5tvvlkrV67UDz/8oLFjx+qVV17RySefbHpZppuKW7Zs0fnnn19relxcnA4cOGC6AAAAvGHLli1KT0/X+vXrVVlZqR9//FEJCQnkEwDAMmQTAMCujh07pvXr1+vLL7/Utm3blJCQYHoZppuKiYmJ2rp1a63pq1evdrmKDAAA/rJixQo1a9ZMZ5xxhsaOHStJ+stf/qIff/yRfAIAWIJsAgDY0YoVKzR+/HglJCRo7Nixio2N1fvvv68ff/zR9LJMNxXHjx+vO+64Q19++aUcDod27dqlV199VZMnT9Yf//hH0wUAANAUnTp10iWXXKLk5GS1bt1a7733nqKjo9W9e3ctWrSIfAIA+B3ZBACwo6p82rdvn1544QUVFxdr/vz5uvDCC+VwOEwvr5nZB0yZMkWVlZW68MILdejQIZ1//vmKjIzU5MmTddttt5kuAACAppgxY4auuuoqxcXFadasWRo2bFid+fTjjz8qKSlJYWGmv08DAMAUsgkAYEdV+dS6desG53M3n0w3FR0Oh+677z7dfffd2rp1q0pLS9W7d2/FxMSYXRQAAE02fvx4578byqfevXuroKCAn5sBAHyObAIA2FH1fGqIu/lkuqlYJSIiQr179/b04QAA+ER9+WQYhgXVAABANgEAAou7+eRWU3HUqFFuP/Fbb73l9rwAADSFmXwCAMAfyCYAQKhw6+QdcXFxzr/Y2Fjl5eVp/fr1zvvz8/OVl5enuLg4nxUKAEBN5BMAwG7IJgBAqHDrSMUFCxY4/33vvffq6quvVm5ursLDwyVJFRUVuvXWWxUbG+ubKgEAqAP5BACwG7IJABAqTJ9Tcf78+Vq9erUzFCUpPDxc2dnZOvvss/X44497tUAAANzRWD45HA4LqwMAhCKyCQAQiNzNJ7d+/lzd8ePHtXnz5lrTN2/erMrKSrOLAwDAKxrLJ06GDwDwN7IJABCIvHqhlurGjRunm266Sd9//70GDhwoSfryyy/1yCOPaNy4cWYXBwCAV4wbN07jxo3TxIkTNXToUEmu+XTnnXcqKSnJ4ioBAKGEbAIA2NWPP/4oSercuXOt+7755hu38sl0U/GJJ55QYmKinnzySe3evVuS1LFjR91999266667zC4OAIAmqays1MyZM/WXv/xFpaWleuihh/TQQw/J4XC45FP1n54BAOBLZBMAwI6q8unJJ59UaWmpJKlVq1a66667dN999yks7NcfNCcnJ7u1PNNNxbCwMN1zzz265557VFJSIkmcZBgAYJn77rtPL730kh599FGdc845kqSPP/5Ys2fP1tixY3XPPfdYXCEAINSQTQAAO6rKp0ceecSZT6tXr9aMGTN05MgRPfzww6aWZ7qpWB3NRACA1V5++WX95S9/0WWXXeac1q9fP5188sm69dZbTQcjAABNRTYBAOyovnzq1KmTR/lkuqnYvXv3Bq8C87///c/sIgEA8Nj+/fvVs2fPWvl07Ngx7d69Wz169JBEPgEA/IdsAgDYUVU+1dSzZ0/t37/f9PJMNxUnTZrkcvvYsWPauHGjli9frrvvvtt0AQAANEVKSoqeeeaZWvn0+uuv6/Dhwzp48CD5BADwK7IJAGBHVfn01FNPuUx/5plnlJKSYnp5ppuKd9xxR53Tc3JytH79etMFAADQFI899piGDx+uLl26KD09XZK0Zs0a7dixQx988IH+/e9/k08AAL8imwAAdlSVT5988kmd+WRWmLcKGzZsmN58801vLQ4AEES2bNmi1NRU5190dLSWLl3qlWVfcMEF+u9//6srrrhCBw4c0IEDBzRq1Cht2bJF5513HvkEAKiXr/KJbAIAeMrKfSezmnShlureeOMNxcfHe2txAIAgctppp6mgoECSVFpaqm7duumiiy7y2vKTkpLqPakw+QQAqI8v84lsAgB4wsp9J7NMNxV/85vfuJxs2DAMFRUVae/evXr22We9UhQAIHi9++67uvDCC9WyZUuvLK+yslJhYWF15tPOnTu1f/9+8gkA0Chv5hPZBADwBl/tO9U1/ccff1SXLl1MLc/0z58vv/xyl79Ro0Zp+vTp+vrrr3XzzTebXRwAwAZWrVqlESNGKCkpSQ6Ho87D63NyctStWzdFRUUpLS1N69at8+i5Xn/9dY0ZM6aJFUslJSW6+uqr1bJlSyUkJCg2NlYjRoxw5tPQoUO1b98+8gkAAlig5RPZBADBL9CySaqdT9OmTVNFRYXz/r1796p79+6ml2v6SMUZM2aYfhIAgL2VlZUpJSVFN954o0aNGlXr/sWLFys7O1u5ublKS0vTvHnzlJmZqS1btqhDhw6SpNTUVB0/frzWYz/66CMlJSVJ+jXMvvjiC7322mtNrvn+++/Xpk2b9Morr+jAgQOaOXOm8vPz9dZbbykiIkLFxcV6/PHH1bNnzyY/FwDAGoGWT2QTAAS/QMsmqe582rBhgzOfpF+PpjfLdFMxPDxcu3fvdq6IKj/99JM6dOjg0ukEAFinpKTE5XZkZKQiIyPrnHfYsGEaNmxYvcuaM2eOxo8fr3HjxkmScnNztWzZMs2fP19TpkyRJOd5PxryzjvvaOjQoYqKinLzVdRv6dKlevnllzVo0CBJ0i233KL4+HiNGDFC7777riTJ4XCQTwBgM8GcT2QTAASmYM4mqXY+jRw5UsOHD6+VT2aZ/vlzfZ3Lo0ePOrub7nruuefUr18/xcbGKjY2Vunp6frHP/7hvP/IkSOaMGGC2rZtq5iYGI0ePVrFxcVmSwaAgBK9M0wtfvT8L3rnr0N7cnKy4uLinH+zZ8/2qJ7y8nLl5+crIyPDOS0sLEwZGRlas2aNqWV56/B96ddD9Lt27eq8bRiG3njjDf3yyy+65JJLdOjQIUnm84lsAoDamppNoZJPvsomiXwCgLqw7+SemvnUrl07ffLJJ7XyySy3j1R86qmnJP3aufzLX/6imJgY530VFRVatWqV6cP4O3furEceeUSnnHKKDMPQyy+/rMsvv1wbN25Unz59dOedd2rZsmVasmSJ4uLiNHHiRI0aNUqff/65qecBgFC0Y8cOxcbGOm/X901bY/bt26eKigolJCS4TE9ISNDmzZvdXs7Bgwe1bt06vfnmmx7VUVOXLl307bff6r333pP0az699tpruuKKK/Tss8/q3HPPlWEYmjBhgql8IpsAwLeCOZ98lU0S+QQAvhTM2SSdyKfq501s1aqVPvroIw0dOlRXXHGFR8t1u6k4d+5cSb9+25abm6vw8HDnfREREerWrZtyc3NNPfmIESNcbj/88MN67rnntHbtWnXu3FkvvfSSFi1apCFDhkiSFixYoF69emnt2rU666yzTD0XAISaqiMZ7CIuLs6rR0wMHTpUCxYs0Pr16yW55pNhGPrpp59kGIYOHTpkKp/IJgDwrWDOJ19lk0Q+AYAvBXM2SSfy6ZJLLnGZHhMTow8//FAXXXSRR8t1u6lYWFgoSRo8eLDeeusttWnTxqMnrE9FRYWWLFmisrIypaenKz8/X8eOHXM5ZLRnz57q0qWL1qxZQzACgJ+0a9dO4eHhtUKtuLhYiYmJFlUlPfDAA9q1a5f69OkjqXY+/fLLL9qwYYMuuOACj5+DbAIA+7JjPvkjmyTyCQDsyo7ZJJ3Ip7q0atVKH3/8sTZs2GB6uaYv1LJixQrTT9KQr776Sunp6Tpy5IhiYmL09ttvq3fv3iooKFBERIRat27tMn9CQoKKiorqXd7Ro0d19OhR5+2aJ9sEAJgTERGh/v37Ky8vTyNHjpQkVVZWKi8vTxMnTrSsrjZt2jh30vLy8pSenq67775blZWVLvN5suNGNgGA/dkxn3yZTRL5BAB2Z8dskmrnU15envbs2dPkfHKrqZidna2HHnpILVu2VHZ2doPzzpkzx1QBp512mgoKCnTw4EG98cYbysrK0qeffmpqGdXNnj1bDzzwgMePB4BQVFpaqq1btzpvFxYWqqCgQPHx8erSpYuys7OVlZWlAQMGaODAgZo3b57KysqcVzSzSnZ2tqKjo/XII4+offv2Luf7rT6PZC6fyCYAsIdAzCdfZZNEPgGAHQRiNlV54IEH9OCDD2rAgAHq2LGjR1d8rs6tpuLGjRt17NgxSdKGDRua/KTVRURE6OSTT5Yk9e/fX//617/05z//WWPGjFF5ebkOHDjg8o1bY4eMTp061aXxWVJSouTkZK/VCwDBaP369Ro8eLDzdtU4mpWVpYULF2rMmDHau3evpk2bpqKiIqWmpmr58uW1TkDsbxs3btQ333yjhQsX6qWXXqoznzZu3Gh6uWQTANhDIOaTr7JJIp8AwA4CMZuq5ObmauHChbrhhhu8sjy3morVf/K8cuVKrzxxfSorK3X06FH1799fzZs3V15enkaPHi1J2rJli7Zv36709PR6Hx8ZGenxVXoAIFQNGjRIhmE0OM/EiRMtPWS/LitWrFDbtm119tlney0Y60I2AYA1AjGf/JVNEvkEAFYIxGyqUl5errPPPttrywsz+4Abb7xRv/zyS63pZWVluvHGG00ta+rUqVq1apW2bdumr776SlOnTtXKlSt13XXXKS4uTjfddJOys7O1YsUK5efna9y4cUpPT+dEwwAAp9///vdatGiR1/KJbAIANJW3s0kinwAATVeVT95i+kItL7/8sh555BG1atXKZfrhw4f117/+VfPnz3d7WXv27NHvfvc77d69W3FxcerXr5/Lpaznzp2rsLAwjR49WkePHlVmZqaeffZZsyUDAIJM9Z9qVVZW6oUXXtCBAwfkcDgUFxfnMu+f/vQnU/lENgEAPOHLbJLIJwCAZ+rKp08++UT9+vVT8+bNXeY1e65ft5uKJSUlMgxDhmHol19+UVRUlPO+iooKffDBB+rQoYOpJ3/ppZcavD8qKko5OTnKyckxtVwAQHCrfi6q48ePq2/fvlq9erX+85//1ApGs/lENgEAPOHLbJLIJwCAZ2qexzc1NVWS9PXXX7tM9+T6KW43FVu3bi2HwyGHw6FTTz211v0Oh4MrhwEA/KL6uX7DwsLkcDgUFhamf/3rX7XmXbNmDfkEAPA5sgkAYEfV88nb3G4qrlixQoZhaMiQIXrzzTcVHx/vvC8iIkJdu3ZVUlKST4oEAKA+5BMAwG7IJgBAKHC7qXjBBRdIkgoLC9WlSxePDosEAMDbyCcAgN2QTQCAUOBWU/Hf//63y+2vvvqq3nn79evXtIoAAHAT+QQAsBuyCQAQKtxqKqampsrhcMgwjAbnczgcqqio8EphAAA0hnwCANgN2QQACBVuNRULCwt9XQcAAKaRTwAAuyGbAAChwq2mYteuXX1dBwAAppFPAAC7IZsAAKHC7Qu11PTNN99o+/btKi8vd5l+2WWXNbkoAAA8RT4BAOyGbAIABCPTTcX//e9/uuKKK/TVV1+5nCuk6opmnBcEAGAF8gkAYDdkEwAgmIWZfcAdd9yh7t27a8+ePWrRooX+85//aNWqVRowYIBWrlzpgxIBAGgc+QQAsBuyCQAQzEwfqbhmzRr985//VLt27RQWFqawsDCde+65mj17tm6//XZt3LjRF3UCANAg8gkAYDdkEwAgmJk+UrGiokKtWrWSJLVr1067du2S9OsJibds2eLd6gAAcBP5BACwG7IJABDMTB+p2LdvX23atEndu3dXWlqaHnvsMUVEROiFF15Qjx49fFEjAACNIp8AAHZDNgEAgpnppuL//d//qaysTJL04IMP6tJLL9V5552ntm3bavHixV4vEAAAd5BPAAC7IZsAAMHMdFMxMzPT+e+TTz5Zmzdv1v79+9WmTRvnVcwAAPA38gkAYDdkEwAgmJluKtYlPj7eG4sBAMCryCcAgN2QTQCAYGH6Qi0AAAAAAAAAQhtNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQCAX8ydO1d9+vRR7969dfvtt8swDKtLAgCAfAIA2E6gZBNNRcAGSjuFufwBwWbv3r165plnlJ+fr6+++kr5+flau3at1WUBAEIc+QQAsJtAyqZmVhcAhLL6Gog1p8fsrPRHOYBPHT9+XEeOHJEkHTt2TB06dLC4IgD1cfcLLvIJwYB8AgDYTaBkE4dEAX7myRGJHL0IX1u1apVGjBihpKQkORwOLV26tNY8OTk56tatm6KiopSWlqZ169a5vfz27dtr8uTJ6tKli5KSkpSRkaGTTjrJi68AQFORT7Aj8gkAYDdk0wn8TxDwo6bsfPHTaPhSWVmZUlJSlJOTU+f9ixcvVnZ2tqZPn64NGzYoJSVFmZmZ2rNnj3Oe1NRU9e3bt9bfrl279PPPP+v999/Xtm3btHPnTn3xxRdatWqVv14egEY0NZ8AXyGfAAB2QzadwM+fgQBT2imMn5vBLSUlJS63IyMjFRkZWee8w4YN07Bhw+pd1pw5czR+/HiNGzdOkpSbm6tly5Zp/vz5mjJliiSpoKCg3scvWbJEJ598suLj4yVJw4cP19q1a3X++eebeUkAfMAbTUGyCWaQTwAAuyGbPMNXy4CfePNIDo4KCW4td1cqZqfnfy13/7pjn5ycrLi4OOff7NmzPaqnvLxc+fn5ysjIcE4LCwtTRkaG1qxZ49YykpOT9cUXX+jIkSOqqKjQypUrddppp3lUDwB7IpuCW1OziXwCAPgC+07W4khFwA98saPFUSFozI4dOxQbG+u8Xd83bY3Zt2+fKioqlJCQ4DI9ISFBmzdvdmsZZ511li655BL95je/UVhYmC688EJddtllHtUDwHu8nU9kE9xBPgEA7IZs8gxNRQAIUrGxsS7BaLWHH35YDz/8sNVlAPj/fHVkIY1FNIZ8AgDYDdnkGX6nAviYL38Oxk/N4A/t2rVTeHi4iouLXaYXFxcrMTHRoqoAAKGOfAIA2E2oZRMdCcCHaPohGERERKh///7Ky8tzTqusrFReXp7S09MtrAyAp3ydT+Qf/IF8AgDYTahlEz9/BgIcPzODN5SWlmrr1q3O24WFhSooKFB8fLy6dOmi7OxsZWVlacCAARo4cKDmzZunsrIy5xXNAAQOGn4IJOQTAMBuyKYTaCoCPsJOGwLJ+vXrNXjwYOft7OxsSVJWVpYWLlyoMWPGaO/evZo2bZqKioqUmpqq5cuX1zoBMQBU4UsveAP5BACwG7LpBJqKgA/4u6HIjhuaatCgQTIMo8F5Jk6cqIkTJ/qpIgC+wBdeCDTkEwDAbsimE2gqAo0IlB2wqjoDsblY3zp297U0dRsF4joDgEDIp+o1BuJY25T6Pdk+gbiOAIQ2u2RRzfGzrroCcYwN9BxF8KOpCNuzS1AFCn83F4Ph6tZNfZ6Ko7xHgVBCLnnGn0fV+2Ib+WO7e/s5yCcgdIVaVrnzeu306y5Pto/dtqmnX7aRTcGFpiJsxW4DZSDzVXORbQQgFDH2eQfZBABNw3jXNL5qLIbidgnF14zaaCrCMgxC/tHUHTi2E4BQw7jne97YqWM7AQh2jHO+4a3GItsHkCz9FMyePVtnnnmmWrVqpQ4dOmjkyJHasmWLyzxHjhzRhAkT1LZtW8XExGj06NEqLi62qGJ4qrRTWK0/+JeZ9c52QigjmxoXTOMD+WQdT9c32wmhinwKDeSRf3i6ftk+gCtLj1T89NNPNWHCBJ155pk6fvy4/vSnP2no0KH65ptv1LJlS0nSnXfeqWXLlmnJkiWKi4vTxIkTNWrUKH3++edWlu41wXoSbwZZ+6rvyEW2GfArsslVQ2OD2XHDDvnFWGc/7hxRz3YDyCdPeXqhC39nHOOc/5n9RRfbCKjN0qbi8uXLXW4vXLhQHTp0UH5+vs4//3wdPHhQL730khYtWqQhQ4ZIkhYsWKBevXpp7dq1Ouuss6wou8maOhh5+nhf78wxyAYWthdQt1DNpup8NT409Urv3nxO2E/NHX+2HeDKTvnk7ufTqi+T6qvPXxcYpEkVWBr7OTTbCaifrc6pePDgQUlSfHy8JCk/P1/Hjh1TRkaGc56ePXuqS5cuWrNmTZ3BePToUR09etR5u6SkRJJU1jFM4ZHWXo7d6sGorudvynqw+vUAgD8EezZVZ9W47q1mI7kUPNiWQOP8lU9VY3FTrlbrq3yz61hRsy5+IWR//JoL8IxtmoqVlZWaNGmSzjnnHPXt21eSVFRUpIiICLVu3dpl3oSEBBUVFdW5nNmzZ+uBBx5o9PnMDA7BfCi7nWsDAKvZOZsk7+yk2TkH7FwbAFjJn/nkjbE41H9mGmyvJ5ixrQBzbNNUnDBhgr7++mutXr26ScuZOnWqsrOznbdLSkqUnJzcpGV6coQfgxEABD47Z5NEPgFAqLJ7PtWnoSP4yCcACDy2aCpOnDhR77//vlatWqXOnTs7pycmJqq8vFwHDhxw+catuLhYiYmJdS4rMjJSkZGRvi6Z0AOAIBeI2SSRTwAQ7AI1n+pCZgFAYLN0FDcMQxMnTtTbb7+tf/7zn+revbvL/f3791fz5s2Vl5fnnLZlyxZt375d6enp/i4XABACyCYAgB2RTwAAu7H0SMUJEyZo0aJFeuedd9SqVSvnuT7i4uIUHR2tuLg43XTTTcrOzlZ8fLxiY2N12223KT09PSiurgkAsB+yCQBgR+QTAMBuLG0qPvfcc5KkQYMGuUxfsGCBxo4dK0maO3euwsLCNHr0aB09elSZmZl69tln/VwpACBUkE0AADsinwAAdmNpU9EwjEbniYqKUk5OjnJycvxQEQAg1JFNAAA7Ip8AAHbDmXEBAAAAAAAAmEJTEQAAAAAAAIApNBUBAAAAAAAAmEJTEQAAAAAAAIApNBUBAAAAAAAAmGLp1Z8Bsw51rrS6hHq1+JEevSfq2qasSwCBxM7ZJDGmeqrmdmU9Agh23sozxktz3FnvrFPYFU1F2Jbdd9JqaqjeYA0BX20jq7d9sG4vAE1n9fjkicZqDrYxL5SzqWaNlUcC7/0KwD98OaZVX3YwZYyZdVbzdTd1fVc9vrH16enz+Gs7HepcSTYFGZqKNsA34SdY/R92XwmWbRys26cms6+TYESwC8UvTWoK5vEv0DMqmLdNdaHyOoEq7jZR0Dgrx49g2I6erD9ff8FVfX1647nqW0ZTthu5FRpoKvqRux8qX3747DqYh9qAEwjhGmrbBIB1/2m261gYquPgoc6VttsmobotgFBU8/Pe1DGpKUfNNeXINCvZccwMhP2fmuy4Hqv4qzYz283O6wu+Q1PRx+z2wfLFNxCestu6sYJVPw1g3QOQ7DMWuFuHP3+aE+qs2PljvQOhraExwJPGYl3Lq+vIbG+NPb74f30wjot2/OKqpmBc701V33ZjXSFkmoqHO1UqZp9/nisQP1jeajYG4mu3i6buwLHugcBzuFOlwqL895/rQB8nzO6wmWlWBvq68RVfNBdZ14D9+TOfzP6ay5vjvz9/ourJ44OVXRuLwb7em4r1g7qETFNR8t1ResH84Qrm12ZX7uw0s12A4OLLC2kE63jhzdcVrOvIm5qyg8z6BQKXr3/l5OlpNwLl/8hmx0671R8qWO+A50KqqVgfBhHYFe9NBJMnnnhCCxYskMPh0JQpU3T99ddbXVLAYCyAXfj66pOAFcgn85p62gpvXQk3UHDQQG12OFox1NY5AkugZBNNRQCAz3311VdatGiR8vPzZRiGBg8erEsvvVStW7e2ujQAHqjaGWSHDIGOfPKtupppoT5uhPrrtxrrH4EgkLLJficyAAAEnW+//Vbp6emKiopSdHS0UlJStHz5cqvLAtAE7JghGJBP/nOocyXjBixR9d7j/YdAEUjZRFMRAKBVq1ZpxIgRSkpKksPh0NKlS2vNk5OTo27duikqKkppaWlat26d28vv27evVq5cqQMHDujnn3/WypUrtXPnTi++AgBAMCKfgOBFkw+Bimw6gZ8/AwBUVlamlJQU3XjjjRo1alSt+xcvXqzs7Gzl5uYqLS1N8+bNU2ZmprZs2aIOHTpIklJTU3X8+PFaj/3oo4/Uu3dv3X777RoyZIji4uJ01llnKTw83OevCwAQ2MgnAE1B4xK+QDadQFMRAIJUSUmJy+3IyEhFRkbWOe+wYcM0bNiwepc1Z84cjR8/XuPGjZMk5ebmatmyZZo/f76mTJkiSSooKGiwnltuuUW33HKLJOn3v/+9TjnlFHdfCgAgiJBPAKr48oItNBRhBtnkGZqKAGAzrbYdVrNmhsePP378iCQpOTnZZfr06dM1Y8YM08srLy9Xfn6+pk6d6pwWFhamjIwMrVmzxu3l7NmzRx06dNCWLVu0bt065ebmmq4FAGCNpmaTRD4B8B8aiqGDfSdr0VQEgCC1Y8cOxcbGOm/X901bY/bt26eKigolJCS4TE9ISNDmzZvdXs7ll1+ugwcPqmXLllqwYIGaNSOCACAUkU8AfImGIjxBNnnGnlUBAJosNjbWJRitZuabOQBA8CKfAFTnzZ9A01CEp8gmz9BURFBolnTIZ8s+vquFz5YNBIJ27dopPDxcxcXFLtOLi4uVmJhoUVVA4PBVRpFPCHXkE+B9TcmspuRSKDcD61vn3sz5qufg/w6+F2rZRFMRtubLZqG3arDzwGyH9RcKKg4dsboEn4qIiFD//v2Vl5enkSNHSpIqKyuVl5eniRMnWlscYAG7jK3kExpDPiGQ2akJYqdavM2b43HNZQXb+vJ3dtX1fA2tU3fqM/Mamrr96nsusim40FT0sUD9T7OVARBo68yK8Ay0dQT7Ky0t1datW523CwsLVVBQoPj4eHXp0kXZ2dnKysrSgAEDNHDgQM2bN09lZWXOK5ohsAT6GGJFRgXiOvPHkQ/uPifgKfLJPjz5fHsy3tR8nmZJh/w+7tf3WqtPD/SGmT/GayvWlzuvyxvvS6vUbHD7si4znz27rB9/IZtOoKmo0PsAuKOp6ySQB+qm8mWTMVjWEexn/fr1Gjx4sPN2dna2JCkrK0sLFy7UmDFjtHfvXk2bNk1FRUVKTU3V8uXLa52AGN7D571+/vppVrBuA28fcROs6wn2QD5ZxxufbTP/L27o+TwZtxpaXvXlePo6/dEw88UR6VaN2f442tPd12amFrtmnL/qamxd2XX9+BrZdELINBXDEw8pvEXonqfB3xo7OiKUBp+mBmgorStYZ9CgQTIMo8F5Jk6cGJSH7FuJbPK/xn5KFEpjblPyKZTWE6xFPlkjPPGQpCivL7epY4c7R055+yeg7vDFQQVmXkcgNcd81Vz05PU11hi2yzqzg7o+e6G8fsimE0KmqQh7COWBx2yAhvK6AgB/CvXxlp83AQgk1ccsu45JZs+F587j3Zmfpo/nWFeNC4TPHvyPpiLgZxxCDgCwG7IJQCAJxDHJ3aMZm/LaAmm9ePNcmYH0ugMd6xo10VQELMKADACwG7IJAPyj5k9vGX89w3oDrBVmdQEAAAAAAISqUG2MeeMcmwCsRVMRAAAAAAAEDBqKgD3QVAQAAAAAAH7nyUVpaCgC9sE5FQEAAAAAgO3QQATsjSMVAQAAAACAJepqHHJEIhAYaCoCAAAAAABboJkIBA5+/gwAAAAAACxDIxEITBypCAAAAAAAAMAUjlRE0OqVWOz2vN8WJfiwEuuZWRf1CfZ1BAD+5O64HKxjL7kEAPZkdnxmLPaMr9cz2xH+QlMRAcUbOyFmlmvnwdVX68IuzxdIjpWV639WFwHAMr4cHxtath0zyp9ZQS41jnxCIKv+GbdqvAu0Mdgsb4yjdthO1TX2mppSo5W509h6bmptNR/vyyYm2RRcaCr6UDD9Z9eOQW7V81sZllavDwCBK1jHD3+PyXZaj03dAfAmO60XAN7n7c94Q+NVXc/VK7G4yWOct1+Dv8dgb+2X+OOLMDvvO3raBLVTzvmjFnfWk53WCaxDU1F8GNzhz8On7b49/P1tnN3XBwDf4fPfOH/kU6BsB/IJgLeclrBXzVtG+Gz5dY1XjY0pZhqLVoxP3m6omWmQufOcVhxJ7s/moievz906Qz3vQv31o2Eh01T0dTDCldlv7gJ1oPLlN5SBuk4AuI9s8j93G2+BPgb7ssEY6OsGgL2YGVPqayzaaVyqr1Hlzn6Dp6/DruvFG0eY+kNDzUWr1yFgd5Ze/XnVqlUaMWKEkpKS5HA4tHTpUpf7DcPQtGnT1LFjR0VHRysjI0PfffedNcWiSXolFjf4Fyy88ZqCbZ0AgYh8Cg01x+xgzCXJe7kSjOsGCCRk068CZV+isRq9/ToCZb34grdea83lhNI6BDxlaVOxrKxMKSkpysnJqfP+xx57TE899ZRyc3P15ZdfqmXLlsrMzNSRI0f8XClgntkwD7XwB+yMfAo9oTD+erqjST4B9kA2IRD5Oj98ca5Mcg9wn6U/fx42bJiGDRtW532GYWjevHn6v//7P11++eWSpL/+9a9KSEjQ0qVLdc011/izVMBjjR32T2AB9kM+Idi5+5M0MgqwD7IJcEVGAdaz9EjFhhQWFqqoqEgZGRnOaXFxcUpLS9OaNWvqfdzRo0dVUlLi8gdYraGfPQAILJ7kE9kEO2oogzhKAwgs7Dsh1JBRgD3YtqlYVFQkSUpIcP0WPSEhwXlfXWbPnq24uDjnX3Jysk/rBMyoed4uAIHHk3wim2BXdeUR+QQEHvadYGe++IkyAHuwbVPRU1OnTtXBgwedfzt27LC6JMAFIQiEHrIJdsc5pIDQRD4h0JBTgL3YtqmYmJgoSSoudh00iouLnffVJTIyUrGxsS5/AAB4iyf5RDYBAHyJfSfYnbeubg3AXmzbVOzevbsSExOVl5fnnFZSUqIvv/xS6enpFlYGAAhl5BMAwG7IJgQzmomAfVl69efS0lJt3brVebuwsFAFBQWKj49Xly5dNGnSJM2cOVOnnHKKunfvrvvvv19JSUkaOXKkdUUDAIIe+QQAsBuyCaGIhiJgb5Y2FdevX6/Bgwc7b2dnZ0uSsrKytHDhQt1zzz0qKyvTzTffrAMHDujcc8/V8uXLFRUVZVXJAIAQQD4BAOyGbEKg65VYrG+LEhqfUTQTgUBhaVNx0KBBMgyj3vsdDocefPBBPfjgg36sCgAQ6sgnAIDdkE0IBTQTgcBi23MqAgCCyxVXXKE2bdroyiuvrHXf+++/r9NOO02nnHKK/vKXv1hQHQAgVJFPgP/U1zTkQiyAq0DJJkuPVARgvSHtNtc5/Z/7evq5EgS7O+64QzfeeKNefvlll+nHjx9Xdna2VqxYobi4OPXv319XXHGF2rZta1GlAKxCJsEK5BPgX8HWPKyeXfXlVX35VhdfZF7V85OngSNQsommIoJKY4N1qA2iZsKrscf6at3VVaOdt1Nd9R6JOq5/WFBLoBk0aJBWrlxZa/q6devUp08fderUSZI0bNgwffTRR7r22mv9XCHgH4E27nmbJ9nk73UWaNso0Oq1G/LJvoa028x7GU3iTsPP0+V5cr+7z+Gt933NemguBo5AySaaighYTd0pCcaB1BshZsWyG3ququ1k1bd7/nzdVlq1apUef/xx5efna/fu3Xr77bdrXS0yJydHjz/+uIqKipSSkqKnn35aAwcObPJz79q1yxmKktSpUyft3LmzycsFrOKtppkUHFnlq3G0Zlb4erxu6P8Q7jy3r3YQG5ovGL70Ip9CV9V73S6NRTvVUcUO9dhNQ2NkU7ehFftDntbrbvPT31/QScFxQAbZdAJNRQQcbw3mwRTIwdz48mXzOJjXm1llZWVKSUnRjTfeqFGjRtW6f/HixcrOzlZubq7S0tI0b948ZWZmasuWLerQoYMkKTU1VcePH6/12I8++khJSUk+fw3wvmAaJ/3BF2NKIG8Dq76MsuvzmdmW5NMJ5FNostvRVXZocNY1LviiHqvXdVO4M3Z6us6sGpc9qddMrb7Y3qGQYWTTCTQV/cQfH6y6BoJADoW6+Ppoh0BbT6EwYDdVKK+jkpISl9uRkZGKjIysc95hw4Zp2LBh9S5rzpw5Gj9+vMaNGydJys3N1bJlyzR//nxNmTJFklRQUOBRnUlJSS7fru3cudMr3+LBHF//nCfQxlcz/DXOBEpWhfK4666mHpEf6Min4NeUL0R8eaRZoHG3SSa5fy4/d+cLtXVtZ4GSD4FSZ33IJs/QVHRTIHxAGgvgxtg5NNhhcxUI70d4rlnhbjULi/B8AZXlkqTk5GSXydOnT9eMGTNML668vFz5+fmaOnWqc1pYWJgyMjK0Zs0az+v8/wYOHKivv/5aO3fuVFxcnP7xj3/o/vvvb/JyQ1Vj51az8pt2T9h5PA6koxb8gWzyTKCstyZnk0Q+hYj6jjKsrqk/QfXnGOjvZpunY0L1utzZL3Tn/wZ2zZu6mD06z8zrCpRxuikC6afhNbHvZG020VRsQCgMHtXZ9XxOVmwHOzcXQ+19Cc/t2LFDsbGxztv1fdPWmH379qmiokIJCQku0xMSErR5s/vvx4yMDG3atEllZWXq3LmzlixZovT0dDVr1kxPPvmkBg8erMrKSt1zzz1cWdMNnvy0JRCRTQ0/v9XroYrV6wOBhXxCfQ0MM+cMreLuqW7s+pNXbz5HqPzfwBvcbaKF+npyR7CsI7LJMzQV6xAsHwpvseooRztsB7t9O2eHdYLAERsb6xKMVvvkk0/qve+yyy7TZZdd5sdqAhfjwK9COZuqs0NO2W2dwP7Ip+DVlKPFmnKEntT4qQS8OV4G8lFdZtkhZxrjjaM7wfogmzxDU7GaQBrc7cbbR0zYaVvY5WgQO60ThJZ27dopPDxcxcXFLtOLi4uVmJhoUVWhhc+/Z7x5kRM7bwMrc8rO6wXBj3yyF08vYOStq7d7+yId3h7fAnm8tHOzqanrtaHXFsjbzF9YR7WFWjaFTFPxgrb/VVRMM1ucVyqYuXsi4IYeY1fu1umrK7ABVomIiFD//v2Vl5enkSNHSpIqKyuVl5eniRMnWltcgKvKpire2rFCbWbzKRC3Q0M1k00IRuST71TPJ1//f97f44k753j0ZoMyWMZLuxxo4Qt1/R8hWLabWVY23oNFqGVTyDQVq/DG969QXN+eNFYbWwbga6Wlpdq6davzdmFhoQoKChQfH68uXbooOztbWVlZGjBggAYOHKh58+aprKzMeUUzeAefff8JtXXtjQslhNo6gz2QT9YLhc++N38+G+zry85HLXpLsG/DxoTCNm4qsumEkGsqAv7mzs/vQj24YL3169dr8ODBztvZ2dmSpKysLC1cuFBjxozR3r17NW3aNBUVFSk1NVXLly+vdQJiAIHDnaNOyCdYjXyC3YXiOBnMRy3iV401FkPxfV8d2XQCTUXAj0J98IV9DRo0SIZhNDjPxIkTg/KQfSDUkU2wM/IJsC+rm4vkl2/Vt31Z72RTdTQVAQAAAACAR7x5YTR/LBfmsB3QEJqKAAAAAACgybx1ccuay+E8f/bAUYqoiaYiAAAAAADwG09+Wmv1z60B1EZTEQAAAAAA+J0nR75xtBxgH2FWFwAAAAAAAAAgsNBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAApjSzugAAAAAAAIBQdUnMN85/f1Da28JKAHNoKgIAAAAAbIUmC0JB9fd59Wm85xEoaCoCAAAEgKodD3Y0AASz+pos9Qm1MZFmq/14ks8Nvac9XSZgBZqKCCmNDd5mMMCHlobeO6VGpab4sRYAwcVsNrFzbZ7ZdRxo65EmA4KFJ/9Xb+r/7xv7zNS3fH991hp6fTSerFd9+zS2PZry/m7qNua9Al+hqehnNLX8w5vr2Z3nCKZt4Y91Z0Zd67ZmjU1Z/3Z7vYAVfL1Dhl+RTU3X0E6RN9dvY8uq+fzebvQ25bVUfyxfesHfAvH/VZ7W7MtmY1O+bArGsd+u6ttONbPKG5+Lpmzjuhqf9S2nrlq9/Z4mm4ILTUUf82Ww0qA8wer/wAT6eS+sXn8Ncac2O9cP2JU/GzCeCuRxVbJ+bAr0oxLcOTrHKmae352Go9WvB2hMQ1/o8v51ZfX6cPfL90DPCKtZuY9ipsHojSw1c0CH1e9/+B9NxSYKlg+N1Yf1m2XH9R6IwWzH9QjAvGD9LAdaNkn23BaB9sWXHdehr4TSa0VgGdpys2Jiwuq9n/du4HDn3H2eZoS77wOrM8jbR3La6f1f3z5ooBzchMAXMk3FxoIRdbNDUATaoBUIO2+Btk6BYEU2ecZO58cLlPGUbAIA1MfswRGB/PPspuahXbPKrnUh+IVMUxG+ZfbcC8E+6Nl15y3Y1zsA1MVMRgXzOEk2AQAa0lhOePPcgFZe6MbTGsgroDaaivCZUB907bTzFurbAgBqCtVxkWwCADSkZk74+ryAVv6awEwNZBZQN35zBfiQ1eFzScw3ltcAALAXq3OBbAIAe6sap/0xVvvjYiZNnZfMAupHUxHwMStCiB02AEBDyCYAgF14Oxs8WV59GUVuAQ2jqQj4gb/CiB02AIC7yCYAgF14Kyeaupzqjye7gMbRVAT8xJehxA4bAMATZBMAwC682RBs6nLIL8A9NBUBP/JmOPnzXCcAgODlixwhmwAAniA/gMBCUxHwM298A0fYAgC8iaM7AAB2QY4AgYOmImABT3a62FFDoLviiivUpk0bXXnllabuA+AfTckZMgqBjHwC7MeTfSUgmARKNjWzugAglNUMvw9KexOICFp33HGHbrzxRr388sum7gPgX9Vz6IPS3o3OAwQ68gmwp7qypnoukUUIZoGSTRypCNgIwYhgNmjQILVq1cr0fQCsU/38vZzLF8GKfAICB1mEUBEo2URTEQCgVatWacSIEUpKSpLD4dDSpUtrzZOTk6Nu3bopKipKaWlpWrdunf8LBQCEFPIJAGA3ZNMJNBUBACorK1NKSopycnLqvH/x4sXKzs7W9OnTtWHDBqWkpCgzM1N79uxxzpOamqq+ffvW+tu1a5e/XgYAIMiQTwAAuyGbTgj6cyoahiFJKi2ttLgSAMGqanypGm+a6rhRLjVhyDpulEuSSkpKXKZHRkYqMjKyzscMGzZMw4YNq3eZc+bM0fjx4zVu3DhJUm5urpYtW6b58+drypQpkqSCggLPiw4xZBMAf/BmPjU1m5zLEPlkZ+QTAF9j3ym4sinom4q//PKLJOn8gXstrgRAsPvll18UFxfn8eMjIiKUmJiolUV/a3ItMTExSk5Odpk2ffp0zZgxw/SyysvLlZ+fr6lTpzqnhYWFKSMjQ2vWrGlqqSGJbALgT03JJ29mk0Q+2R35BMBf2HcKDkHfVExKStKOHTvUqlUrORwOq8vxq5KSEiUnJ2vHjh2KjY21upyAwXrzXKiuO8Mw9MsvvygpKalJy4mKilJhYaHKy8u9UlPNMa++b9oas2/fPlVUVCghIcFlekJCgjZv3uz2cjIyMrRp0yaVlZWpc+fOWrJkidLT0xu9LxiRTaE3TngD684zobzevJFP3symqprIJ/sin0JzrGgK1pvnQnXdse/knkDJpqBvKoaFhalz585Wl2Gp2NjYkBqkvIX15rlQXHdN+ZatuqioKEVFRXllWXbzySefeHRfMCKbQnOc8BbWnWdCdb15I5+COZsk8qk68il0x4qmYr15LhTXHftOjQuUbOJCLQCABrVr107h4eEqLi52mV5cXKzExESLqgIAhDryCQBgN6GWTTQVAQANioiIUP/+/ZWXl+ecVllZqby8vKD+CRgAwN7IJwCA3YRaNgX9z59DWWRkpKZPn+7xuQBCFevNc6y7wFVaWqqtW7c6bxcWFqqgoEDx8fHq0qWLsrOzlZWVpQEDBmjgwIGaN2+eysrKnFc0A9zFOOE51p1nWG+BjXyCvzBWeIb15jnWXeAim05wGN66jjcAIGCtXLlSgwcPrjU9KytLCxculCQ988wzevzxx1VUVKTU1FQ99dRTSktL83OlAIBQQj4BAOyGbDqBpiIAAAAAAAAAUzinIgAAAAAAAABTaCoCAAAAAAAAMIWmIgAAAAAAAABTaCoGqW7dusnhcLj8PfLIIy7z/Pvf/9Z5552nqKgoJScn67HHHrOoWnvJyclRt27dFBUVpbS0NK1bt87qkmxlxowZtd5bPXv2dN5/5MgRTZgwQW3btlVMTIxGjx6t4uJiCysGYBdkk+fIpoaRTQCagnzyHPnUMPIJwY6mYhB78MEHtXv3buffbbfd5ryvpKREQ4cOVdeuXZWfn6/HH39cM2bM0AsvvGBhxdZbvHixsrOzNX36dG3YsEEpKSnKzMzUnj17rC7NVvr06ePy3lq9erXzvjvvvFPvvfeelixZok8//VS7du3SqFGjLKwWgJ2QTeaRTe4hmwA0BflkHvnkHvIJQc1AUOratasxd+7ceu9/9tlnjTZt2hhHjx51Trv33nuN0047zQ/V2dfAgQONCRMmOG9XVFQYSUlJxuzZsy2syl6mT59upKSk1HnfgQMHjObNmxtLlixxTvv2228NScaaNWv8VCEAuyKbPEM2NY5sAtAU5JNnyKfGkU8IdhypGMQeeeQRtW3bVr/5zW/0+OOP6/jx48771qxZo/PPP18RERHOaZmZmdqyZYt+/vlnK8q1XHl5ufLz85WRkeGcFhYWpoyMDK1Zs8bCyuznu+++U1JSknr06KHrrrtO27dvlyTl5+fr2LFjLuuwZ8+e6tKlC+sQgCSyySyyyX1kE4CmIJ/MIZ/cRz4hmDWzugD4xu23364zzjhD8fHx+uKLLzR16lTt3r1bc+bMkSQVFRWpe/fuLo9JSEhw3temTRu/12y1ffv2qaKiwrkeqiQkJGjz5s0WVWU/aWlpWrhwoU477TTt3r1bDzzwgM477zx9/fXXKioqUkREhFq3bu3ymISEBBUVFVlTMADbIJvMI5vcQzYBaAryyTzyyT3kE4IdTcUAMmXKFD366KMNzvPtt9+qZ8+eys7Odk7r16+fIiIidMstt2j27NmKjIz0dakIYsOGDXP+u1+/fkpLS1PXrl31+uuvKzo62sLKAFiBbIIdkE0AaiKfYAfkE4IdTcUActddd2ns2LENztOjR486p6elpen48ePatm2bTjvtNCUmJta6qlTV7cTERK/UG2jatWun8PDwOtdLqK4Td7Ru3Vqnnnqqtm7dqosuukjl5eU6cOCAyzdurEMgeJFNvkU2eYZsAkA++Rb55BnyCcGGcyoGkPbt26tnz54N/lU/z0d1BQUFCgsLU4cOHSRJ6enpWrVqlY4dO+ac5+OPP9Zpp50WkofvS1JERIT69++vvLw857TKykrl5eUpPT3dwsrsrbS0VN9//706duyo/v37q3nz5i7rcMuWLdq+fTvrEAhSZJNvkU2eIZsAkE++RT55hnxC0LH6SjHwvi+++MKYO3euUVBQYHz//ffG3/72N6N9+/bG7373O+c8Bw4cMBISEowbbrjB+Prrr43XXnvNaNGihfH8889bWLn1XnvtNSMyMtJYuHCh8c033xg333yz0bp1a6OoqMjq0mzjrrvuMlauXGkUFhYan3/+uZGRkWG0a9fO2LNnj2EYhvGHP/zB6NKli/HPf/7TWL9+vZGenm6kp6dbXDUAq5FNniObGkc2AfAU+eQ58qlx5BOCHU3FIJSfn2+kpaUZcXFxRlRUlNGrVy9j1qxZxpEjR1zm27Rpk3HuuecakZGRRqdOnYxHHnnEoort5emnnza6dOliREREGAMHDjTWrl1rdUm2MmbMGKNjx45GRESE0alTJ2PMmDHG1q1bnfcfPnzYuPXWW402bdoYLVq0MK644gpj9+7dFlYMwA7IpqYhmxpGNgHwFPnUNORTw8gnBDuHYRiG1UdLAgAAAAAAAAgcnFMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FWG5QYMGadKkSbZZTl3Gjh2rkSNHNmkZ3bp1k8PhkMPh0IEDBxqdf+XKlc75m/rcAADzyKe6kU8AYB2yqW5kE2ANmooIOFWBUTNc3nrrLT300EPO2926ddO8efP8W1wjHnzwQe3evVtxcXHOaS+++KK6du2q3/zmN/ryyy+d088++2zt3r1bV199tRWlAgBMIp8AAHZDNgHwpWZWFwB4S3x8vNUlNKpVq1ZKTEx03t6+fbsee+wxvfbaa9q5c6fGjRunb775RpIUERGhxMRERUdH6+jRo1aVDABoIvIJAGA3ZBMAb+BIRdjOK6+8ogEDBjhD5Le//a327NkjSdq2bZsGDx4sSWrTpo0cDofGjh0ryfUQ/kGDBumHH37QnXfe6TwMXpJmzJih1NRUl+ebN2+eunXr5rxdUVGh7OxstW7dWm3bttU999wjwzBcHlNZWanZs2ere/fuio6OVkpKit544w3Tr7WkpEStW7dWv3791L9/fx0+fNj0MgAA/kE+AQDshmwCYCWairCdY8eO6aGHHtKmTZu0dOlSbdu2zRl+ycnJevPNNyVJW7Zs0e7du/XnP/+51jLeeustde7c2XnI/O7du91+/ieffFILFy7U/PnztXr1au3fv19vv/22yzyzZ8/WX//6V+Xm5uo///mP7rzzTl1//fX69NNPTb3Wvn37ql+/foqLi1OfPn00c+ZMU48HAPgP+QQAsBuyCYCV+PkzbOfGG290/rtHjx566qmndOaZZ6q0tFQxMTHOQ/U7dOig1q1b17mM+Ph4hYeH1zpk3h3z5s3T1KlTNWrUKElSbm6uPvzwQ+f9R48e1axZs/TJJ58oPT3dWefq1av1/PPP64ILLjD1fC+99JIee+wxtWjRQtHR0aYeCwDwH/IJAGA3ZBMAK9FUhO3k5+drxowZ2rRpk37++WdVVlZK+vUcGr179/bpcx88eFC7d+9WWlqac1qzZs00YMAA52H8W7du1aFDh3TRRRe5PLa8vFy/+c1vPHretm3bel40AMAvyCcAgN2QTQCsRFMRtlJWVqbMzExlZmbq1VdfVfv27bV9+3ZlZmaqvLy8ycsPCwurdY6PY8eOmVpGaWmpJGnZsmXq1KmTy32RkZFNKxAAYEvkEwDAbsgmAFajqQhb2bx5s3766Sc98sgjSk5OliStX7/eZZ6IiAhJv54UuCERERG15mnfvr2KiopkGIbzBMQFBQXO++Pi4tSxY0d9+eWXOv/88yVJx48fV35+vs444wxJUu/evRUZGant27ebPlwfABCYyCcAgN2QTQCsxoVaYCtdunRRRESEnn76af3vf//Tu+++q4ceeshlnq5du8rhcOj999/X3r17nd9+1dStWzetWrVKO3fu1L59+yT9emWzvXv36rHHHtP333+vnJwc/eMf/3B53B133KFHHnlES5cu1ebNm3XrrbfqwIEDzvtbtWqlyZMn684779TLL7+s77//Xhs2bNDTTz+tl19+2bsrBABgC+QTAMBuyCYAVqOpCFtp3769Fi5cqCVLlqh379565JFH9MQTT7jM06lTJz3wwAOaMmWKEhISNHHixDqX9eCDD2rbtm066aST1L59e0lSr1699OyzzyonJ0cpKSlat26dJk+e7PK4u+66SzfccIOysrKUnp6uVq1a6YorrnCZ56GHHtL999+v2bNnq1evXrr44ou1bNkyde/e3YtrAwBgF+QTAMBuyCYAVnMYNU+SAMAnunXrpkmTJmnSpEmmHjd27FgdOHBAS5cu9UldAIDQRj4BAOyGbAICA0cqAn507733KiYmRgcPHmx03s8++0wxMTF69dVX/VAZACCUkU8AALshmwD740hFwE9++OEH59XSevToobCwhnv6hw8f1s6dOyVJMTExSkxM9HmNAIDQQz4BAOyGbAICA01FAAAAAAAAAKbw82cAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAApvw/+7qf8E/7U5sAAAAASUVORK5CYII=",
    152176      "text/plain": [
    153177       "<Figure size 640x480 with 6 Axes>"
     
    184208  {
    185209   "cell_type": "code",
    186    "execution_count": 7,
     210   "execution_count": 6,
    187211   "id": "2328745a-55e1-40d9-86c7-41f04bea872c",
    188212   "metadata": {},
     
    190214    {
    191215     "data": {
    192       "image/png": "iVBORw0KGgoAAAANSUhEUgAABRUAAAHHCAYAAAAhwb9EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACG40lEQVR4nOzdeVxUhf7/8feAAiqLKyAq7mXuhom4pCZFaJZpZTtambc0K7LSbze1TVvNFtJW7VZel0orM9PI5WaauWCWaVqY5oJbiqCCwvn90Y+RkQHnwAxzBl7Px2MeD+bMmTOfc84w7zmfOYvNMAxDAAAAAAAAAOAiP28XAAAAAAAAAMC30FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQ8x8yZM2Wz2bRz5063TXPnzp2y2WyaOXOm26ZZkqFDh6pJkybl8lrlwdXlt3z5ctlsNi1fvrxc6jqfiRMnymazldvr2Ww2TZw4sdxeDwBcVZZs9Vam9e7dW7179y731y2O1eopz8wp7zwFADPIONeV93bx+Xhi278kTZo00dChQ8vltcpDTk6Ot0uABdBUdKNZs2Zp6tSpLo27aNEiGkCV0KRJk7RgwQJvlwGgHBV8YS3utmbNGm+XKInPJ5TN999/r4kTJ+ro0aPeLgVAOSLjUNG88cYblml6lrc9e/bohhtuUM2aNRUaGqprrrlGf/zxR5HxNmzYoFatWqlatWrq2bOndu/e7YVqYRVVvF1ARTJr1iz9/PPPeuCBBxyGN27cWCdPnlTVqlXtwxYtWqSUlBQaixXYv//9b40dO9Zh2KRJk3Tddddp4MCB3ikKgNc8+eSTatq0aZHhLVq08EI1RXny8+m2227TjTfeqMDAQLdPG95x8uRJValy9mvk999/ryeeeEJDhw5VzZo1vVcYAK8g48g4X+Rs3b3xxhuqW7duhdqj0BVZWVnq06ePjh07pv/7v/9T1apV9fLLL6tXr15KS0tTnTp17OPeeOONuuyyy/T888/r/fff14gRI7Ro0SIvVg9voqlYDmw2m4KCgrxdBspZlSpVHDa4UHpnzpxRfn6+AgICvF0KUGqJiYnq3Lmzt8soV9nZ2apRo4b8/f3l7+/v7XLgRnyvcZ+C/xPAl5FxZJwvYt2d9cYbb2j79u1au3atLrnkEkn//F+3bdtWL730kiZNmiRJOnTokA4dOqTp06dLknr16qWGDRt6rW54H4c/u+Czzz5T//79FRUVpcDAQDVv3lxPPfWU8vLy7OP07t1bX375pf7880/77v4F58c499wRQ4cOVUpKiiQ5HB4gFX9ewOLOP7FgwQK1bdtWQUFBatu2rebPn+90HvLz8zV16lS1adNGQUFBioiI0IgRI/T333+Xern873//0/XXX6/o6GgFBgaqUaNGevDBB3Xy5EmH8YYOHarg4GDt2bNHAwcOVHBwsOrVq6cxY8Y4LENJOnr0qIYOHaqwsDDVrFlTSUlJZT6Uat68eYqJiVG1atVUt25d3XrrrdqzZ0+pazx8+LBuu+02hYaG2mvctGlTkfVz7jmgbDabsrOz9f7779vXecEvYMWdT8XZeaRycnL04IMPql69egoJCdHVV1+tv/76y+m879mzR3fccYciIiIUGBioNm3a6L333nNpuR05ckRjxoxRu3btFBwcrNDQUCUmJmrTpk32cTIyMlSlShU98cQTRZ6/bds22Ww2vf766/ZhR48e1QMPPKBGjRopMDBQLVq00HPPPaf8/Hz7OAXv9RdffFFTp05V8+bNFRgYqC1btig3N1fjx49XTEyMwsLCVKNGDfXs2VPLli0r8vquridJ2rp1q6677jrVrl1bQUFB6ty5sz7//HOXlhPgTs4+A9PS0oq8b4s7F5Kzz5IXX3xR3bp1U506dVStWjXFxMTo448/dhinpM8nSdq4caMSExMVGhqq4OBg9e3bt8ghbQWHwK1YsUL33nuvwsPD7V8ynZ2zyJVsddVVV12lZs2aOX0sLi7OYUN3xowZuuyyyxQeHq7AwEC1bt1a06ZNO+9rFHfepeJy+4cfftCVV16psLAwVa9eXb169dKqVatMz1tJDhw4oDvvvFMREREKCgpShw4d9P777zuMU/gz9a233rJ/pl5yySX68ccfi0xz3rx5at26tcP3Cmfvq8LnVJw4caIefvhhSVLTpk3t76GdO3eWeP4sZ+dl/O6773TJJZcoKChIzZs315tvvlns/H/44Yf2fK9du7ZuvPFGlw/BcuX9N2rUKAUHB+vEiRNFnn/TTTcpMjLSYfyvvvpKPXv2VI0aNRQSEqL+/fvrl19+cXhewfeN33//Xf369VNISIhuueUWSa5/r5JcX0+e+P4HlBYZR8YV59tvv7V/ftasWVPXXHONfv31V4dxCraLduzYYd8rPiwsTMOGDSvyOX3y5EmNHj1adevWtW8v7dmzp0junDvfTZo00S+//KIVK1bY3ysF78Xizu/rbNkZhqGnn35aDRs2VPXq1dWnT58ieVDAle2j8vDxxx/rkksusTcUJalVq1bq27ev5s6dax9Wu3ZtSf80IdPT0/XCCy+oZcuW5VorrIXdqFwwc+ZMBQcHKzk5WcHBwfr22281fvx4ZWZm6oUXXpAkPfbYYzp27Jj++usvvfzyy5Kk4OBgp9MbMWKE9u7dq6VLl+qDDz4odV1LlizR4MGD1bp1a02ePFmHDx/WsGHDnP5SMGLECM2cOVPDhg3T6NGjlZ6ertdff10bN27UqlWrHA7NdtW8efN04sQJ3XPPPapTp47Wrl2r1157TX/99ZfmzZvnMG5eXp4SEhIUGxurF198Ud98841eeuklNW/eXPfcc4+kfz58r7nmGn333Xf617/+pYsuukjz589XUlJS6RaQZJ/nSy65RJMnT1ZGRoZeeeUVrVq1Shs3bnQ4RMuVGvPz8zVgwACtXbtW99xzj1q1aqXPPvvMpRo/+OAD3XXXXerSpYvuvvtuSVLz5s1Nz9Ndd92lDz/8UDfffLO6deumb7/9Vv379y8yXkZGhrp27SqbzaZRo0apXr16+uqrr3TnnXcqMzOzyGH65/rjjz+0YMECXX/99WratKkyMjL05ptvqlevXtqyZYuioqIUERGhXr16ae7cuZowYYLD8+fMmSN/f39df/31kqQTJ06oV69e2rNnj0aMGKHo6Gh9//33GjdunPbt21fkfKQzZszQqVOndPfddyswMFC1a9dWZmam3nnnHd10000aPny4jh8/rnfffVcJCQlau3atOnbsKMncevrll1/UvXt3NWjQQGPHjlWNGjU0d+5cDRw4UJ988omuvfZa11cOUIJjx47p0KFDDsNsNpv9cBJPfAZK0iuvvKKrr75at9xyi3JzczV79mxdf/31Wrhwof2zo6TPp19++UU9e/ZUaGioHnnkEVWtWlVvvvmmevfurRUrVig2Ntbh9e69917Vq1dP48ePV3Z2drF1uZKtrhoyZIhuv/12/fjjjw5fhv/880+tWbPGYXrTpk1TmzZtdPXVV6tKlSr64osvdO+99yo/P18jR4409brF+fbbb5WYmKiYmBhNmDBBfn5+9g29//3vf+rSpUuZX+PkyZPq3bu3duzYoVGjRqlp06aaN2+ehg4dqqNHj+r+++93GH/WrFk6fvy4RowYIZvNpueff16DBg3SH3/8Yf8O8OWXX2rIkCFq166dJk+erL///lt33nmnGjRoUGItgwYN0m+//ab//ve/evnll1W3bl1JUr169XTw4EGX52nz5s264oorVK9ePU2cOFFnzpzRhAkTFBERUWTcZ555Ro8//rhuuOEG3XXXXTp48KBee+01XXrppUXy3RlX3n9DhgxRSkqKvvzyS3uWSf/k2RdffKGhQ4fa93D54IMPlJSUpISEBD333HM6ceKEpk2bph49emjjxo0OjZAzZ84oISFBPXr00Isvvqjq1atLcv17lZn15Invf4AzZJwjMs5133zzjRITE9WsWTNNnDhRJ0+e1Guvvabu3btrw4YNRRrJN9xwg5o2barJkydrw4YNeueddxQeHq7nnnvOPs7QoUM1d+5c3XbbberatatWrFjhdHvpXFOnTtV9992n4OBgPfbYY5LkNIPOZ/z48Xr66afVr18/9evXTxs2bNAVV1yh3Nxch/HMbh+dKysrS6dOnTpvPVWrVlVYWFixj+fn5+unn37SHXfcUeSxLl26aMmSJTp+/LhCQkLk5+enlJQUDRs2TCNHjlSdOnXYGaOyM+BgxowZhiQjPT3dPuzEiRNFxhsxYoRRvXp149SpU/Zh/fv3Nxo3blxk3PT0dEOSMWPGDPuwkSNHGs4W/7JlywxJxrJly847jY4dOxr169c3jh49ah+2ZMkSQ5JDHf/73/8MScZHH33kMM3Fixc7He4qZ8tl8uTJhs1mM/7880/7sKSkJEOS8eSTTzqM26lTJyMmJsZ+f8GCBYYk4/nnn7cPO3PmjNGzZ88i8+7MucsuNzfXCA8PN9q2bWucPHnSPt7ChQsNScb48eNN1/jJJ58YkoypU6fah+Xl5RmXXXZZkRonTJhQZB3XqFHDSEpKKlJ7UlKS0/fOudNIS0szJBn33nuvw3g333yzIcmYMGGCfdidd95p1K9f3zh06JDDuDfeeKMRFhbmdP0VdurUKSMvL89hWHp6uhEYGOiwnN58801DkrF582aHcVu3bm1cdtll9vtPPfWUUaNGDeO3335zGG/s2LGGv7+/sWvXLvtrSDJCQ0ONAwcOOIx75swZIycnx2HY33//bURERBh33HGHfZiZ9dS3b1+jXbt2Dv/L+fn5Rrdu3YyWLVuWuIwAVxTkirNbYGCgfTwzn4G9evUyevXqVeS1nH2WnPu/npuba7Rt29bh/9Mwiv98GjhwoBEQEGD8/vvv9mF79+41QkJCjEsvvbTIfPbo0cM4c+aM02VQmmwt7vOxsGPHjhmBgYHGQw895DD8+eefL5JJzl43ISHBaNasmcOwc5exs3kwjKLZk5+fb7Rs2dJISEgw8vPzHV63adOmxuWXX17ivBTn3HqmTp1qSDI+/PBD+7Dc3FwjLi7OCA4ONjIzMw3DOPuZWqdOHePIkSP2cT/77DNDkvHFF1/Yh7Vr185o2LChcfz4cfuw5cuXF/leYRhGkcx54YUXnC4fZ99fipvGwIEDjaCgIIf1tWXLFsPf398hC3fu3Gn4+/sbzzzzjMP0Nm/ebFSpUqXIcGdcef/l5+cbDRo0MAYPHuww3ty5cw1JxsqVKw3DMIzjx48bNWvWNIYPH+4w3v79+42wsDCH4QXfN8aOHetSTc6+V7m6njz1/Q8ojIwj4wpe15WMK26bNjw83Dh8+LB92KZNmww/Pz/j9ttvtw8r2C4q/J3fMAzj2muvNerUqWO/v379ekOS8cADDziMN3To0CK542y+27Rp4/T952zbztk0Dhw4YAQEBBj9+/d3WEb/93//Z0hyeB+6un1UnIJMOd/N2fwUdvDgQafbwoZhGCkpKYYkY+vWrUWes2bNGvv3DVReHP7sgmrVqtn/Pn78uA4dOqSePXvqxIkT2rp1q1dq2rdvn9LS0pSUlOTwq8Pll1+u1q1bO4w7b948hYWF6fLLL7efA+HQoUOKiYlRcHCw00NHXVF4uWRnZ+vQoUPq1q2bDMPQxo0bi4z/r3/9y+F+z549Ha4mtWjRIlWpUsW+V6D0z3ku7rvvvlLVt27dOh04cED33nuvw7mf+vfvr1atWunLL780XePixYtVtWpVDR8+3D7Mz8/Pbb/8nU/BCXBHjx7tMPzcvQ4Nw9Ann3yiAQMGyDAMh/WekJCgY8eOacOGDSW+VmBgoPz8/vmIyMvL0+HDhxUcHKwLL7zQ4bmDBg1SlSpVNGfOHPuwn3/+WVu2bNGQIUPsw+bNm6eePXuqVq1aDvXEx8crLy9PK1eudHj9wYMHq169eg7D/P397edVzM/P15EjR3TmzBl17tzZoSZX19ORI0f07bff6oYbbrD/bx86dEiHDx9WQkKCtm/fXuRQeaC0UlJStHTpUofbV199ZX/c3Z+BBQp/Vv/99986duyYevbsed7PAOmf//0lS5Zo4MCBDode1a9fXzfffLO+++47ZWZmOjxn+PDhLp2fyJ3ZWnB6hrlz58owDPvwOXPmqGvXroqOjnb6ugV71vTq1Ut//PGHjh07Zup1nUlLS9P27dt188036/Dhw/bPlezsbPXt21crV650yyFNixYtUmRkpG666Sb7sKpVq2r06NHKysrSihUrHMYfMmSIatWqZb/fs2dPSbJn3N69e7V582bdfvvtDkda9OrVS+3atStzveeTl5enr7/+WgMHDnRYXxdddJESEhIcxv3000+Vn5+vG264wSFPIiMj1bJlS5e+17jy/rPZbLr++uu1aNEiZWVl2cefM2eOGjRooB49ekiSli5dqqNHj+qmm25yqMff31+xsbFO6yn8f+6spuK+V5lZT576/gc4Q8YVXxcZV7yCbdqhQ4faD6uVpPbt2+vyyy93evEPZ9trhw8ftq+rxYsXS/pnr9LCyvpec9U333yj3Nxc3XfffQ6HSzs7Sszs9tG5HnnkkSL/d85uL730UonTKTjNhrOLDRVsR597Ko66desqNjZWISEhJU4bFR+HP7vgl19+0b///W99++23RYLFHR/OpfHnn39KktPzF5zb9Nm+fbuOHTum8PBwp9M6cOCApH/mpfCHRUBAgMOH+7l27dql8ePH6/PPPy9ybp5zl0tQUFCRBlGtWrUcnvfnn3+qfv36RQ4bv/DCC4utoSQFy8jZ81u1aqXvvvuu1DUWHKpUoLyubPfnn3/Kz8+vyGHT587jwYMHdfToUb311lt66623nE6rYL3v37/fYXhYWJiqVaum/Px8vfLKK/bzZRQ+B0zhq3/VrVvXfq6Np556StI/X3KqVKmiQYMG2cfbvn27fvrppyLL+Nx6Cji7gqAkvf/++3rppZe0detWnT592un4rq6nHTt2yDAMPf7443r88ceLret8h/4BrujSpUuJJ7F392dggYULF+rpp59WWlqacnJy7MOdnRfoXAcPHtSJEyec1nDRRRcpPz9fu3fvVps2bezDi/vfPZe7s3XIkCFasGCBVq9erW7duun333/X+vXrixw6tGrVKk2YMEGrV68ucg6mY8eOlXh4kCu2b98uSSUe0nfs2DGHBl9p/Pnnn2rZsqX9x58CF110kf3xwgpvdEqyv35BxhWM7yzPWrRo4dIGelkcPHhQJ0+eLPZ7TeENy+3bt8swjGLP4VRwSG9WVpZDM9Df39+eQa6+/4YMGaKpU6fq888/180336ysrCwtWrTIfhh5QT2SdNlllzmtJzQ01OF+lSpVnJ6qxpXvVWbWk6vf/wB3IOMckXGuZVxJ22sXXXSRvv766yIXsyopz0JDQ+3bS+euq/LcXpOKbqfXq1evyHIxu310rtatWxfZoag0CprRhf+HChQcXl24YQ0URlPxPI4ePapevXopNDRUTz75pJo3b66goCBt2LBBjz76qNtPoFpcAJbmpL4F8vPzFR4ero8++sjp4wUfYvfff7/DCd579epV5KS8heu5/PLLdeTIET366KNq1aqVatSooT179mjo0KFFlosvXFXLmzW6e70XLP9bb7212NBv3769pH9+jS1sxowZGjp0qCZNmqTHH39cd9xxh5566inVrl1bfn5+euCBB4qs3xtvvFHDhg1TWlqaOnbsqLlz56pv377282oV1HT55ZfrkUcecVrPBRdc4HDfWXB9+OGHGjp0qAYOHKiHH35Y4eHh8vf31+TJk/X777+fZ6kUVTAfY8aMKbInTIHy+gICmGGz2Rz2Vihw7mfG//73P1199dW69NJL9cYbb6h+/fqqWrWqZsyYoVmzZnmkNle+dHoiWwcMGKDq1atr7ty56tatm+bOnSs/Pz+Hc+H9/vvv6tu3r1q1aqUpU6aoUaNGCggI0KJFi/Tyyy+X+Lqufk4XTOOFF16wn+f1XMWdc9mTiss4Z+8jd/LU9xqbzaavvvrK6XwVLN8XX3zR4UJijRs31s6dO029/7p27aomTZpo7ty5uvnmm/XFF1/o5MmTDnviF4z/wQcfKDIyskg9Vao4ft0ufCRAAbPfq1xdTq58/wOshowriow7q6LlmZnto3Odu1NQcc63s1Dt2rUVGBioffv2FXmsYFhUVNR5XweVE03F81i+fLkOHz6sTz/9VJdeeql9eHp6epFxXflF7HzjFvx6ce4Vj8/d46Bx48aSzv5aVNi2bdsc7jdv3lzffPONunfvXmIQPvLII7r11luL1OLM5s2b9dtvv+n999/X7bffbh++dOnSYp9zPo0bN1ZqaqqysrIcwujc+TEzvYLnn7v3wLZt2+yPm53msmXLdOLECYe94Hbs2OHS80ta786ucu1svefn5+v33393+EXv3GVUcGXovLw8xcfHl1jTueus4NfYjz/+WH369NG7777r8PjRo0cdmoWSNHDgQI0YMcJ+CPRvv/2mcePGOYzTvHlzZWVlnbeeknz88cdq1qyZPv30U4dlee5FYlxdTwWHulStWrVMdQHuYOYzsFatWg6nZihw7mfGJ598oqCgIH399dcOh7TMmDGjyHOdfT7Vq1dP1atXd1rD1q1b5efnp0aNGpU8Y06YyVZX1ahRQ1dddZXmzZunKVOmaM6cOerZs6fDl+AvvvhCOTk5+vzzzx32dHDlMFBX87lgT/LQ0FCPfq40btxYP/30k/Lz8x0aVAWH1ZnNuILxneWZKxlX1u819erVU7Vq1Vz+XmMYhpo2bVriBtftt99uP0RZOtsMMPv+u+GGG/TKK68oMzNTc+bMUZMmTdS1a1eHeiQpPDy81Ovc1e9VZtaTq9//gPJAxpFxzhTeXjvX1q1bVbduXYe9FF2dZn5+vtLT0x32FnTH9pr0zzIqfDGwkrbTCx9Wf/DgwSJ7oZd1++jcnYKKU9LOQtI/p4lq166d1q1bV+SxH374Qc2aNeMwZxSLcyqeR8EvIYV/+cjNzdUbb7xRZNwaNWq4vDt7wYfjuR/cjRs3lr+/f5HzJ5z7evXr11fHjh31/vvvO7zm0qVLtWXLFodxb7jhBuXl5dkPTS3szJkz9hpat26t+Ph4+y0mJqbY+p0tF8Mw9MorrxT7nPPp16+fzpw5o2nTptmH5eXl6bXXXivV9Dp37qzw8HBNnz7dYVfur776Sr/++qtLVwA7V0JCgk6fPq23337bPiw/P18pKSkuPb9GjRpOm4fNmzfXsWPH9NNPP9mH7du3T/Pnz3cYLzExUZL06quvOgw/99AHf39/DR48WJ988ol+/vnnIq9X+Gqchdd5fHy8fc9Ff3//Ir/4zZs3z+k5BmvWrKmEhATNnTtXs2fPVkBAgAYOHOgwzg033KDVq1fr66+/LvL8o0eP6syZM0WGn8vZ++6HH37Q6tWrHcZzdT2Fh4erd+/eevPNN53+MmfmqqVAWZn5DGzevLm2bt3q8B7dtGmTVq1a5TCev7+/bDabw6/oO3fu1IIFC4pM09nnk7+/v6644gp99tln2rlzp314RkaGZs2apR49ehQ5tNMVZrLVjCFDhmjv3r165513tGnTJoe9yYp73WPHjjndAD1XwYZU4XzOy8srcoqJmJgYNW/eXC+++KLDobcF3PW50q9fP+3fv9/hfLZnzpzRa6+9puDgYPXq1cvU9KKiotS2bVv95z//cah7xYoV2rx583mfX9z3mtDQUNWtW/e832v8/f2VkJCgBQsWaNeuXfbhv/76a5HcGDRokPz9/fXEE08UySnDMHT48GFJ//xwVDjfunfvbn+tgnELlPT+GzJkiHJycvT+++9r8eLFuuGGGxweT0hIUGhoqCZNmuRwWo4CrqxzV79XmVlPrn7/A8oDGUfGOVN4m7bw+vn555+1ZMkS9evXz9T0JNmPPjp3ebu6TVnS9prkuIyys7OLNPXi4+NVtWpVvfbaaw7rwtmVnMu6feSucypK0nXXXacff/zRobG4bds2ffvttw57xALnYk/F8+jWrZtq1aqlpKQkjR49WjabTR988IHT3atjYmI0Z84cJScn65JLLlFwcLAGDBjgdLoFDbvRo0crISFB/v7+uvHGGxUWFqbrr79er732mmw2m5o3b66FCxc6PZ/C5MmT1b9/f/Xo0UN33HGHjhw5otdee01t2rRx+JDv1auXRowYocmTJystLU1XXHGFqlatqu3bt2vevHl65ZVXdN1115laLq1atVLz5s01ZswY7dmzR6Ghofrkk0+K/PpixoABA9S9e3eNHTtWO3fuVOvWrfXpp5+W+ryVVatW1XPPPadhw4apV69euummm5SRkaFXXnlFTZo00YMPPmh6mgMHDlSXLl300EMPaceOHWrVqpU+//xzHTlyRNL591aNiYnRN998oylTpigqKkpNmzZVbGysbrzxRj366KO69tprNXr0aJ04cULTpk3TBRdc4HB+pI4dO+qmm27SG2+8oWPHjqlbt25KTU11+svbs88+q2XLlik2NlbDhw9X69atdeTIEW3YsEHffPONvebiXHXVVXryySc1bNgwdevWTZs3b9ZHH33k8ItbYUOGDNGtt96qN954QwkJCQ6/4EnSww8/rM8//1xXXXWVhg4dqpiYGGVnZ2vz5s36+OOPtXPnziJ7QDqr6dNPP9W1116r/v37Kz09XdOnT1fr1q0d3vNm1lNKSop69Oihdu3aafjw4WrWrJkyMjK0evVq/fXXX9q0aVOJNQGu+uqrr5yenL1bt25q1qyZqc/AO+64Q1OmTFFCQoLuvPNOHThwQNOnT1ebNm0czt3Uv39/TZkyRVdeeaVuvvlmHThwQCkpKWrRooXDjxhS8Z9PTz/9tJYuXaoePXro3nvvVZUqVfTmm28qJydHzz//fKmWhZlsNaNfv34KCQnRmDFj7D+uFHbFFVcoICBAAwYM0IgRI5SVlaW3335b4eHhTn9YKKxNmzbq2rWrxo0bpyNHjqh27dqaPXt2kS/8fn5+euedd5SYmKg2bdpo2LBhatCggfbs2aNly5YpNDRUX3zxhX18m8123j0InLn77rv15ptvaujQoVq/fr2aNGmijz/+WKtWrdLUqVNLtUfBpEmTdM0116h79+4aNmyY/v77b73++utq27at043Hwgq+1zz22GO68cYbVbVqVQ0YMEA1atTQXXfdpWeffVZ33XWXOnfurJUrV+q3334rMo0nnnhCixcvVs+ePXXvvffam6Rt2rRxeL82b95cTz/9tMaNG6edO3dq4MCBCgkJUXp6uubPn6+7775bY8aMKbZWs++/iy++WC1atNBjjz2mnJycIhvyoaGhmjZtmm677TZdfPHFuvHGG1WvXj3t2rVLX375pbp3767XX3+9xOVn5nuVq+vJE9//gOKQcY7zTMa57oUXXlBiYqLi4uJ055136uTJk3rttdcUFhamiRMnmpqW9M+6Hjx4sKZOnarDhw+ra9euWrFihT13XNlemzZtmp5++mm1aNFC4eHhuuyyy3TFFVcoOjpad955px5++GH5+/vrvffes3/eF6hXr57GjBmjyZMn66qrrlK/fv20ceNGffXVV0W2dcq6feSucypK/1zY5u2331b//v01ZswYVa1aVVOmTFFERIQeeught7wGKijPX2Datzi7rPyqVauMrl27GtWqVTOioqKMRx55xPj6668NScayZcvs42VlZRk333yzUbNmTUOS0bhxY8MwDCM9Pd2QZMyYMcM+7pkzZ4z77rvPqFevnmGz2RwuT3/w4EFj8ODBRvXq1Y1atWoZI0aMMH7++eci0zAMw/jkk0+Miy66yAgMDDRat25tfPrpp0ZSUpL9tQt76623jJiYGKNatWpGSEiI0a5dO+ORRx4x9u7dW6pltWXLFiM+Pt4IDg426tatawwfPtzYtGlTkTqTkpKMGjVqFHn+hAkTjHPfgocPHzZuu+02IzQ01AgLCzNuu+02Y+PGjU7n/VzLli0rsk4MwzDmzJljdOrUyQgMDDRq165t3HLLLcZff/3lMI6ZGg8ePGjcfPPNRkhIiBEWFmYMHTrUWLVqlSHJmD17donP3bp1q3HppZca1apVMyQZSUlJ9seWLFlitG3b1ggICDAuvPBC48MPP3Q6jZMnTxqjR4826tSpY9SoUcMYMGCAsXv3bkOSMWHCBIdxMzIyjJEjRxqNGjUyqlatakRGRhp9+/Y13nrrrRKXpWEYxqlTp4yHHnrIqF+/vlGtWjWje/fuxurVq41evXoZvXr1KjJ+Zmamfb4+/PBDp9M8fvy4MW7cOKNFixZGQECAUbduXaNbt27Giy++aOTm5hqGcfb/5YUXXijy/Pz8fGPSpElG48aNjcDAQKNTp07GwoULnb7nXV1PhmEYv//+u3H77bcbkZGRRtWqVY0GDRoYV111lfHxxx+fdzkB51OQK8XdCn+2mfkM/PDDD41mzZoZAQEBRseOHY2vv/7a6f/Cu+++a7Rs2dIIDAw0WrVqZcyYMcP059OGDRuMhIQEIzg42KhevbrRp08f4/vvv3c6nz/++GOxy6A02VpcphXnlltuMSQZ8fHxTh///PPPjfbt2xtBQUFGkyZNjOeee8547733itTn7LPu999/N+Lj443AwEAjIiLC+L//+z9j6dKlTrNn48aNxqBBg4w6deoYgYGBRuPGjY0bbrjBSE1NtY9z/PhxQ5Jx4403nne+nNWTkZFhDBs2zKhbt64REBBgtGvXrsj7pKTPVGe5MXv2bKNVq1ZGYGCg0bZtW+Pzzz83Bg8ebLRq1eq8z33qqaeMBg0aGH5+fg7L88SJE8add95phIWFGSEhIcYNN9xgHDhwwOk0VqxYYcTExBgBAQFGs2bNjOnTpzt9vxrGP9+BevToYdSoUcOoUaOG0apVK2PkyJHGtm3bil2OBVx9/xV47LHHDElGixYtip3msmXLjISEBCMsLMwICgoymjdvbgwdOtRYt26dfZzivm8YhuvfqwzD9fVkGO7//gcURsaRccVlnDPOtosNwzC++eYbo3v37ka1atWM0NBQY8CAAcaWLVscxilYrwcPHnQY7mz5Z2dnGyNHjjRq165tBAcHGwMHDjS2bdtmSDKeffbZEp+7f/9+o3///kZISIghyWE5rV+/3oiNjTUCAgKM6OhoY8qUKU6nkZeXZzzxxBP27ajevXsbP//8s9G4cWOH955huLZ9VF52795tXHfddUZoaKgRHBxsXHXVVcb27dvLtQb4HpthePiMpkAlsGDBAl177bX67rvv7IdXwXpYT/BFO3fuVNOmTe0XUULFsWjRIl111VXatGmT2rVr5+1yitWxY0fVq1evTOdNhuexnuCLyDiUl7S0NHXq1EkffvihbrnlFm+XA1QYnFMRMOncK2wVnA8mNDRUF198sZeqwrlYTwCsbtmyZbrxxhst01A8ffp0kUPdli9frk2bNql3797eKQpFsJ4AoGTOrog8depU+fn5OVw8B0DZcU5FwKT77rtPJ0+eVFxcnHJycvTpp5/q+++/16RJk7i6ooWwnqxl9+7duu2223TgwAFVqVJFjz/+OCd9RqX3wgsveLsEB3v27FF8fLxuvfVWRUVFaevWrZo+fboiIyP1r3/9y9vl4f9jPbkX+QRUPM8//7zWr1+vPn36qEqVKvrqq6/01Vdf6e677y7VFb2B8uZL2URTETDpsssu00svvaSFCxfq1KlTatGihV577TWNGjXK26WhENaTtVSpUkVTp05Vx44dtX//fsXExKhfv372K8YC8L5atWopJiZG77zzjg4ePKgaNWqof//+evbZZ1WnTh1vl4f/j/XkXuQTUPF069ZNS5cu1VNPPaWsrCxFR0dr4sSJeuyxx7xdGuASX8omzqkIACh3HTp00MKFC/m1GABgKeQTAMBqrJxNnFMRAKCVK1dqwIABioqKks1m04IFC4qMk5KSoiZNmigoKEixsbFau3ZtqV5r/fr1ysvLs2QoAgCshXwCAFgN2XQWTUUAgLKzs9WhQwelpKQ4fXzOnDlKTk7WhAkTtGHDBnXo0EEJCQk6cOCAfZyOHTuqbdu2RW579+61j3PkyBHdfvvteuuttzw+TwAA30c+AQCshmw6q8If/pyfn6+9e/cqJCRENpvN2+UAqIAMw9Dx48cVFRUlP7+y/VZz6tQp5ebmuqWmcz/zAgMDFRgYeN7n2mw2zZ8/XwMHDrQPi42N1SWXXKLXX39d0j+frY0aNdJ9992nsWPHulRTTk6OLr/8cg0fPly33Xab6zNTAZFNAMqDu/LJXdlUUBP5ZF3kEwBPY9upYmVThb9Qy969ey27myiAimX37t1q2LBhqZ9/6tQpRUfX0MGD+WWuJTg4WFlZWQ7DJkyYoIkTJ5qeVm5urtavX69x48bZh/n5+Sk+Pl6rV692aRqGYWjo0KG67LLLLB2K5YVsAlCeypJP7swmiXyyOvIJQHlh26l4vpRNFb6pGBISIknqXfd2VfEL8HI1ACqiM/m5Wn7oP/bPm9LKzc3VwYP5Wv5DuIKDS793QFaWod6xB7R7926Fhobah7vyS5szhw4dUl5eniIiIhyGR0REaOvWrS5NY9WqVZozZ47at29vP+fIBx98oHbt2pWqJl9HNgEoD+7IJ3dlk0Q++QLyCYCnse10fr6UTRW+qViwC2sVvwCCEYBHueswoeBgm4JDynIowD+/1oWGhjoEozf16NFD+fnu2culIiCbAJQnd+RT2bNJIp+sj3wCUF7YdiqeL2UTF2oBAJSobt268vf3V0ZGhsPwjIwMRUZGeqkqAEBlRz4BAKymsmUTTUUAQIkCAgIUExOj1NRU+7D8/HylpqYqLi7Oi5UBACoz8gkAYDWVLZsq/OHPAIDzy8rK0o4dO+z309PTlZaWptq1ays6OlrJyclKSkpS586d1aVLF02dOlXZ2dkaNmyYF6sGAFR05BMAwGrIprNoKgIAtG7dOvXp08d+Pzk5WZKUlJSkmTNnasiQITp48KDGjx+v/fv3q2PHjlq8eHGRExADAOBO5BMAwGrIprNoKgIA1Lt3bxmGUeI4o0aN0qhRo8qpIgAAyCcAgPWQTWdxTkUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAAAAAAAAAptBUBAAAAAAAAGAKTUUAgMcdPXpUnTt3VseOHdW2bVu9/fbb3i4JAADyCQBgOb6UTVW8XQAAoOILCQnRypUrVb16dWVnZ6tt27YaNGiQ6tSp4+3SAACVGPkEALAaX8om9lQEAHicv7+/qlevLknKycmRYRgyDMPLVQEAKjvyCQBgNb6UTTQVAQBauXKlBgwYoKioKNlsNi1YsKDIOCkpKWrSpImCgoIUGxurtWvXmnqNo0ePqkOHDmrYsKEefvhh1a1b103VAwAqKvIJAGA1ZNNZNBUBAMrOzlaHDh2UkpLi9PE5c+YoOTlZEyZM0IYNG9ShQwclJCTowIED9nEKzvlx7m3v3r2SpJo1a2rTpk1KT0/XrFmzlJGRUS7zBgDwXeQTAMBqyKazvN5U3LNnj2699VbVqVNH1apVU7t27bRu3Tr744ZhaPz48apfv76qVaum+Ph4bd++3YsVA4BvyMzMdLjl5OQUO25iYqKefvppXXvttU4fnzJlioYPH65hw4apdevWmj59uqpXr6733nvPPk5aWpp+/vnnIreoqCiHaUVERKhDhw763//+554Z9QCyCQA8h3wqPfIJADyDbCodr16o5e+//1b37t3Vp08fffXVV6pXr562b9+uWrVq2cd5/vnn9eqrr+r9999X06ZN9fjjjyshIUFbtmxRUFCQF6sHAM9YcLyDgoyqpX7+qazTkpaoUaNGDsMnTJigiRMnmp5ebm6u1q9fr3HjxtmH+fn5KT4+XqtXr3ZpGhkZGapevbpCQkJ07NgxrVy5Uvfcc4/pWsoD2QQARZU1myTyqazIJwAoim0n7/JqU/G5555To0aNNGPGDPuwpk2b2v82DENTp07Vv//9b11zzTWSpP/85z+KiIjQggULdOONN5Z7zQDgK3bv3q3Q0FD7/cDAwFJN59ChQ8rLy1NERITD8IiICG3dutWlafz555+6++677ScZvu+++9SuXbtS1eNpZBMAeBb5VDrkEwB4DtlUOl5tKn7++edKSEjQ9ddfrxUrVqhBgwa69957NXz4cElSenq69u/fr/j4ePtzwsLCFBsbq9WrVzsNxpycHIfdVDMzMz0/IwBgQaGhoQ7B6E1dunRRWlqat8twCdkEAJ5FPpUO+QQAnkM2lY5Xz6n4xx9/aNq0aWrZsqW+/vpr3XPPPRo9erTef/99SdL+/fslyWmHt+Cxc02ePFlhYWH227m7sAIAzKlbt678/f2LnBw4IyNDkZGRXqrKc8gmAPAN5BP5BABWU9myyatNxfz8fF188cWaNGmSOnXqpLvvvlvDhw/X9OnTSz3NcePG6dixY/bb7t273VgxAFQ+AQEBiomJUWpqqn1Yfn6+UlNTFRcX58XKPINsAgDfQD6RTwBgNZUtm7x6+HP9+vXVunVrh2EXXXSRPvnkE0myd3EzMjJUv359+zgZGRnq2LGj02kGBgaW+th3AKissrKytGPHDvv99PR0paWlqXbt2oqOjlZycrKSkpLUuXNndenSRVOnTlV2draGDRvmxao9g2wCAOsgn84inwDAGsims7zaVOzevbu2bdvmMOy3335T48aNJf1z4uHIyEilpqbagzAzM1M//PCDZa98AwC+aN26derTp4/9fnJysiQpKSlJM2fO1JAhQ3Tw4EGNHz9e+/fvV8eOHbV48eIih1hVBGQTAFgH+XQW+QQA1kA2neXVpuKDDz6obt26adKkSbrhhhu0du1avfXWW3rrrbckSTabTQ888ICefvpptWzZUk2bNtXjjz+uqKgoDRw40JulA0CF0rt3bxmGUeI4o0aN0qhRo8qpIu8hmwDAOsins8gnALAGsuksrzYVL7nkEs2fP1/jxo3Tk08+qaZNm2rq1Km65ZZb7OM88sgjys7O1t13362jR4+qR48eWrx4sYKCgrxYOQCgoiKbAABWRD4BAKzGq01FSbrqqqt01VVXFfu4zWbTk08+qSeffLIcqwIAVGZkEwDAisgnAICVePXqzwAAAAAAAAB8D01FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAAAAAAAAAKbQVAQAAAAAAABgCk1FAEC5OXHihBo3bqwxY8Z4uxQAAOzIJwCA1fhCNtFUBACUm2eeeUZdu3b1dhkAADggnwAAVuML2URTEQBQLrZv366tW7cqMTHR26UAAGBHPgEArMZXsommIgBAK1eu1IABAxQVFSWbzaYFCxYUGSclJUVNmjRRUFCQYmNjtXbtWlOvMWbMGE2ePNlNFQMAKgPyCQBgNWTTWTQVAQDKzs5Whw4dlJKS4vTxOXPmKDk5WRMmTNCGDRvUoUMHJSQk6MCBA/ZxOnbsqLZt2xa57d27V5999pkuuOACXXDBBeU1SwCACoB8AgBYDdl0VhVvFwAA8IzMzEyH+4GBgQoMDHQ6bmJiYom71k+ZMkXDhw/XsGHDJEnTp0/Xl19+qffee09jx46VJKWlpRX7/DVr1mj27NmaN2+esrKydPr0aYWGhmr8+PEm5woA4OvIJwCA1ZBNpUNTEQAsZlnGBaqS5TzAXHEmO0fSEjVq1Mhh+IQJEzRx4kTT08vNzdX69es1btw4+zA/Pz/Fx8dr9erVLk1j8uTJ9t33Z86cqZ9//tmSoQgAcK6s2SSRTwAA92PbybtoKgJABbV7926Fhoba7xf3S9v5HDp0SHl5eYqIiHAYHhERoa1bt5apRgBA5UM+AQCshmwqHZqKAFBBhYaGOgSjVQwdOtTbJQAAvIh8AgBYDdlUOlyoBQBQorp168rf318ZGRkOwzMyMhQZGemlqgAAlR35BACwmsqWTTQVAQAlCggIUExMjFJTU+3D8vPzlZqaqri4OC9WBgCozMgnAIDVVLZs4vBnAICysrK0Y8cO+/309HSlpaWpdu3aio6OVnJyspKSktS5c2d16dJFU6dOVXZ2tv2KZgAAeAL5BACwGrLpLK/uqThx4kTZbDaHW6tWreyPnzp1SiNHjlSdOnUUHByswYMHF9mFFABQduvWrVOnTp3UqVMnSVJycrI6depkv8rYkCFD9OKLL2r8+PHq2LGj0tLStHjx4iInIK4IyCYAsA7y6SzyCQCsgWw6y+t7KrZp00bffPON/X6VKmdLevDBB/Xll19q3rx5CgsL06hRozRo0CCtWrXKG6UCQIXVu3dvGYZR4jijRo3SqFGjyqki7yKbAMAayCdH5BMAeB/ZdJbXm4pVqlRxerLKY8eO6d1339WsWbN02WWXSZJmzJihiy66SGvWrFHXrl3Lu1QAQCVBNgEArIh8AgBYidcv1LJ9+3ZFRUWpWbNmuuWWW7Rr1y5J0vr163X69GnFx8fbx23VqpWio6O1evXqYqeXk5OjzMxMhxsAAGaQTQAAKyKfAABW4tWmYmxsrGbOnKnFixdr2rRpSk9PV8+ePXX8+HHt379fAQEBqlmzpsNzIiIitH///mKnOXnyZIWFhdlvjRo18vBcAAAqErIJAGBF5BMAwGq8evhzYmKi/e/27dsrNjZWjRs31ty5c1WtWrVSTXPcuHFKTk6238/MzCQcAQAuI5sAAFZEPgEArMbrhz8XVrNmTV1wwQXasWOHIiMjlZubq6NHjzqMk5GR4fQ8IgUCAwMVGhrqcAMAoLTIJgCAFZFPAABvs1RTMSsrS7///rvq16+vmJgYVa1aVampqfbHt23bpl27dikuLs6LVQIAKhOyCQBgReQTAMDbvHr485gxYzRgwAA1btxYe/fu1YQJE+Tv76+bbrpJYWFhuvPOO5WcnKzatWsrNDRU9913n+Li4kp19bLcC6KUXyWozDUHbP2rzNMAAFhXeWYTAACuIp8AAFbj1abiX3/9pZtuukmHDx9WvXr11KNHD61Zs0b16tWTJL388svy8/PT4MGDlZOTo4SEBL3xxhveLFm5rRp6ZLo0KwHAGnwxmwAAFR/5BACwGq82FWfPnl3i40FBQUpJSVFKSko5VeQ9nmpWegpNUAAVFdkEALAi8gkAYDVebSrCd/laExTwpDNnTkkHvF0FAAAAAADlx1IXagEAAAAAAABgfTQVAQAAAAAAAJjC4c8AAAAAAK/IbdWwwp+vvTLMozt5+lRblX1dmF2+pVleBa9R2Zd1ZUBTEQAAL8m9IEr5VYK8XQaACopz/qK0CudTSU0BdzV/KsP52ivDPPoK1oU5ZVlezp5LNlUsNBUBAAAAAE7RgAEAFIdzKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwpYq3CwAAVA5NmjRRaGio/Pz8VKtWLS1btszbJQEAQD4BACzHV7KJpiIAoNx8//33Cg4O9nYZAAA4IJ8AAFbjC9nE4c8AAAAAAAAATKGpCADQypUrNWDAAEVFRclms2nBggVFxklJSVGTJk0UFBSk2NhYrV271tRr2Gw29erVS5dccok++ugjN1UOAKjIyCcAgNWQTWdx+DMAQNnZ2erQoYPuuOMODRo0qMjjc+bMUXJysqZPn67Y2FhNnTpVCQkJ2rZtm8LDwyVJHTt21JkzZ4o8d8mSJYqKitJ3332nBg0aaN++fYqPj1e7du3Uvn17j88bAMB3kU8AAKshm86iqQgAFVRmZqbD/cDAQAUGBjodNzExUYmJicVOa8qUKRo+fLiGDRsmSZo+fbq+/PJLvffeexo7dqwkKS0trcR6GjRoIEmqX7+++vXrpw0bNlgyGAEAnkU+AQCshmwqHZqKAGAxu/bWlV+1oFI/P//kKUlSo0aNHIZPmDBBEydOND293NxcrV+/XuPGjbMP8/PzU3x8vFavXu3SNLKzs5Wfn6+QkBBlZWXp22+/1Q033GC6FgCAd5Q1myTyCQDgfmw7eRdNRQCooHbv3q3Q0FD7/eJ+aTufQ4cOKS8vTxEREQ7DIyIitHXrVpemkZGRoWuvvVaSlJeXp+HDh+uSSy4pVT0AAN9GPgEArIZsKh2Xmoqff/656QlffvnlqlatmunnAQDcIzQ01CEYvalZs2batGmT26dLPgGA76no+UQ2AYDvqejZ5CkuNRUHDhxoaqI2m03bt29Xs2bNSlMTAMBC6tatK39/f2VkZDgMz8jIUGRkpJeq+gf5BACVl1XziWwCgMrLqtnkKX6ujrh//37l5+e7dKtevbonawYAlKOAgADFxMQoNTXVPiw/P1+pqamKi4vzYmX/IJ8AoHKycj6RTQBQOVk5mzzBpT0Vk5KSTO2Of+utt1pmt1EAwPllZWVpx44d9vvp6elKS0tT7dq1FR0dreTkZCUlJalz587q0qWLpk6dquzsbPsVzbyFfAKAis0X84lsAoCKzRezyVNcairOmDHD1ESnTZtWqmIAAN6xbt069enTx34/OTlZ0j8bRjNnztSQIUN08OBBjR8/Xvv371fHjh21ePHiIicgLm/kEwBUbL6YT2QTAFRsvphNnsLVnwEA6t27twzDKHGcUaNGadSoUeVUEQAA5BMAwHrIprNMNxVPnTql1157TcuWLdOBAweUn5/v8PiGDRvcVhwAAK4inwAAVkM2AQAqMtNNxTvvvFNLlizRddddpy5dushms3miLgAATCGfAABWQzYBACoy003FhQsXatGiRerevbsn6gEAoFTIJwCA1ZBNAICKzM/sExo0aKCQkBBP1AIAQKmRTwAAqyGbAAAVmemm4ksvvaRHH31Uf/75pyfqAQCgVMgnAIDVkE0AgIrMdFOxc+fOOnXqlJo1a6aQkBDVrl3b4VZazz77rGw2mx544AH7sFOnTmnkyJGqU6eOgoODNXjwYGVkZJT6NQAAFRf5BACwGrIJAFCRmT6n4k033aQ9e/Zo0qRJioiIcMvJhn/88Ue9+eabat++vcPwBx98UF9++aXmzZunsLAwjRo1SoMGDdKqVavK/JoAgIqFfAIAWA3ZBACoyEw3Fb///nutXr1aHTp0cEsBWVlZuuWWW/T222/r6aeftg8/duyY3n33Xc2aNUuXXXaZJGnGjBm66KKLtGbNGnXt2tUtrw8AqBjIJwCA1ZBNAICKzPThz61atdLJkyfdVsDIkSPVv39/xcfHOwxfv369Tp8+7TC8VatWio6O1urVq4udXk5OjjIzMx1uAICKz8r5RDYBQOVk5WySyCcAQNmYbio+++yzeuihh7R8+XIdPny4TCE0e/ZsbdiwQZMnTy7y2P79+xUQEKCaNWs6DI+IiND+/fuLnebkyZMVFhZmvzVq1MhUTQAA32TlfCKbAKBysnI2SeQTAKBsTB/+fOWVV0qS+vbt6zDcMAzZbDbl5eW5NJ3du3fr/vvv19KlSxUUFGS2jGKNGzdOycnJ9vuZmZmEIwBUAlbOJ7IJAConK2eTRD4BAMrGdFNx2bJlbnnh9evX68CBA7r44ovtw/Ly8rRy5Uq9/vrr+vrrr5Wbm6ujR486/OKWkZGhyMjIYqcbGBiowMBAt9QIAPAdVs4nsgkAKicrZ5NEPgEAysZ0U7Fbt26qWrWq08cOHTrk8nT69u2rzZs3OwwbNmyYWrVqpUcffVSNGjVS1apVlZqaqsGDB0uStm3bpl27dikuLs5s2QCACo58AgBYDdkEAKjITDcVb7zxRn388cey2WwOwzMyMtS3b1/9/PPPLk0nJCREbdu2dRhWo0YN1alTxz78zjvvVHJysmrXrq3Q0FDdd999iouL4+plAAAHqampuvXWW1WtWjXZbDZddNFFeuCBBxQfH08+AQC8gmwCAFhRamqqXn75Zf3666+S5JBPZpm+UMuuXbt01113OQzbt2+fevfurVatWpkuoCQvv/yyrrrqKg0ePFiXXnqpIiMj9emnn7r1NQAAvu2NN97QlVdeqdzcXIWHh+v+++9XaGio+vXrp0mTJpFPAIByRzYBAKyoIJ9CQkJ0//33O+RTSkqK6emZ3lNx0aJFuvTSS5WcnKwpU6Zo79696tOnjzp06KDZs2ebLqCw5cuXO9wPCgpSSkpKqWYMAFA5TJo0SS+//LKGDBmiSy+9VDt37tSsWbPUpk0bjR8/XoMGDSKfAADlimwCAFhRQT6NGjXKPmz06NHq3r27Jk2apJEjR5qanummYr169bRkyRL16NFDkrRw4UJdfPHF+uijj+TnZ3rHRwAAyuTo0aO68sori+TT/PnzJUn//e9/yScAQLkimwAAVlSQT+e64oor9Oijj5qeXqmSrFGjRlq6dKk++ugjdenSRf/973/l7+9fmkkBAFAmV199tX0jrXA+1apVS4MHDyafAADljmwCAFhR4Xwq7LPPPtNVV11lenou7alYq1atIhdmkaQTJ07oiy++UJ06dezDjhw5YroIAABKo1atWsrJydHs2bP12GOPqUqVf2ItJydHBw4c0NatW1WjRg1J0uTJkzV69GhvlgsAqATIJgCAVbVu3VrPPPOMli9frri4OEnSmjVrtGrVKj300EN69dVX7eO6kk8uNRWnTp1aumoBAPCgqVOnasyYMfaNswLn3i8Ylw03AICnkU0AAKt69913VatWLW3ZskVbtmyxD69Zs6beffdd+32bzea+pmJSUlIpSgUAwLOSkpLIKACApZBNAACrSk9Pd+v0XDqnYmZmpqmJHj9+vFTFAABgBvkEALAasgkAUFm4fE7Fffv2KTw83KWJNmjQQGlpaWrWrFmZigMAoCQF+ZSbm6vPP/9cu3btUm5ursM4U6ZMsf9NPgEAPI1sAgBY2V9//eVSPrnCpaaiYRh65513FBwc7NJET58+baoIAABKwzAMjRs3Th988IHq1q2rjIwM1a9fX0eOHJFhGGrUqJGaNGliH598AgB4GtkEALCq1NRUXX311WrWrJm2bt2qtm3baufOnTIMQxdffLHp6bnUVIyOjtbbb7/t8kQjIyNVtWpV08UAAGBGdHS0PvzwQ9WoUUOBgYEyDEM2m03h4eE6ePCgjhw5opdfftk+PvkEAPA0sgkAYFXjxo3TmDFj9MQTTygkJESffPKJwsPDdcstt+jKK680PT2Xmoo7d+40PWEAADxt586dCgkJ0bp169S8eXPVqlVLixcvVps2bbRp0yZdc801bj8ZMQAAJSGbAABW9euvv+q///2vJKlKlSo6efKkgoOD9eSTT+qaa67RPffcY2p6Ll2oBQAAq6pRo4b9XCD169fX77//bn/s0KFD3ioLAFCJkU0AACtydz65tKciAABW1bVrV3333Xe66KKL1K9fPz300EPavHmzPv30U3Xt2tXb5QEAKiGyCQBgRe7OJ5qKAACfNmXKFGVlZUmSnnjiCWVlZWnOnDlq2bKl6auXAQDgDmQTAMCK3J1PNBUBAD6tWbNm9r9r1Kih6dOne7EaAADIJgCANbk7nzinIgDAp911111avny5t8sAAMCObAIAWJG786lUTcX//e9/uvXWWxUXF6c9e/ZIkj744AN99913bisMAABXHDx4UFdeeaUaNWqkm266Sf379yefAABeRTYBAKyocD49/PDD2rRpU5mmZ7qp+MknnyghIUHVqlXTxo0blZOTI0k6duyYJk2aVKZiAAAVV3p6uvr06aPWrVurXbt2ys7Odst0P/vsM+3bt0/9+/fX3LlztWjRIv3www96+eWXtXPnTvIJAFAiT+QT2QQAKAtPbzs9/vjj+vHHH3XxxRerTZs2mjRpknbu3Gl6eqabik8//bSmT5+ut99+W1WrVrUP7969uzZs2GC6AABA5TB06FA9+eST2rJli1asWKHAwEC3TbtWrVr64YcfNGPGDO3evVtVq1bV/Pnz1aJFC/IJAFAiT+UT2QQAKC1PbzvdfffdWr58uf78808NHTpUH3zwgVq0aGF6WqYv1LJt2zZdeumlRYaHhYXp6NGjpgsAAFR8v/zyi6pWraqePXtKkmrXru3219i2bZvi4uK0bt065efn66+//lJERAT5BAAolqfziWwCAJhVHttOknT69GmtW7dOP/zwg3bu3KmIiAjT0zC9p2JkZKR27NhRZPh3333ncBUZAIDvWLlypQYMGKCoqCjZbDYtWLCgyDgpKSlq0qSJgoKCFBsbq7Vr17o8/e3btys4OFgDBgzQxRdf7PZDvpYtW6YqVaro4osv1tChQyVJ77zzjv766y/yCQB8mC/nE9kEABWTL2eT9E8+DR8+XBERERo6dKhCQ0O1cOFC/fXXX6anZXpPxeHDh+v+++/Xe++9J5vNpr1792r16tUaM2aMHn/8cdMFAAC8Lzs7Wx06dNAdd9yhQYMGFXl8zpw5Sk5O1vTp0xUbG6upU6cqISFB27ZtU3h4uCSpY8eOOnPmTJHnLlmyRGfOnNH//vc/paWlKTw8XFdeeaUuueQSXX755WWuvUGDBjpy5IiaNWumzMxMzZo1S/3791fTpk01a9Ys8gkAfJiv5hPZBAAVl69mk3Q2n6688kq99dZbGjBgQJkOrTbdVBw7dqzy8/PVt29fnThxQpdeeqkCAwM1ZswY3XfffaUuBADgXpmZmQ73AwMDiw2MxMREJSYmFjutKVOmaPjw4Ro2bJgkafr06fryyy/13nvvaezYsZKktLS0Yp/foEEDde7cWY0aNZIk9evXT2lpaW4JxokTJ+r6669XWFiYJk2apMTERKf59NdffykqKkp+fqZ30gcAuFFlyCeyCQB8S2XIJulsPtWsWbPE8VzNJ9NNRZvNpscee0wPP/ywduzYoaysLLVu3VrBwcFmJwUAcCJgd4D8gwJK/fy8U/mSZA+hAhMmTNDEiRNNTy83N1fr16/XuHHj7MP8/PwUHx+v1atXuzSNSy65RAcOHNDff/+tsLAwrVy5UiNGjDBdizPDhw+3/11SPrVu3VppaWkcbgYApVDWbJIqVz6RTQBQPth2MqdwPpXE1Xwy3VQsEBAQoNatW5f26QAAD9u9e7dCQ0Pt90u7W/uhQ4eUl5dX5MS9ERER2rp1q0vTqFKliiZNmqRLL71UhmHoiiuu0FVXXVWqes6nuHwyDMMjrwcAMKcy5hPZBADWVhmzqSSu5pNLTUVnx4gX59NPP3V5XACA54SGhjoEo7ed7zCB0jCTTwAAa6jo+UQ2AYDvqejZ5CkunbwjLCzMfgsNDVVqaqrWrVtnf3z9+vVKTU1VWFiYxwoFAHhH3bp15e/vr4yMDIfhGRkZioyM9FJV/yCfAKDysmo+kU0AUHlZNZs8xaU9FWfMmGH/+9FHH9UNN9yg6dOny9/fX5KUl5ene++911JdXQCAewQEBCgmJkapqakaOHCgJCk/P1+pqakaNWqUV2sjnwCg8rJqPpFNAFB5WTWbPMX0ORXfe+89fffdd/ZQlCR/f38lJyerW7dueuGFF9xaIADA87KysrRjxw77/fT0dKWlpal27dqKjo5WcnKykpKS1LlzZ3Xp0kVTp05Vdna2/YpmVnC+fLLZbF6sDgBQGr6eT2QTAFQ8vp5NrnA1n0w3Fc+cOaOtW7fqwgsvdBi+detW5efnm50cAMAC1q1bpz59+tjvJycnS5KSkpI0c+ZMDRkyRAcPHtT48eO1f/9+dezYUYsXLy5yAmJvOl8+cTJ8APA9vp5PZBMAVDy+nk2ucOuFWgobNmyY7rzzTv3+++/q0qWLJOmHH37Qs88+61NdVwDAWb179z5vcIwaNcrSu+wPGzZMw4YN06hRo3TFFVdIcsynBx98UFFRUV6uEgBghq/nE9kEABWPr2dTgb/++kuS1LBhwyKPbdmyxaV8Mt1UfPHFFxUZGamXXnpJ+/btkyTVr19fDz/8sB566CGzkwMAoEzy8/P19NNP65133lFWVpaeeuopPfXUU7LZbA75VPjQMwAAPIlsAgBYUUE+vfTSS8rKypIkhYSE6KGHHtJjjz0mP79/rufcqFEjl6Znuqno5+enRx55RI888ogyMzMliZMMAwC85rHHHtO7776r5557Tt27d5ckLV26VJMnT9bQoUP1yCOPeLlCAEBlQzYBAKyoIJ+effZZez599913mjhxok6dOqVnnnnG1PRMNxULo5kIAPC2999/X++8846uvvpq+7D27durRYsWuvfee00HIwAAZUU2AQCsqLh8atCgQanyyXRTsWnTpiVeBeaPP/4wO0kAAErtyJEjatWqVZF8On36tPbt26dmzZpJIp8AAOWHbAIAWFFBPp2rVatWOnLkiOnpmW4qPvDAAw73T58+rY0bN2rx4sV6+OGHTRcAAEBZdOjQQa+//nqRfJo7d65OnjypY8eOkU8AgHJFNgEArKggn1599VWH4a+//ro6dOhgenqmm4r333+/0+EpKSlat26d6QIAACiL559/Xv3791d0dLTi4uIkSatXr9bu3bu1aNEi/fTTT+QTAKBckU0AACsqyKdvvvnGaT6Z5eeuwhITE/XJJ5+4a3IAALikV69e+u2333Tttdfq6NGjOnr0qAYNGqRt27apZ8+e5BMAoNyRTQAAKzpfPplVpgu1FPbxxx+rdu3a7pocAAAui4qKKvakwuQTAMAbyCYAgBWVlE9mmW4qdurUyeFkw4ZhaP/+/Tp48KDeeOMNtxQFAICr8vPz5efn5zSf9uzZoyNHjpBPAIByRTYBAKyoIJ+cDf/rr78UHR1tanqmm4rXXHONQzD6+fmpXr166t27t9MryAAA4AmZmZm666679MUXXyg0NFStWrVS79697SF54sQJvfDCC9qyZQv5BAAoF2QTAMCKzs2nESNGaMKECfL395ckHTx4UE2bNlVeXp6p6ZpuKk6cONHsUwAAcLvHH39cmzZt0gcffKCjR4/q6aef1vr16/Xpp58qICBAGRkZeuGFF9hoAwCUG7IJAGBFzvJpw4YN9nyS/tmb3izTF2rx9/fXgQMHigw/fPiwvcMJAICnLViwQG+++aauu+463XXXXdq9e7f27t2rAQMGKCcnR5Jks9nIJwBAuSGbAABWdG4+rVu3TgcPHiyST2aZbioW17nMycmxdzddNW3aNLVv316hoaEKDQ1VXFycvvrqK/vjp06d0siRI1WnTh0FBwdr8ODBysjIMFsyAKACOnjwoBo3bmy/bxiGPv74Yx0/flz9+vXTiRMnJJnPJ7IJAFBansomiXwCAJTeuflUt25dffPNN0XyySyXD39+9dVXJf3TuXznnXcUHBxsfywvL08rV640vRt/w4YN9eyzz6ply5YyDEPvv/++rrnmGm3cuFFt2rTRgw8+qC+//FLz5s1TWFiYRo0apUGDBmnVqlWmXgcAUPFER0fr119/1RdffCHpn3yaPXu2rr32Wr3xxhvq0aOHDMPQyJEjTeUT2QQAKC1PZZNEPgEASq8gn5o2bWofFhISoiVLluiKK67QtddeW6rputxUfPnllyX982vb9OnTHXbXDwgIUJMmTTR9+nRTLz5gwACH+88884ymTZumNWvWqGHDhnr33Xc1a9YsXXbZZZKkGTNm6KKLLtKaNWvUtWtXU68FAKhYrrjiCs2YMUPr1q2T5JhPhmHo8OHDMgxDJ06cMJVPZBMAoLQ8lU0S+QQAKL2CfOrXr5/D8ODgYH399de6/PLLSzVdl5uK6enpkqQ+ffro008/Va1atUr1gsXJy8vTvHnzlJ2drbi4OK1fv16nT59WfHy8fZxWrVopOjpaq1evJhgBoJJ74okntHfvXrVp00ZS0Xw6fvy4NmzYoF69epX6NcgmAIAZ5ZFNEvkEADCnIJ+cCQkJ0dKlS7VhwwbT0zV99edly5aZfpGSbN68WXFxcTp16pSCg4M1f/58tW7dWmlpaQoICFDNmjUdxo+IiND+/fuLnV5OTo79JJPSP5fNBgBUPLVq1bJvpKWmpiouLk4PP/yw8vPzHcYrzYYb2QQAKA1PZpNEPgEASufcfEpNTdWBAwfKnE8uNRWTk5P11FNPqUaNGkpOTi5x3ClTppgq4MILL1RaWpqOHTumjz/+WElJSVqxYoWpaRQ2efJkPfHEE6V+PgDAdyQnJ6tatWp69tlnVa9ePYfz/RYeRzKXT2QTAKC0PJVNEvkEACibJ554Qk8++aQ6d+6s+vXrl+qKz4W51FTcuHGjTp8+LUnasGFDmV+0sICAALVo0UKSFBMTox9//FGvvPKKhgwZotzcXB09etThF7eMjAxFRkYWO71x48Y5ND4zMzPVqFEjt9ULALCOjRs3asuWLZo5c6beffddp/m0ceNG09MlmwAApeWpbJLIJwBA2UyfPl0zZ87Ubbfd5pbpudRULHzI8/Lly93ywsXJz89XTk6OYmJiVLVqVaWmpmrw4MGSpG3btmnXrl2Ki4sr9vmBgYEKDAz0aI0AAGtYtmyZ6tSpo27durktGJ0hmwAAriqvbJLIJwCAObm5uerWrZvbpudn9gl33HGHjh8/XmR4dna27rjjDlPTGjdunFauXKmdO3dq8+bNGjdunJYvX65bbrlFYWFhuvPOO5WcnKxly5Zp/fr1GjZsmOLi4jjRMADA7q677tKsWbPclk9kEwCgrNydTRL5BAAou4J8chfTF2p5//339eyzzyokJMRh+MmTJ/Wf//xH7733nsvTOnDggG6//Xbt27dPYWFhat++vcOlrF9++WX5+flp8ODBysnJUUJCgt544w2zJQMAKpjCh2rl5+frrbfe0tGjR2Wz2RQWFuYw7v/93/+ZyieyCQBQGp7MJol8AgCUjrN8+uabb9S+fXtVrVrVYVyz5/p1uamYmZkpwzBkGIaOHz+uoKAg+2N5eXlatGiRwsPDTb34u+++W+LjQUFBSklJUUpKiqnpAgAqtsLnojpz5ozatm2r7777Tr/88kuRYDSbT2QTAKA0PJlNEvkEACidc8/j27FjR0nSzz//7DC8NNdPcbmpWLNmTdlsNtlsNl1wwQVFHrfZbFw5DABQLgqf69fPz082m01+fn768ccfi4y7evVq8gkA4HFkEwDAigrnk7u53FRctmyZDMPQZZddpk8++US1a9e2PxYQEKDGjRsrKirKI0UCAFAc8gkAYDVkEwCgMnC5qdirVy9JUnp6uqKjo0u1WyQAAO5GPgEArIZsAgBUBi41FX/66SeH+5s3by523Pbt25etIgAAXEQ+AQCshmwCAFQWLjUVO3bsKJvNJsMwShzPZrMpLy/PLYUBAHA+5BMAwGrIJgBAZeFSUzE9Pd3TdQAAYBr5BACwGrIJAFBZuNRUbNy4safrAADANPIJAGA1ZBMAoLJw+UIt59qyZYt27dql3Nxch+FXX311mYsCAKC0yCcAgNWQTQCAish0U/GPP/7Qtddeq82bNzucK6TgimacFwQA4A3kEwDAasgmAEBF5mf2Cffff7+aNm2qAwcOqHr16vrll1+0cuVKde7cWcuXL/dAiQAAX7dt2zZ17NjRfqtWrZoWLFjg1tcgnwAAZnk6n8gmAIBZ5bHt5C6m91RcvXq1vv32W9WtW1d+fn7y8/NTjx49NHnyZI0ePVobN270RJ0AAB924YUXKi0tTZKUlZWlJk2a6PLLL3fra5BPAACzPJ1PZBMAwKzy2HZyF9N7Kubl5SkkJESSVLduXe3du1fSPyck3rZtm3urAwBUOJ9//rn69u2rGjVquHW65BMAoCw8kU9kEwCgLDy17eQuppuKbdu21aZNmyRJsbGxev7557Vq1So9+eSTatasmdsLBAB43sqVKzVgwABFRUXJZrM53b0+JSVFTZo0UVBQkGJjY7V27dpSvdbcuXM1ZMiQMlZcFPkEABWPr+cT2QQAFY+vZ5M7mW4q/vvf/1Z+fr4k6cknn1R6erp69uypRYsW6dVXX3V7gQAAz8vOzlaHDh2UkpLi9PE5c+YoOTlZEyZM0IYNG9ShQwclJCTowIED9nE6duyotm3bFrkV7JUhSZmZmfr+++/Vr18/t88D+QQAFY+v5xPZBAAVj69nkzuZPqdiQkKC/e8WLVpo69atOnLkiGrVqmW/ihkAwPsyMzMd7gcGBiowMNDpuImJiUpMTCx2WlOmTNHw4cM1bNgwSdL06dP15Zdf6r333tPYsWMlyX7ej5J89tlnuuKKKxQUFOTiXLiOfAIA31CZ8olsAgDfUJmyyZ1MNxWdqV27tjsmAwCQFLLbkH+AUern5+X+89xGjRo5DJ8wYYImTpxoenq5ublav369xo0bZx/m5+en+Ph4rV692tS05s6dq7vvvtt0DaVFPgGAe5Q1myTyqQDZBADuw7aTd7mlqQgAsJ7du3crNDTUfr+4X9rO59ChQ8rLy1NERITD8IiICG3dutXl6Rw7dkxr167VJ598Uqo6AAAVA/kEALAasql0aCoCQAUVGhrqEIzeFhYWpoyMDG+XAQDwMvIJAGA1ZFPpmL5QCwCgcqlbt678/f2LhFpGRoYiIyO9VBUAoLIjnwAAVlPZsommIgCgRAEBAYqJiVFqaqp9WH5+vlJTUxUXF+fFygAAlRn5BACwmsqWTRz+DABQVlaWduzYYb+fnp6utLQ01a5dW9HR0UpOTlZSUpI6d+6sLl26aOrUqcrOzrZf0QwAAE8gnwAAVkM2nUVTEQCgdevWqU+fPvb7ycnJkqSkpCTNnDlTQ4YM0cGDBzV+/Hjt379fHTt21OLFi4ucgBgAAHcinwAAVkM2nUVTEQCg3r17yzCMEscZNWqURo0aVU4VAQBAPgEArIdsOotzKgIAAAAAAAAwhaYiAAAAAAAAAFNoKgIAAAAAAAAwhXMqAgAAAAAAoFjHmgc63A/7PcdLlcBKaCoCAAAAAADAwbmNxHMfo7EImooAAAAAAAAosZFY3Lg0FysvzqkIAAAAAABQiR1rHmiqoXjuc1E50VQEAAAAAACopNzRFKSxWDlx+DMAAAAAAJWMmSYQh7dWTO5uBHKexcqHpiIAAAAAAJUIe5XBU++B4s6zWDA8L9eQvvPIS8MLaCoCAAAAPqqkjUI23OAL2LOp/JWmmcR6qjjKq6FM47pyoKkIAAAAWBgbZqioCt7bvtqwKvy/6Qv1l/WzxFfXU0XmbJ2WtI7IE7gbTUUAAACgHLAxB1QMzv6Xz/f/7e1mHJ8/FU9x65R1jfJEUxEAAAAoJTbegNI593/HF/aCK8v/e3HnmSsP7vyc8oX1VBmQPbAKmooAAABACdh4A9yrpD2srNiwcndTTiq/5qInPr+sup4qCzIJVkJTEQAAACiEDTbAc873/2WlhpUnPwvKo7lYmT/LrH6+y9K8zyvz+oR10VQEAMBLMpsGyj+AL4gAAGs5Xz45a4Z4Ym++8nxNb/HVeTDTFPX2PHr79Ytj1boAMypNU5ENNwCekpdrSN95uwoAAIDy4Y1mCA0Yazq3uch6AiqXStNUBAAAAAAA7kczEaic/LxdAAAAAAAAAADf4tWm4uTJk3XJJZcoJCRE4eHhGjhwoLZt2+YwzqlTpzRy5EjVqVNHwcHBGjx4sDIyMrxUMQCgoiObAABWRD4BAKzGq03FFStWaOTIkVqzZo2WLl2q06dP64orrlB2drZ9nAcffFBffPGF5s2bpxUrVmjv3r0aNGiQF6sGAFRkZBMAwIrIJwCA1Xj1nIqLFy92uD9z5kyFh4dr/fr1uvTSS3Xs2DG9++67mjVrli677DJJ0owZM3TRRRdpzZo16tq1qzfKBgBUYGQTAMCKyCcAgNVY6pyKx44dkyTVrl1bkrR+/XqdPn1a8fHx9nFatWql6OhorV692uk0cnJylJmZ6XADAKC0yCYAgBWRTwAAb7NMUzE/P18PPPCAunfvrrZt20qS9u/fr4CAANWsWdNh3IiICO3fv9/pdCZPnqywsDD7rVGjRp4uHQBQQZFNAAArIp8AAFZgmabiyJEj9fPPP2v27Nllms64ceN07Ngx+2337t1uqhAAUNmQTQAAKyKfAABW4NVzKhYYNWqUFi5cqJUrV6phw4b24ZGRkcrNzdXRo0cdfnHLyMhQZGSk02kFBgYqMDDQ0yUDACo4sgkAYEXkEwDAKry6p6JhGBo1apTmz5+vb7/9Vk2bNnV4PCYmRlWrVlVqaqp92LZt27Rr1y7FxcWVd7kAgEqAbAIAWBH5BACwGq/uqThy5EjNmjVLn332mUJCQuzn+ggLC1O1atUUFhamO++8U8nJyapdu7ZCQ0N13333KS4ujquXAQA8gmwCAFgR+QQAsBqvNhWnTZsmSerdu7fD8BkzZmjo0KGSpJdffll+fn4aPHiwcnJylJCQoDfeeKOcKwUAVBZkEwDAisgnAIDVeLWpaBjGeccJCgpSSkqKUlJSyqEiAEBlRzYBAKyIfAIAWI1lrv4MAAAAAAAAwDfQVAQAlIuXX35Zbdq0UevWrTV69GiX9rgAAMDTyCcAgNX4SjbRVAQAeNzBgwf1+uuva/369dq8ebPWr1+vNWvWeLssAEAlRz4BAKzGl7LJq+dUBABUHmfOnNGpU6ckSadPn1Z4eLiXKwIAgHwCAFiPr2QTeyoCALRy5UoNGDBAUVFRstlsWrBgQZFxUlJS1KRJEwUFBSk2NlZr1651efr16tXTmDFjFB0draioKMXHx6t58+ZunAMAQEVEPgEArIZsOos9FQEAys7OVocOHXTHHXdo0KBBRR6fM2eOkpOTNX36dMXGxmrq1KlKSEjQtm3b7L+adezYUWfOnCny3CVLlqhatWpauHChdu7cqWrVqikxMVErV67UpZde6vF5s7LjjWzyD7J5uwwAFVTeKd//fCGfvMPb+RTyZ8nnDjveuOy1ne81rKas8+xr8+tN7nh/Fcfq6+F4Y5tbaixpGZJNFSubKk1TsTyC0eofEPAtroQZ7zmUJDMz0+F+YGCgAgMDnY6bmJioxMTEYqc1ZcoUDR8+XMOGDZMkTZ8+XV9++aXee+89jR07VpKUlpZW7PPnzZunFi1aqHbt2pKk/v37a82aNZYMRgCAZ5FPOB9PNnWKew2rfa929zJwNr3C81wey9xd3Lmuynu+z7ceylNx817WxqIvvZcKI5tKp9I0FcuDr/7zwHfxnrMGd//aFpqeoypVSj/NM2dyJEmNGjVyGD5hwgRNnDjR9PRyc3O1fv16jRs3zj7Mz89P8fHxWr16tUvTaNSokb7//nudOnVKVatW1fLly3X33XebrgUA4B1lzSaJfIK1ebvJ6I3v9b66LeGOdWWleS+oxdPvOTPzXNrGojeWK9tO3kVTEQAqqN27dys0NNR+v7hf2s7n0KFDysvLU0REhMPwiIgIbd261aVpdO3aVf369VOnTp3k5+envn376uqrry5VPQAA30Y+wRe46zBQeF7hRlZJ68xKjURnXJ2P0kyvLM93pRarL1tXkE2lQ1MRACqo0NBQh2D0tmeeeUbPPPOMt8sAAHgZ+QRfUV6NxYrQkLEKZ405X1y+Zvde9OQ8nu//wBeXrzNkU+nQVAQAlKhu3bry9/dXRkaGw/CMjAxFRkZ6qSoAQGVHPqE8eLqxWFEaMlZUEZatVeahuCanVeqzksqWTX7eLgAAYG0BAQGKiYlRamqqfVh+fr5SU1MVFxfnxcoAAJUZ+QQA5augiXi8sY2GYjEqWzaxpyIAQFlZWdqxY4f9fnp6utLS0lS7dm1FR0crOTlZSUlJ6ty5s7p06aKpU6cqOzvbfkUzAAA8gXyCFXhqb0WaMvBFvG/JpsJoKgIAtG7dOvXp08d+Pzk5WZKUlJSkmTNnasiQITp48KDGjx+v/fv3q2PHjlq8eHGRExADAOBO5BOswt2NRRozgO8im86iqQgAUO/evWUYJX9RHjVqlEaNGlVOFQEAQD4BAKyHbDqLcyoCAAAAAHAe7tq7kL0UAVQUNBUBAAAAACgHNBQBVCQ0FQEAAAAAcAFNQQA4i6YiAAAAAAAuKm1jkYYkgIqGpiIAAAAAAB5EQxFARURTEQAAAAAAE2gSAoBUxdsFAABQWeU2ypVftbL/vhe4K8AN1Ug50blumU55cNc8u6Ksy6U8ay1Jea5fq8wzgNJxlk9W/L925XPNk3VbrbFY3PKw4rrzJc6WK8u09HIb+c73TZxfpWkqumvD7XwKf7j40saZu/DhWjnX+7nMvA8qwvLKP+n78wDfVhH+j8zypXn2pVrdpTLOsxWRT3AnX/2/9nbj0VPMrI/zjevq/FeUH9lccb55Pffx0mz/+NLycJec6FzppLergDtVmqZiefHVsHWXyj7/+AfvAwAAAPgKT+/hV5o93crz+3R5vZbZ1ynvpltZlkNpnlvZ9ixlG7FioqkIAAAAAMA5cqJzy9TgKamJQoPl/Mpjjz4rroey1FSaZVUezU0rLme4B01FAAAAAACcKG1jkSaK+3iiuVhR10/h+Sppebky/+5a7hV1WeMfNBUBAAAAACiG2cYiTRTPcLVh5uo0Krpzl1dp570szcXKtLwrK5qKAAAAAACUwNXGIk2U8mHmPJWsE/csA7PNRZZ75UBTEQAAAACA8zhfU4Uminex/MsHyxmF+Xm7AAAAAAAAfIWzpgqNFgCVEU1FAAAAAABMKNxEpKEIoLLi8GcAAAAAAEyimQigsmNPRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACm0FQEAAAAAAAAYApNRQAAAAAAAACmcPVnAADgFU0aHjQ1/s6/6nmoEgAAUBZNGh4kp4FKiKaiDzC70eUNBIhz5bnuWAdnlcdyZ3nDHaKjDqlKjUBvl+Ez3PG/XR7/u67UWZY6fOF7gbuV52duRVq+Z7JztNvbRQCFuOvHJF/JA8nzmVDa1yxLHcVN/9zhFen7csG8VaR5Atyh0jQV2XDzrIr0BdxXsQ7KV+HlzUYb4Dus8llplTp8BcsLsC5P/n96e9rl9QNQ4XHL2rQqyzJz9/I+33z5whEL59borj0yfWHeAVdUmqYiAAAAAKB0KmNzv7R7p5W1sVcRG0jueP8UNw1PLC9vN7RL85yK+L6B9dFUBAAAAADYcZSXI1ebi95uvHr79b2lpPn2REO4LI3f8mpWlnW+aVDCVV69+vPKlSs1YMAARUVFyWazacGCBQ6PG4ah8ePHq379+qpWrZri4+O1fft27xQLAKg0yCcAgNWQTd7XpOFBl88nWNbXKY/nVAYF68zVm5nplqaW8lLSPLky37yf4CqvNhWzs7PVoUMHpaSkOH38+eef16uvvqrp06frhx9+UI0aNZSQkKBTp06Vc6UAgMqEfAIAWA3ZZB1laUaZeQ1Ym6ebkO5SlsYp70Ocj1cPf05MTFRiYqLTxwzD0NSpU/Xvf/9b11xzjSTpP//5jyIiIrRgwQLdeOON5VkqAKASIZ8AAFZDNlU+rh5mS+MHnsSVr1ESr+6pWJL09HTt379f8fHx9mFhYWGKjY3V6tWri31eTk6OMjMzHW4AALhLafKJbAIAeBLbTpUXDUXvcvUcjBVBRZkPuJdlm4r79++XJEVERDgMj4iIsD/mzOTJkxUWFma/NWrUyKN1AgAql9LkE9kEAPAktp0qrpIaOTR5rKEyrSMOica5LNtULK1x48bp2LFj9tvu3bu9XRIAoJIjmwAAVkQ++QaaOL6pIq+3ijxvMMeyTcXIyEhJUkZGhsPwjIwM+2POBAYGKjQ01OEGAPC+F198UW3atFHbtm314YcferucUitNPpFNAGBdFSGf2Haq+M5t4tDUsZbKuD5KO8/RUYfcXEnF5CvZZNmmYtOmTRUZGanU1FT7sMzMTP3www+Ki4vzYmUAALM2b96sWbNmaf369frxxx/1+uuv6+jRo94uq1TIJwCoOCpKPpFNlUtlbGD5gsLrpbKso9JcURrn50vZ5NWmYlZWltLS0pSWlibpnxMMp6WladeuXbLZbHrggQf09NNP6/PPP9fmzZt1++23KyoqSgMHDvRm2QAAk3799VfFxcUpKChI1apVU4cOHbR48WJvl1Us8gkAKgdfyieyCTRkfENlXE+V6YI15cGXssmrTcV169apU6dO6tSpkyQpOTlZnTp10vjx4yVJjzzyiO677z7dfffduuSSS5SVlaXFixcrKCjIm2UDQIWzcuVKDRgwQFFRUbLZbFqwYEGRcVJSUtSkSRMFBQUpNjZWa9eudXn6bdu21fLly3X06FH9/fffWr58ufbs2ePGOXAv8gkArIF8OotsgkRjxuoq8/qpTBesIZvOquLNF+/du7cMwyj2cZvNpieffFJPPvlkOVYFAJVPdna2OnTooDvuuEODBg0q8vicOXOUnJys6dOnKzY2VlOnTlVCQoK2bdum8PBwSVLHjh115syZIs9dsmSJWrdurdGjR+uyyy5TWFiYunbtKn9/f4/PV2mRTwBgDeTTWWQTAKsr3Dzc+Ve9CtdMLEA2neXVpiIAwHMyMzMd7gcGBiowMNDpuImJiUpMTCx2WlOmTNHw4cM1bNgwSdL06dP15Zdf6r333tPYsWMlyX44VnFGjBihESNGSJLuuusutWzZ0tVZAQBUIOQTAFR8vtZQJJtKh6YiAFhMwG97VcUvoNTP98vPlSQ1atTIYfiECRM0ceJE09PLzc3V+vXrNW7cuLOv4een+Ph4rV692uXpHDhwQOHh4dq2bZvWrl2r6dOnm64FAOAdZc0miXwCALgf207eRVMRACqo3bt3KzQ01H6/uF/azufQoUPKy8tTRESEw/CIiAht3brV5elcc801OnbsmGrUqKEZM2aoShUiCAAqI/IJAGA1ZFPpWLMqAECZhYaGOgSjt5n5ZQ4V3+WRrn+pkqSl+1t5qBLAWsz8bxT+v3D2vFNZp7XKLVW5F/kEWMPlkVvJV+D/I5tKh6YiAKBEdevWlb+/vzIyMhyGZ2RkKDIy0ktVwarMNgvdNd3KulHkqeVdXirTevPEuvL19V9W5BNQegWfHzQWAfeqbNlUaZqKfSJ+U1BwVW+XUSlVpJCq7F/e4ZxV9wRxl4CAAMXExCg1NVUDBw6UJOXn5ys1NVWjRo3ybnHwGqt9Hjqrxyr5U1BbWeux2jJ3ByuvN1dUxHXiS8gnoHTO/eyisQi4T2XLpkrTVIT38IUbsL6srCzt2LHDfj89PV1paWmqXbu2oqOjlZycrKSkJHXu3FldunTR1KlTlZ2dbb+iGSo2X/0cP7fu8txgcrbMzNbjq8u9rDzVaKysy9PXkU+AexX3WUhjEXAd2XQWTUUAgNatW6c+ffrY7ycnJ0uSkpKSNHPmTA0ZMkQHDx7U+PHjtX//fnXs2FGLFy8ucgJiuIcnDvUtPM3K2szydJPR7HJzVk9FXfZlxXKpvMgnoPzQWARcQzadRVMRAKDevXvLMIwSxxk1alSF3GXfm0p7ao6yNlho0PzDaocls16AosgnwH1cyRkai57nzSMp4B5k01k0FQEAQKVmZi/Oc8cHAMAXmMkuGouec77To7Dc4WtoKgIAAPx/NAwBABVNabKNxqL7ubqn6LlYD7AymooAAAAAAJ/mifMRVwRl+bHMXacJQdmwHmBlNBUBAAAAAOWuPJsllfE8du4856/VlpevNdrcsS48eZh0cfV54nVOZZ3WKrdOFd5EUxEAAAAA4BJ3NDbObWCUtWnF4b1Fuft0HlZaXoXnzR11ebpB6YlTq5TXxebKejg2p5Wp+GgqAgAAAADOy1kzsMD5Gg2uNC9K0yDh8N6iPNXIscLyKu5CJ+5ocHvifIaebqqVdg9cd/zfABJNRQAAAABACcxeYKJwY8OTVx2uyIf3llZ5NHy8tbxKmrfS1FSaC6dYfS+989VLQxDuRlMRAAAAAFBEaRsQvti48PXGYnkv8/JeXq42AD1dk6tNRqv8D1ilDlRcft4uAAAAAABgLd5qRrj6up48T52v8ea6Kq89I909rjv3cj13Ofjq+wgoDZqKAAAAAAC7PhG/efX1S3PxCHe+ti81haxQq6fXh7uf48lzTlphfQDlicOfAQAAAACWUtyhrOXVtPHERTvcyWrNq7LU44n17Oz9Y7VlBlQENBUBAAAAAJZzbmPI200hb79+ReXJPQcL3j+sO8AzaCoCAAAAACyJZhDKgvcP4FmcUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJjChVoAAAAAAADKwXWhGxzuf5x5sZcqAcqOpiIAAEAh537ZLwtXNhTKc+PCnfNW4Hz1Fvea7p5PV+eNjTfg/AaGbNJio7O3y4AHFf7M5HPR80rKKCutC7PfE7xdL7yPpiIAAF4yMGSTgkM4E0lFVpomnicaf55U2nq9NZ++tnzLIsuWr6e9XQR8FntTVRzn+9xz9nh5r++SavTV915ZvwP4wo+M5/vh0NnjZFPFQlMRAAAAAFAiK+1NhZK5o2Hk7qZyWWrytYajpxt2vsCXa4c5NBWBCspbH+RWDHZXlGV58WsbAACoTKywZ9u5SvNdzts1u5Onv/sXTN/sMiuPuqywHmmiobKqNE1FDjEDygeBCgAAUPmU1/lTXX1dM8+1QlOqtMr7u7ery6w86/JmY5FtH1R2laapCAAAAAAoX55o3Lm7kePJppQ7aj23Nis0soo7HN6b58stz8aiFdYBYAU0FQEAAAAAHlXaczKWV/PGyk0iK9cmWac+TzcWrTKfgJXQVAQAAAAAlBuaM/AUd+4Zy/sUOD+aigAAAAAAoMIoTXORJiJgHk1FAAAAAABQ4dAoBDyLyyEDAAAAAAAAMIWmIgAAAAAAAABTaCoCAAAAAAAAMIWmIgAAAAAAAABTaCoCAMrFtddeq1q1aum6664r8tjChQt14YUXqmXLlnrnnXe8UB0AoLIinwAAVuMr2URTEQBQLu6//3795z//KTL8zJkzSk5O1rfffquNGzfqhRde0OHDh71QIQCgMiKfAABW4yvZRFMRAFAuevfurZCQkCLD165dqzZt2qhBgwYKDg5WYmKilixZ4oUKAQCVEfkEALAaX8kmmooAAK1cuVIDBgxQVFSUbDabFixYUGSclJQUNWnSREFBQYqNjdXatWvd8tp79+5VgwYN7PcbNGigPXv2uGXaAADfRj4BAKyGbDqLpiIAQNnZ2erQoYNSUlKcPj5nzhwlJydrwoQJ2rBhgzp06KCEhAQdOHDAPk7Hjh3Vtm3bIre9e/eW12wAACoY8gkAYDVk01lVvF2ApxmGIUnKysr3ciUAKqqCz5eCz5uyOmPkSmX4yDpj5EqSMjMzHYYHBgYqMDDQ6XMSExOVmJhY7DSnTJmi4cOHa9iwYZKk6dOn68svv9R7772nsWPHSpLS0tJKVW9UVJTDr2t79uxRly5dSjUtX0E2ASgP7synsmaTfRoin6yMfALgaWw7VbBsMiq43bt3G5K4cePGzeO33bt3l+nz6uTJk0ZkZKRbagkODi4ybMKECS7VIcmYP3++/X5OTo7h7+/vMMwwDOP22283rr76alPzuGzZMmPw4MEOw06fPm20aNHC+Ouvv4zjx48bF1xwgXHo0CFT0/U1ZBM3btzK81aWfHJnNknkk9WRT9y4cSuvG9tO5+cL2VTh91SMiorS7t27FRISIpvN5u1yipWZmalGjRpp9+7dCg0N9XY5pvly/b5cu+Tb9fty7dLZ+nft2iWbzaaoqKgyTS8oKEjp6enKzc0tc22GYRT5zCvul7bzOXTokPLy8hQREeEwPCIiQlu3bnV5OvHx8dq0aZOys7PVsGFDzZs3T3FxcapSpYpeeukl9enTR/n5+XrkkUdUp06dUtXqK3wlmyTf/j/15dol367fl2uXfLv+wrWHhITo+PHjZcond2aTRD5Zna/kky//j0q+Xb8v1y75dv2+XLvEtlNFzaYK31T08/NTw4YNvV2Gy0JDQ33yA6KAL9fvy7VLvl2/L9cuSWFhYW6rPygoSEFBQW6ZltV88803xT529dVX6+qrry7HarzL17JJ8u3/U1+uXfLt+n25dsm36y+oPSwsrMzTqsjZJJFPhflaPvny/6jk2/X7cu2Sb9fvy7VLbDu5yleyiQu1AABKVLduXfn7+ysjI8NheEZGhiIjI71UFQCgsiOfAABWU9myiaYiAKBEAQEBiomJUWpqqn1Yfn6+UlNTFRcX58XKAACVGfkEALCaypZNFf7wZ18RGBioCRMmlPq4fW/z5fp9uXbJt+v35dol36+/sKysLO3YscN+Pz09XWlpaapdu7aio6OVnJyspKQkde7cWV26dNHUqVOVnZ1tv6IZKi5ffp/7cu2Sb9fvy7VLvl2/L9fuDPkEZ3z9fe7L9fty7ZJv1+/LtUu+X39hZNNZNsNw03W8AQA+a/ny5erTp0+R4UlJSZo5c6Yk6fXXX9cLL7yg/fv3q2PHjnr11VcVGxtbzpUCACoT8gkAYDVk01k0FQEAAAAAAACYwjkVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJhCU7GcrVy5UgMGDFBUVJRsNpsWLFjg8LhhGBo/frzq16+vatWqKT4+Xtu3b/dOseeYPHmyLrnkEoWEhCg8PFwDBw7Utm3bHMY5deqURo4cqTp16ig4OFiDBw9WRkaGlyp2NG3aNLVv316hoaEKDQ1VXFycvvrqK/vjVq79XM8++6xsNpseeOAB+zAr1z9x4kTZbDaHW6tWreyPW7l2SdqzZ49uvfVW1alTR9WqVVO7du20bt06++NW/r8FXEU+eQfZ5D1kE2B9ZJP3kE/eQz7Bl9BULGfZ2dnq0KGDUlJSnD7+/PPP69VXX9X06dP1ww8/qEaNGkpISNCpU6fKudKiVqxYoZEjR2rNmjVaunSpTp8+rSuuuELZ2dn2cR588EF98cUXmjdvnlasWKG9e/dq0KBBXqz6rIYNG+rZZ5/V+vXrtW7dOl122WW65ppr9Msvv0iydu2F/fjjj3rzzTfVvn17h+FWr79Nmzbat2+f/fbdd9/ZH7Ny7X///be6d++uqlWr6quvvtKWLVv00ksvqVatWvZxrPx/C7iKfPIOssm7yCbA2sgm7yGfvIt8gs8w4DWSjPnz59vv5+fnG5GRkcYLL7xgH3b06FEjMDDQ+O9//+uFCkt24MABQ5KxYsUKwzD+qbVq1arGvHnz7OP8+uuvhiRj9erV3iqzRLVq1TLeeecdn6n9+PHjRsuWLY2lS5cavXr1Mu6//37DMKy/7CdMmGB06NDB6WNWr/3RRx81evToUezjvvZ/C7iCfPIusql8kE2AbyGbvI98Kh/kE3wJeypaSHp6uvbv36/4+Hj7sLCwMMXGxmr16tVerMy5Y8eOSZJq164tSVq/fr1Onz7tUH+rVq0UHR1tufrz8vI0e/ZsZWdnKy4uzmdqHzlypPr37+9Qp+Qby3779u2KiopSs2bNdMstt2jXrl2SrF/7559/rs6dO+v6669XeHi4OnXqpLffftv+uK/93wKl4Wvvc1/NJ7Kp/JFNgO/ytfe5r2aTRD55A/kEX0FT0UL2798vSYqIiHAYHhERYX/MKvLz8/XAAw+oe/fuatu2raR/6g8ICFDNmjUdxrVS/Zs3b1ZwcLACAwP1r3/9S/Pnz1fr1q19ovbZs2drw4YNmjx5cpHHrF5/bGysZs6cqcWLF2vatGlKT09Xz549dfz4ccvX/scff2jatGlq2bKlvv76a91zzz0aPXq03n//fUm+9X8LlJYvvc99MZ/IJu8gmwDf5kvvc1/MJol88hbyCb6kircLgG8aOXKkfv75Z4dzO/iCCy+8UGlpaTp27Jg+/vhjJSUlacWKFd4u67x2796t+++/X0uXLlVQUJC3yzEtMTHR/nf79u0VGxurxo0ba+7cuapWrZoXKzu//Px8de7cWZMmTZIkderUST///LOmT5+upKQkL1cH4Fy+mE9kk3eQTQDKiy9mk0Q+eQv5BF/CnooWEhkZKUlFrtyUkZFhf8wKRo0apYULF2rZsmVq2LChfXhkZKRyc3N19OhRh/GtVH9AQIBatGihmJgYTZ48WR06dNArr7xi+drXr1+vAwcO6OKLL1aVKlVUpUoVrVixQq+++qqqVKmiiIgIS9d/rpo1a+qCCy7Qjh07LL/s69evr9atWzsMu+iii+yHIPjK/y1QFr7yPvfVfCKbrIFsAnyLr7zPfTWbJPLJKsgnWBlNRQtp2rSpIiMjlZqaah+WmZmpH374QXFxcV6s7B+GYWjUqFGaP3++vv32WzVt2tTh8ZiYGFWtWtWh/m3btmnXrl2WqN+Z/Px85eTkWL72vn37avPmzUpLS7PfOnfurFtuucX+t5XrP1dWVpZ+//131a9f3/LLvnv37tq2bZvDsN9++02NGzeWZP3/W8AdrP4+r2j5RDZ5B9kE+Barv88rWjZJ5JO3kE+wNC9fKKbSOX78uLFx40Zj48aNhiRjypQpxsaNG40///zTMAzDePbZZ42aNWsan332mfHTTz8Z11xzjdG0aVPj5MmTXq7cMO655x4jLCzMWL58ubFv3z777cSJE/Zx/vWvfxnR0dHGt99+a6xbt86Ii4sz4uLivFj1WWPHjjVWrFhhpKenGz/99JMxduxYw2azGUuWLDEMw9q1O1P4CmaGYe36H3roIWP58uVGenq6sWrVKiM+Pt6oW7euceDAAcMwrF372rVrjSpVqhjPPPOMsX37duOjjz4yqlevbnz44Yf2caz8fwu4inzyDrLJe8gmwPrIJu8hn7yHfIIvoalYzpYtW2ZIKnJLSkoyDOOfS6w//vjjRkREhBEYGGj07dvX2LZtm3eL/v+c1S3JmDFjhn2ckydPGvfee69Rq1Yto3r16sa1115r7Nu3z3tFF3LHHXcYjRs3NgICAox69eoZffv2tYeiYVi7dmfODUYr1z9kyBCjfv36RkBAgNGgQQNjyJAhxo4dO+yPW7l2wzCML774wmjbtq0RGBhotGrVynjrrbccHrfy/y3gKvLJO8gm7yGbAOsjm7yHfPIe8gm+xGYYhuHZfSEBAAAAAAAAVCScUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVAQAAAAAAAJhCUxEAAAAAAACAKTQVYWnLly+XzWbT0aNHy/21bTabbDabatasWeJ4EydOVMeOHd362kOHDrW//oIFC9w6bQBA2ZBNZBMAWBH5RD4B5Y2mIiyjd+/eeuCBBxyGdevWTfv27VNYWJhXapoxY4Z+++23cn/dV155Rfv27Sv31wUAOCKbziKbAMA6yKezyCfAe6p4uwCgJAEBAYqMjPTa69esWVPh4eHl/rphYWFe+zIAACgZ2QQAsCLyCUB5Y09FWMLQoUO1YsUKvfLKK/Zd13fu3FlkF/6ZM2eqZs2aWrhwoS688EJVr15d1113nU6cOKH3339fTZo0Ua1atTR69Gjl5eXZp5+Tk6MxY8aoQYMGqlGjhmJjY7V8+fJS1frss88qIiJCISEhuvPOO3Xq1CmHx3/88Uddfvnlqlu3rsLCwtSrVy9t2LDB/vgdd9yhq666yuE5p0+fVnh4uN59991S1QQAcD+yiWwCACsin8gnwCpoKsISXnnlFcXFxWn48OHat2+f9u3bp0aNGjkd98SJE3r11Vc1e/ZsLV68WMuXL9e1116rRYsWadGiRfrggw/05ptv6uOPP7Y/Z9SoUVq9erVmz56tn376Sddff72uvPJKbd++3VSdc+fO1cSJEzVp0iStW7dO9evX1xtvvOEwzvHjx5WUlKTvvvtOa9asUcuWLdWvXz8dP35cknTXXXdp8eLFDrvoL1y4UCdOnNCQIUNM1QMA8ByyiWwCACsin8gnwDIMwCJ69epl3H///Q7Dli1bZkgy/v77b8MwDGPGjBmGJGPHjh32cUaMGGFUr17dOH78uH1YQkKCMWLECMMwDOPPP/80/P39jT179jhMu2/fvsa4ceOKrUeSMX/+fIdhcXFxxr333uswLDY21ujQoUOx08nLyzNCQkKML774wj6sdevWxnPPPWe/P2DAAGPo0KEu1QAAKD9kE9kEAFZEPpFPgBWwpyJ8TvXq1dW8eXP7/YiICDVp0kTBwcEOww4cOCBJ2rx5s/Ly8nTBBRcoODjYfluxYoV+//13U6/966+/KjY21mFYXFycw/2MjAwNHz5cLVu2VFhYmEJDQ5WVlaVdu3bZx7nrrrs0Y8YM+/hfffWV7rjjDlO1AACsg2wCAFgR+QTAk7hQC3xO1apVHe7bbDanw/Lz8yVJWVlZ8vf31/r16+Xv7+8wXuEwdZekpCQdPnxYr7zyiho3bqzAwEDFxcUpNzfXPs7tt9+usWPHavXq1fr+++/VtGlT9ezZ0+21AADKB9kEALAi8gmAJ9FUhGUEBAQ4nCDYXTp16qS8vDwdOHCgzOFz0UUX6YcfftDtt99uH7ZmzRqHcVatWqU33nhD/fr1kyTt3r1bhw4dchinTp06GjhwoGbMmKHVq1dr2LBhZaoLAOAZZBMAwIrIJwBWQFMRltGkSRP98MMP2rlzp4KDg1W7dm23TPeCCy7QLbfcottvv10vvfSSOnXqpIMHDyo1NVXt27dX//79XZ7W/fffr6FDh6pz587q3r27PvroI/3yyy9q1qyZfZyWLVvqgw8+UOfOnZWZmamHH35Y1apVKzKtu+66S1dddZXy8vKUlJTklnkFALgX2QQAsCLyCYAVcE5FWMaYMWPk7++v1q1bq169eg7n0SirGTNm6Pbbb9dDDz2kCy+8UAMHDtSPP/6o6OhoU9MZMmSIHn/8cT3yyCOKiYnRn3/+qXvuucdhnHfffVd///23Lr74Yt12220aPXq0wsPDi0wrPj5e9evXV0JCgqKioso0fwAAzyCbAABWRD4BsAKbYRiGt4sArMhms2n+/PkaOHCgR6aflZWlBg0aaMaMGRo0aJBXagAA+BayCQBgReQTUDmxpyJQgptuukkNGzZ06zTz8/N14MABPfXUU6pZs6auvvrqIuP861//8siJkAEAvo9sAgBYEfkEVD7sqQgUY8eOHZIkf39/NW3a1G3T3blzp5o2baqGDRtq5syZ6tu3b5FxDhw4oMzMTElS/fr1VaNGDbe9PgDAd5FNAAArIp+AyommIgAAAAAAAABTOPwZAAAAAAAAgCk0FQEAAAAAAACYQlMRAAAAAAAAgCk0FQEAAAAAAAD8v3bsWAAAAABgkL/1GPYXRotUBAAAAAAWqQgAAAAALFIRAAAAAFikIgAAAACwSEUAAAAAYAlAR4xI23hlwwAAAABJRU5ErkJggg==",
     216      "image/png": "iVBORw0KGgoAAAANSUhEUgAABRUAAAHHCAYAAAAhwb9EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+3ElEQVR4nO3deViU9f7/8deAAiqLogJiuFuuSWEiLrlR5Fampe1gap6TZkVWevqmZqW2GS2YLS6dyuNSaaVmFrkcTTMXPJZpWpg7bimCCgqf3x/9GB0BnRuBGeD5uK65Lucz93zmfc/gvOZ+zz33bTPGGAEAAAAAAACAkzxcXQAAAAAAAACA0oWmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISm4kVmzpwpm82mXbt2Fdmcu3btks1m08yZM4tszkuJi4tTvXr1SuSxSoKzz9/y5ctls9m0fPnyEqnrcsaNGyebzVZij2ez2TRu3LgSezwAcNaVZKurMq1z587q3LlziT9uQdytnpLMnJLOUwCwgoxzXklvF19OcWz7X0q9evUUFxdXIo9VEjIzM11dAtwATcUiNGvWLCUkJDi17OLFi2kAlUMTJkzQggULXF0GgBKU+4G1oMvatWtdXaIk3p9wZX744QeNGzdOx48fd3UpAEoQGYeyZsqUKW7T9Cxp+/btU//+/VW1alX5+/vrtttu0x9//JFnuY0bN6pJkyaqVKmSOnbsqD179rigWriLCq4uoCyZNWuWfv75Zz322GMO43Xr1tXp06dVsWJF+9jixYuVmJhIY7EM+7//+z+NGjXKYWzChAm644471KdPH9cUBcBlxo8fr/r16+cZb9SokQuqyas435/uv/9+3XXXXfL29i7yueEap0+fVoUK5z9G/vDDD3ruuecUFxenqlWruq4wAC5BxpFxpVF+r92UKVNUo0aNMrVHoTPS09PVpUsXnThxQv/6179UsWJFvf766+rUqZOSk5NVvXp1+7J33XWXunbtqpdfflkffvihhg4dqsWLF7uwergSTcUSYLPZ5OPj4+oyUMIqVKjgsMGFwjt37pxycnLk5eXl6lKAQuvevbtat27t6jJKVEZGhqpUqSJPT095enq6uhwUIT7XFJ3c/ydAaUbGkXGlEa/deVOmTNGOHTu0bt063XDDDZL+/n/dokULvfbaa5owYYIk6ciRIzpy5IimTp0qSerUqZOuuuoql9UN1+Pnz0744osv1LNnT4WGhsrb21sNGzbU888/r+zsbPsynTt31qJFi/Tnn3/ad/fPPT7GxceOiIuLU2JioiQ5/DxAKvi4gAUdf2LBggVq0aKFfHx81KJFC82fPz/fdcjJyVFCQoKaN28uHx8fBQcHa+jQofrrr78K/bz897//1Z133qk6derI29tbYWFhevzxx3X69GmH5eLi4uTr66t9+/apT58+8vX1Vc2aNTVy5EiH51CSjh8/rri4OAUEBKhq1aqKjY294p9SzZs3TxEREapUqZJq1Kih++67T/v27St0jUePHtX9998vf39/e42bN2/O8/pcfAwom82mjIwMffjhh/bXPPcbsIKOp5LfcaQyMzP1+OOPq2bNmvLz89Ott96qvXv35rvu+/bt04MPPqjg4GB5e3urefPmmj59ulPP27FjxzRy5Ei1bNlSvr6+8vf3V/fu3bV582b7MqmpqapQoYKee+65PPffvn27bDab3n77bfvY8ePH9dhjjyksLEze3t5q1KiRXnrpJeXk5NiXyf1bf/XVV5WQkKCGDRvK29tbW7duVVZWlsaMGaOIiAgFBASoSpUq6tixo5YtW5bn8Z19nSRp27ZtuuOOOxQYGCgfHx+1bt1aX375pVPPE1CU8nsPTE5OzvN3W9CxkPJ7L3n11VfVrl07Va9eXZUqVVJERIQ+/fRTh2Uu9f4kSZs2bVL37t3l7+8vX19fdevWLc9P2nJ/ArdixQo9/PDDCgoKsn/IzO+YRc5kq7N69eqlBg0a5HtbVFSUw4bujBkz1LVrVwUFBcnb21vNmjXTO++8c9nHKOi4SwXl9o8//qhbbrlFAQEBqly5sjp16qTVq1dbXrdLOXTokAYNGqTg4GD5+PioVatW+vDDDx2WufA99b333rO/p95www366aef8sw5b948NWvWzOFzRX5/VxceU3HcuHF68sknJUn169e3/w3t2rXrksfPyu+4jKtWrdINN9wgHx8fNWzYUO+++26B6//xxx/b8z0wMFB33XWX0z/Bcubvb/jw4fL19dWpU6fy3P/uu+9WSEiIw/Jff/21OnbsqCpVqsjPz089e/bUL7/84nC/3M8bv//+u3r06CE/Pz/de++9kpz/XCU5/zoVx+c/oLDIODKuIN9//739/bNq1aq67bbb9Ouvvzosk7tdtHPnTvte8QEBARo4cGCe9+nTp09rxIgRqlGjhn17ad++fXly5+L1rlevnn755RetWLHC/reS+7dY0PF983vujDF64YUXdNVVV6ly5crq0qVLnjzI5cz2UUn49NNPdcMNN9gbipLUpEkTdevWTXPnzrWPBQYGSvq7CZmSkqJXXnlFjRs3LtFa4V7YjcoJM2fOlK+vr+Lj4+Xr66vvv/9eY8aMUVpaml555RVJ0jPPPKMTJ05o7969ev311yVJvr6++c43dOhQ7d+/X99++60++uijQte1dOlS9evXT82aNdPEiRN19OhRDRw4MN9vCoYOHaqZM2dq4MCBGjFihFJSUvT2229r06ZNWr16tcNPs501b948nTp1Sv/85z9VvXp1rVu3Tm+99Zb27t2refPmOSybnZ2tmJgYRUZG6tVXX9V3332n1157TQ0bNtQ///lPSX+/+d52221atWqV/vGPf6hp06aaP3++YmNjC/cESfZ1vuGGGzRx4kSlpqbqjTfe0OrVq7Vp0yaHn2g5U2NOTo569+6tdevW6Z///KeaNGmiL774wqkaP/roIw0ePFht2rTRQw89JElq2LCh5XUaPHiwPv74Y91zzz1q166dvv/+e/Xs2TPPcqmpqWrbtq1sNpuGDx+umjVr6uuvv9agQYOUlpaW52f6F/vjjz+0YMEC3Xnnnapfv75SU1P17rvvqlOnTtq6datCQ0MVHBysTp06ae7cuRo7dqzD/efMmSNPT0/deeedkqRTp06pU6dO2rdvn4YOHao6derohx9+0OjRo3XgwIE8xyOdMWOGzpw5o4ceekje3t4KDAxUWlqaPvjgA919990aMmSITp48qWnTpikmJkbr1q1TeHi4JGuv0y+//KL27durdu3aGjVqlKpUqaK5c+eqT58++uyzz3T77bc7/+IAl3DixAkdOXLEYcxms9l/TlIc74GS9MYbb+jWW2/Vvffeq6ysLM2ePVt33nmnFi5caH/vuNT70y+//KKOHTvK399fTz31lCpWrKh3331XnTt31ooVKxQZGenweA8//LBq1qypMWPGKCMjo8C6nMlWZw0YMEAPPPCAfvrpJ4cPw3/++afWrl3rMN8777yj5s2b69Zbb1WFChX01Vdf6eGHH1ZOTo6GDRtm6XEL8v3336t79+6KiIjQ2LFj5eHhYd/Q++9//6s2bdpc8WOcPn1anTt31s6dOzV8+HDVr19f8+bNU1xcnI4fP65HH33UYflZs2bp5MmTGjp0qGw2m15++WX17dtXf/zxh/0zwKJFizRgwAC1bNlSEydO1F9//aVBgwapdu3al6ylb9+++u233/Sf//xHr7/+umrUqCFJqlmzpg4fPuz0Om3ZskU333yzatasqXHjxuncuXMaO3asgoOD8yz74osv6tlnn1X//v01ePBgHT58WG+99ZZuvPHGPPmeH2f+/gYMGKDExEQtWrTInmXS33n21VdfKS4uzr6Hy0cffaTY2FjFxMTopZde0qlTp/TOO++oQ4cO2rRpk0Mj5Ny5c4qJiVGHDh306quvqnLlypKc/1xl5XUqjs9/QH7IOEdknPO+++47de/eXQ0aNNC4ceN0+vRpvfXWW2rfvr02btyYp5Hcv39/1a9fXxMnTtTGjRv1wQcfKCgoSC+99JJ9mbi4OM2dO1f333+/2rZtqxUrVuS7vXSxhIQEPfLII/L19dUzzzwjSflm0OWMGTNGL7zwgnr06KEePXpo48aNuvnmm5WVleWwnNXto4ulp6frzJkzl62nYsWKCggIKPD2nJwc/e9//9ODDz6Y57Y2bdpo6dKlOnnypPz8/OTh4aHExEQNHDhQw4YNU/Xq1dkZo7wzcDBjxgwjyaSkpNjHTp06lWe5oUOHmsqVK5szZ87Yx3r27Gnq1q2bZ9mUlBQjycyYMcM+NmzYMJPf079s2TIjySxbtuyyc4SHh5tatWqZ48eP28eWLl1qJDnU8d///tdIMp988onDnEuWLMl33Fn5PS8TJ040NpvN/Pnnn/ax2NhYI8mMHz/eYdnrrrvORERE2K8vWLDASDIvv/yyfezcuXOmY8eOedY9Pxc/d1lZWSYoKMi0aNHCnD592r7cwoULjSQzZswYyzV+9tlnRpJJSEiwj2VnZ5uuXbvmqXHs2LF5XuMqVaqY2NjYPLXHxsbm+7dz8RzJyclGknn44YcdlrvnnnuMJDN27Fj72KBBg0ytWrXMkSNHHJa96667TEBAQL6v34XOnDljsrOzHcZSUlKMt7e3w/P07rvvGklmy5YtDss2a9bMdO3a1X79+eefN1WqVDG//fabw3KjRo0ynp6eZvfu3fbHkGT8/f3NoUOHHJY9d+6cyczMdBj766+/THBwsHnwwQftY1Zep27dupmWLVs6/F/Oyckx7dq1M40bN77kcwQ4IzdX8rt4e3vbl7PyHtipUyfTqVOnPI+V33vJxf/Xs7KyTIsWLRz+fxpT8PtTnz59jJeXl/n999/tY/v37zd+fn7mxhtvzLOeHTp0MOfOncv3OShMthb0/nihEydOGG9vb/PEE084jL/88st5Mim/x42JiTENGjRwGLv4Oc5vHYzJmz05OTmmcePGJiYmxuTk5Dg8bv369c1NN910yXUpyMX1JCQkGEnm448/to9lZWWZqKgo4+vra9LS0owx599Tq1evbo4dO2Zf9osvvjCSzFdffWUfa9mypbnqqqvMyZMn7WPLly/P87nCGJMnc1555ZV8n5/8Pr8UNEefPn2Mj4+Pw+u1detW4+np6ZCFu3btMp6enubFF190mG/Lli2mQoUKecbz48zfX05Ojqldu7bp16+fw3Jz5841kszKlSuNMcacPHnSVK1a1QwZMsRhuYMHD5qAgACH8dzPG6NGjXKqpvw+Vzn7OhXX5z/gQmQcGZf7uM5kXEHbtEFBQebo0aP2sc2bNxsPDw/zwAMP2Mdyt4su/MxvjDG33367qV69uv36hg0bjCTz2GOPOSwXFxeXJ3fyW+/mzZvn+/eX37ZdfnMcOnTIeHl5mZ49ezo8R//617+MJIe/Q2e3jwqSmymXu+S3Phc6fPhwvtvCxhiTmJhoJJlt27bluc/atWvtnzdQfvHzZydUqlTJ/u+TJ0/qyJEj6tixo06dOqVt27a5pKYDBw4oOTlZsbGxDt863HTTTWrWrJnDsvPmzVNAQIBuuukm+zEQjhw5ooiICPn6+ub701FnXPi8ZGRk6MiRI2rXrp2MMdq0aVOe5f/xj384XO/YsaPD2aQWL16sChUq2PcKlP4+zsUjjzxSqPrWr1+vQ4cO6eGHH3Y49lPPnj3VpEkTLVq0yHKNS5YsUcWKFTVkyBD7mIeHR5F983c5uQfAHTFihMP4xXsdGmP02WefqXfv3jLGOLzuMTExOnHihDZu3HjJx/L29paHx99vEdnZ2Tp69Kh8fX11zTXXONy3b9++qlChgubMmWMf+/nnn7V161YNGDDAPjZv3jx17NhR1apVc6gnOjpa2dnZWrlypcPj9+vXTzVr1nQY8/T0tB9XMScnR8eOHdO5c+fUunVrh5qcfZ2OHTum77//Xv3797f/3z5y5IiOHj2qmJgY7dixI89P5YHCSkxM1Lfffutw+frrr+23F/V7YK4L36v/+usvnThxQh07drzse4D09//9pUuXqk+fPg4/vapVq5buuecerVq1SmlpaQ73GTJkiFPHJyrKbM09PMPcuXNljLGPz5kzR23btlWdOnXyfdzcPWs6deqkP/74QydOnLD0uPlJTk7Wjh07dM899+jo0aP295WMjAx169ZNK1euLJKfNC1evFghISG6++677WMVK1bUiBEjlJ6erhUrVjgsP2DAAFWrVs1+vWPHjpJkz7j9+/dry5YteuCBBxx+adGpUye1bNnyiuu9nOzsbH3zzTfq06ePw+vVtGlTxcTEOCz7+eefKycnR/3793fIk5CQEDVu3NipzzXO/P3ZbDbdeeedWrx4sdLT0+3Lz5kzR7Vr11aHDh0kSd9++62OHz+uu+++26EeT09PRUZG5lvPhf/P86upoM9VVl6n4vr8B+SHjCu4LjKuYLnbtHFxcfaf1UrStddeq5tuuinfk3/kt7129OhR+2u1ZMkSSX/vVXqhK/1bc9Z3332nrKwsPfLIIw4/l87vV2JWt48u9tRTT+X5f5ff5bXXXrvkPLmH2cjvZEO529EXH4qjRo0aioyMlJ+f3yXnRtnHz5+d8Msvv+j//u//9P333+cJlqJ4cy6MP//8U5LyPX7BxU2fHTt26MSJEwoKCsp3rkOHDkn6e10ufLPw8vJyeHO/2O7duzVmzBh9+eWXeY7Nc/Hz4uPjk6dBVK1aNYf7/fnnn6pVq1aen41fc801BdZwKbnPUX73b9KkiVatWlXoGnN/qpSrpM5s9+eff8rDwyPPz6YvXsfDhw/r+PHjeu+99/Tee+/lO1fu637w4EGH8YCAAFWqVEk5OTl644037MfLuPAYMBee/atGjRr2Y208//zzkv7+kFOhQgX17dvXvtyOHTv0v//9L89zfHE9ufI7g6Akffjhh3rttde0bds2nT17Nt/lnX2ddu7cKWOMnn32WT377LMF1nW5n/4BzmjTps0lD2Jf1O+BuRYuXKgXXnhBycnJyszMtI/nd1ygix0+fFinTp3Kt4amTZsqJydHe/bsUfPmze3jBf3fvVhRZ+uAAQO0YMECrVmzRu3atdPvv/+uDRs25Pnp0OrVqzV27FitWbMmzzGYTpw4ccmfBzljx44dknTJn/SdOHHCocFXGH/++acaN25s//InV9OmTe23X+jCjU5J9sfPzbjc5fPLs0aNGjm1gX4lDh8+rNOnTxf4uebCDcsdO3bIGFPgMZxyf9Kbnp7u0Az09PS0Z5Czf38DBgxQQkKCvvzyS91zzz1KT0/X4sWL7T8jz61Hkrp27ZpvPf7+/g7XK1SokO+hapz5XGXldXL28x9QFMg4R2Sccxl3qe21pk2b6ptvvslzMqtL5Zm/v799e+ni16okt9ekvNvpNWvWzPO8WN0+ulizZs3y7FBUGLnN6Av/D+XK/Xn1hQ1r4EI0FS/j+PHj6tSpk/z9/TV+/Hg1bNhQPj4+2rhxo55++ukiP4BqQQFYmIP65srJyVFQUJA++eSTfG/PfRN79NFHHQ7w3qlTpzwH5b2wnptuuknHjh3T008/rSZNmqhKlSrat2+f4uLi8jwvpeGsWq6ssahf99zn/7777isw9K+99lpJf38be6EZM2YoLi5OEyZM0LPPPqsHH3xQzz//vAIDA+Xh4aHHHnssz+t71113aeDAgUpOTlZ4eLjmzp2rbt262Y+rlVvTTTfdpKeeeirfeq6++mqH6/kF18cff6y4uDj16dNHTz75pIKCguTp6amJEyfq999/v8yzklfueowcOTLPnjC5SuoDCGCFzWZz2Fsh18XvGf/9739166236sYbb9SUKVNUq1YtVaxYUTNmzNCsWbOKpTZnPnQWR7b27t1blStX1ty5c9WuXTvNnTtXHh4eDsfC+/3339WtWzc1adJEkydPVlhYmLy8vLR48WK9/vrrl3xcZ9+nc+d45ZVX7Md5vVhBx1wuTgVlXH5/R0WpuD7X2Gw2ff311/muV+7z++qrrzqcSKxu3bratWuXpb+/tm3bql69epo7d67uueceffXVVzp9+rTDnvi5y3/00UcKCQnJU0+FCo4fty/8JUAuq5+rnH2enPn8B7gbMi4vMu68spZnVraPLnbxTkEFudzOQoGBgfL29taBAwfy3JY7FhoaetnHQflEU/Eyli9frqNHj+rzzz/XjTfeaB9PSUnJs6wz34hdbtncby8uPuPxxXsc1K1bV9L5b4sutH37dofrDRs21Hfffaf27dtfMgifeuop3XfffXlqyc+WLVv022+/6cMPP9QDDzxgH//2228LvM/l1K1bV0lJSUpPT3cIo4vXx8p8ufe/eO+B7du322+3OueyZct06tQph73gdu7c6dT9L/W653eW6/xe95ycHP3+++8O3+hd/Bzlnhk6Oztb0dHRl6zp4tcs99vYTz/9VF26dNG0adMcbj9+/LhDs1CS+vTpo6FDh9p/Av3bb79p9OjRDss0bNhQ6enpl63nUj799FM1aNBAn3/+ucNzefFJYpx9nXJ/6lKxYsUrqgsoClbeA6tVq+ZwaIZcF79nfPbZZ/Lx8dE333zj8JOWGTNm5Llvfu9PNWvWVOXKlfOtYdu2bfLw8FBYWNilVywfVrLVWVWqVFGvXr00b948TZ48WXPmzFHHjh0dPgR/9dVXyszM1Jdffumwp4MzPwN1Np9z9yT39/cv1veVunXr6n//+59ycnIcGlS5P6uzmnG5y+eXZ85k3JV+rqlZs6YqVark9OcaY4zq169/yQ2uBx54wP4TZel8M8Dq31///v31xhtvKC0tTXPmzFG9evXUtm1bh3okKSgoqNCvubOfq6y8Ts5+/gNKAhlHxuXnwu21i23btk01atRw2EvR2TlzcnKUkpLisLdgUWyvSX8/RxeeDOxS2+kX/qz+8OHDefZCv9Lto4t3CirIpXYWkv4+TFTLli21fv36PLf9+OOPatCgAT9zRoE4puJl5H4TcuE3H1lZWZoyZUqeZatUqeL07uy5b44Xv3HXrVtXnp6eeY6fcPHj1apVS+Hh4frwww8dHvPbb7/V1q1bHZbt37+/srOz7T9NvdC5c+fsNTRr1kzR0dH2S0RERIH15/e8GGP0xhtvFHify+nRo4fOnTund955xz6WnZ2tt956q1DztW7dWkFBQZo6darDrtxff/21fv31V6fOAHaxmJgYnT17Vu+//759LCcnR4mJiU7dv0qVKvk2Dxs2bKgTJ07of//7n33swIEDmj9/vsNy3bt3lyS9+eabDuMX//TB09NT/fr102effaaff/45z+NdeDbOC1/z6Oho+56Lnp6eeb7xmzdvXr7HGKxatapiYmI0d+5czZ49W15eXurTp4/DMv3799eaNWv0zTff5Ln/8ePHde7cuTzjF8vv7+7HH3/UmjVrHJZz9nUKCgpS586d9e677+b7zZyVs5YCV8rKe2DDhg21bds2h7/RzZs3a/Xq1Q7LeXp6ymazOXyLvmvXLi1YsCDPnPm9P3l6eurmm2/WF198oV27dtnHU1NTNWvWLHXo0CHPTzudYSVbrRgwYID279+vDz74QJs3b3bYm6ygxz1x4kS+G6AXy92QujCfs7Oz8xxiIiIiQg0bNtSrr77q8NPbXEX1vtKjRw8dPHjQ4Xi2586d01tvvSVfX1916tTJ0nyhoaFq0aKF/v3vfzvUvWLFCm3ZsuWy9y/oc42/v79q1Khx2c81np6eiomJ0YIFC7R79277+K+//ponN/r27StPT08999xzeXLKGKOjR49K+vuLowvzrX379vbHyl0216X+/gYMGKDMzEx9+OGHWrJkifr37+9we0xMjPz9/TVhwgSHw3LkcuY1d/ZzlZXXydnPf0BJIOPIuPxcuE174evz888/a+nSperRo4el+STZf3108fPt7DblpbbXJMfnKCMjI09TLzo6WhUrVtRbb73l8FrkdybnK90+KqpjKkrSHXfcoZ9++smhsbh9+3Z9//33DnvEAhdjT8XLaNeunapVq6bY2FiNGDFCNptNH330Ub67V0dERGjOnDmKj4/XDTfcIF9fX/Xu3TvfeXMbdiNGjFBMTIw8PT111113KSAgQHfeeafeeust2Ww2NWzYUAsXLsz3eAoTJ05Uz5491aFDBz344IM6duyY3nrrLTVv3tzhTb5Tp04aOnSoJk6cqOTkZN18882qWLGiduzYoXnz5umNN97QHXfcYel5adKkiRo2bKiRI0dq37598vf312effZbn2xcrevfurfbt22vUqFHatWuXmjVrps8//7zQx62sWLGiXnrpJQ0cOFCdOnXS3XffrdTUVL3xxhuqV6+eHn/8cctz9unTR23atNETTzyhnTt3qkmTJvryyy917NgxSZffWzUiIkLfffedJk+erNDQUNWvX1+RkZG666679PTTT+v222/XiBEjdOrUKb3zzju6+uqrHY6PFB4errvvvltTpkzRiRMn1K5dOyUlJeX7zdukSZO0bNkyRUZGasiQIWrWrJmOHTumjRs36rvvvrPXXJBevXpp/PjxGjhwoNq1a6ctW7bok08+cfjG7UIDBgzQfffdpylTpigmJsbhGzxJevLJJ/Xll1+qV69eiouLU0REhDIyMrRlyxZ9+umn2rVrV549IPOr6fPPP9ftt9+unj17KiUlRVOnTlWzZs0c/uatvE6JiYnq0KGDWrZsqSFDhqhBgwZKTU3VmjVrtHfvXm3evPmSNQHO+vrrr/M9OHu7du3UoEEDS++BDz74oCZPnqyYmBgNGjRIhw4d0tSpU9W8eXOHYzf17NlTkydP1i233KJ77rlHhw4dUmJioho1auTwJYZU8PvTCy+8oG+//VYdOnTQww8/rAoVKujdd99VZmamXn755UI9F1ay1YoePXrIz89PI0eOtH+5cqGbb75ZXl5e6t27t4YOHar09HS9//77CgoKyveLhQs1b95cbdu21ejRo3Xs2DEFBgZq9uzZeT7we3h46IMPPlD37t3VvHlzDRw4ULVr19a+ffu0bNky+fv766uvvrIvb7PZLrsHQX4eeughvfvuu4qLi9OGDRtUr149ffrpp1q9erUSEhIKtUfBhAkTdNttt6l9+/YaOHCg/vrrL7399ttq0aJFvhuPF8r9XPPMM8/orrvuUsWKFdW7d29VqVJFgwcP1qRJkzR48GC1bt1aK1eu1G+//ZZnjueee05LlixRx44d9fDDD9ubpM2bN3f4e23YsKFeeOEFjR49Wrt27VKfPn3k5+enlJQUzZ8/Xw899JBGjhxZYK1W//6uv/56NWrUSM8884wyMzPzbMj7+/vrnXfe0f3336/rr79ed911l2rWrKndu3dr0aJFat++vd5+++1LPn9WPlc5+zoVx+c/oCBknOM6k3HOe+WVV9S9e3dFRUVp0KBBOn36tN566y0FBARo3LhxluaS/n6t+/Xrp4SEBB09elRt27bVihUr7LnjzPbaO++8oxdeeEGNGjVSUFCQunbtqptvvll16tTRoEGD9OSTT8rT01PTp0+3v9/nqlmzpkaOHKmJEyeqV69e6tGjhzZt2qSvv/46z7bOlW4fFdUxFaW/T2zz/vvvq2fPnho5cqQqVqyoyZMnKzg4WE888USRPAbKqOI/wXTpkt9p5VevXm3atm1rKlWqZEJDQ81TTz1lvvnmGyPJLFu2zL5cenq6ueeee0zVqlWNJFO3bl1jjDEpKSlGkpkxY4Z92XPnzplHHnnE1KxZ09hsNofT0x8+fNj069fPVK5c2VSrVs0MHTrU/Pzzz3nmMMaYzz77zDRt2tR4e3ubZs2amc8//9zExsbaH/tC7733nomIiDCVKlUyfn5+pmXLluapp54y+/fvL9RztXXrVhMdHW18fX1NjRo1zJAhQ8zmzZvz1BkbG2uqVKmS5/5jx441F/8JHj161Nx///3G39/fBAQEmPvvv99s2rQp33W/2LJly/K8JsYYM2fOHHPdddcZb29vExgYaO69916zd+9eh2Ws1Hj48GFzzz33GD8/PxMQEGDi4uLM6tWrjSQze/bsS95327Zt5sYbbzSVKlUykkxsbKz9tqVLl5oWLVoYLy8vc80115iPP/443zlOnz5tRowYYapXr26qVKlievfubfbs2WMkmbFjxzosm5qaaoYNG2bCwsJMxYoVTUhIiOnWrZt57733LvlcGmPMmTNnzBNPPGFq1aplKlWqZNq3b2/WrFljOnXqZDp16pRn+bS0NPt6ffzxx/nOefLkSTN69GjTqFEj4+XlZWrUqGHatWtnXn31VZOVlWWMOf//5ZVXXslz/5ycHDNhwgRTt25d4+3tba677jqzcOHCfP/mnX2djDHm999/Nw888IAJCQkxFStWNLVr1za9evUyn3766WWfJ+BycnOloMuF721W3gM//vhj06BBA+Pl5WXCw8PNN998k+//hWnTppnGjRsbb29v06RJEzNjxgzL708bN240MTExxtfX11SuXNl06dLF/PDDD/mu508//VTgc1CYbC0o0wpy7733GkkmOjo639u//PJLc+211xofHx9Tr14989JLL5np06fnqS+/97rff//dREdHG29vbxMcHGz+9a9/mW+//Tbf7Nm0aZPp27evqV69uvH29jZ169Y1/fv3N0lJSfZlTp48aSSZu+6667LrlV89qampZuDAgaZGjRrGy8vLtGzZMs/fyaXeU/PLjdmzZ5smTZoYb29v06JFC/Pll1+afv36mSZNmlz2vs8//7ypXbu28fDwcHg+T506ZQYNGmQCAgKMn5+f6d+/vzl06FC+c6xYscJEREQYLy8v06BBAzN16tR8/16N+fszUIcOHUyVKlVMlSpVTJMmTcywYcPM9u3bC3weczn795frmWeeMZJMo0aNCpxz2bJlJiYmxgQEBBgfHx/TsGFDExcXZ9avX29fpqDPG8Y4/7nKGOdfJ2OK/vMfcCEyjowrKOPyk992sTHGfPfdd6Z9+/amUqVKxt/f3/Tu3dts3brVYZnc1/Xw4cMO4/k9/xkZGWbYsGEmMDDQ+Pr6mj59+pjt27cbSWbSpEmXvO/BgwdNz549jZ+fn5Hk8Dxt2LDBREZGGi8vL1OnTh0zefLkfOfIzs42zz33nH07qnPnzubnn382devWdfjbM8a57aOSsmfPHnPHHXcYf39/4+vra3r16mV27NhRojWg9LEZU8xHNAXKgQULFuj222/XqlWr7D+vgvvhdUJptGvXLtWvX99+EiWUHYsXL1avXr20efNmtWzZ0tXlFCg8PFw1a9a8ouMmo/jxOqE0IuNQUpKTk3Xdddfp448/1r333uvqcoAyg2MqAhZdfIat3OPB+Pv76/rrr3dRVbgYrxMAd7ds2TLdddddbtNQPHv2bJ6fui1fvlybN29W586dXVMU8uB1AoBLy++MyAkJCfLw8HA4eQ6AK8cxFQGLHnnkEZ0+fVpRUVHKzMzU559/rh9++EETJkzg7IpuhNfJvezZs0f333+/Dh06pAoVKujZZ5/loM8o91555RVXl+Bg3759io6O1n333afQ0FBt27ZNU6dOVUhIiP7xj3+4ujz8f7xORYt8Asqel19+WRs2bFCXLl1UoUIFff311/r666/10EMPFeqM3kBJK03ZRFMRsKhr16567bXXtHDhQp05c0aNGjXSW2+9peHDh7u6NFyA18m9VKhQQQkJCQoPD9fBgwcVERGhHj162M8YC8D1qlWrpoiICH3wwQc6fPiwqlSpop49e2rSpEmqXr26q8vD/8frVLTIJ6Dsadeunb799ls9//zzSk9PV506dTRu3Dg988wzri4NcEppyiaOqQgAKHGtWrXSwoUL+bYYAOBWyCcAgLtx52zimIoAAK1cuVK9e/dWaGiobDabFixYkGeZxMRE1atXTz4+PoqMjNS6desK9VgbNmxQdna2W4YiAMC9kE8AAHdDNp1HUxEAoIyMDLVq1UqJiYn53j5nzhzFx8dr7Nix2rhxo1q1aqWYmBgdOnTIvkx4eLhatGiR57J//377MseOHdMDDzyg9957r9jXCQBQ+pFPAAB3QzadV+Z//pyTk6P9+/fLz89PNpvN1eUAKIOMMTp58qRCQ0Pl4XFl39WcOXNGWVlZRVLTxe953t7e8vb2vux9bTab5s+frz59+tjHIiMjdcMNN+jtt9+W9Pd7a1hYmB555BGNGjXKqZoyMzN10003aciQIbr//vudX5kyiGwCUBKKKp+KKptyayKf3Bf5BKC4se1UtrKpzJ+oZf/+/W67myiAsmXPnj266qqrCn3/M2fOqE6dKjp8OOeKa/H19VV6errD2NixYzVu3DjLc2VlZWnDhg0aPXq0fczDw0PR0dFas2aNU3MYYxQXF6euXbu6dSiWFLIJQEm6knwqymySyCd3Rz4BKClsOxWsNGVTmW8q+vn5SZI613hAFTy8XFwNgLLoXE6Wlh/5t/39prCysrJ0+HCOlv8YJF/fwu8dkJ5u1DnykPbs2SN/f3/7uDPftOXnyJEjys7OVnBwsMN4cHCwtm3b5tQcq1ev1pw5c3Tttdfajzny0UcfqWXLloWqqbQjmwCUhKLIp6LKJol8Kg3IJwDFjW2nyytN2VTmm4q5u7BW8PAiGAEUq6L6mZCvr02+flfyU4C/v63z9/d3CEZX6tChg3JyimYvl7KAbAJQkooin648myTyyf2RTwBKCttOBStN2cSJWgAAl1SjRg15enoqNTXVYTw1NVUhISEuqgoAUN6RTwAAd1PesommIgDgkry8vBQREaGkpCT7WE5OjpKSkhQVFeXCygAA5Rn5BABwN+Utm8r8z58BAJeXnp6unTt32q+npKQoOTlZgYGBqlOnjuLj4xUbG6vWrVurTZs2SkhIUEZGhgYOHOjCqgEAZR35BABwN2TTeTQVAQBav369unTpYr8eHx8vSYqNjdXMmTM1YMAAHT58WGPGjNHBgwcVHh6uJUuW5DkAMQAARYl8AgC4G7LpPJqKAAB17txZxphLLjN8+HANHz68hCoCAIB8AgC4H7LpPI6pCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAodsePH1fr1q0VHh6uFi1a6P3333d1SQAAkE8AALdTmrKpgqsLAACUfX5+flq5cqUqV66sjIwMtWjRQn379lX16tVdXRoAoBwjnwAA7qY0ZRN7KgIAip2np6cqV64sScrMzJQxRsYYF1cFACjvyCcAgLspTdlEUxEAoJUrV6p3794KDQ2VzWbTggUL8iyTmJioevXqycfHR5GRkVq3bp2lxzh+/LhatWqlq666Sk8++aRq1KhRRNUDAMoq8gkA4G7IpvNoKgIAlJGRoVatWikxMTHf2+fMmaP4+HiNHTtWGzduVKtWrRQTE6NDhw7Zl8k95sfFl/3790uSqlatqs2bNyslJUWzZs1SampqiawbAKD0Ip8AAO6GbDrP5U3Fffv26b777lP16tVVqVIltWzZUuvXr7ffbozRmDFjVKtWLVWqVEnR0dHasWOHCysGgNIhLS3N4ZKZmVngst27d9cLL7yg22+/Pd/bJ0+erCFDhmjgwIFq1qyZpk6dqsqVK2v69On2ZZKTk/Xzzz/nuYSGhjrMFRwcrFatWum///1v0axoMSCbAKD4kE+FRz4BQPEgmwrHpSdq+euvv9S+fXt16dJFX3/9tWrWrKkdO3aoWrVq9mVefvllvfnmm/rwww9Vv359Pfvss4qJidHWrVvl4+PjwuoBoHgsONlKPqZioe9/Jv2spKUKCwtzGB87dqzGjRtneb6srCxt2LBBo0ePto95eHgoOjpaa9ascWqO1NRUVa5cWX5+fjpx4oRWrlypf/7zn5ZrKQlkEwDkdaXZJJFPV4p8AoC82HZyLZc2FV966SWFhYVpxowZ9rH69evb/22MUUJCgv7v//5Pt912myTp3//+t4KDg7VgwQLdddddJV4zAJQWe/bskb+/v/26t7d3oeY5cuSIsrOzFRwc7DAeHBysbdu2OTXHn3/+qYceesh+kOFHHnlELVu2LFQ9xY1sAoDiRT4VDvkEAMWHbCoclzYVv/zyS8XExOjOO+/UihUrVLt2bT388MMaMmSIJCklJUUHDx5UdHS0/T4BAQGKjIzUmjVr8g3GzMxMh91U09LSin9FAMAN+fv7OwSjK7Vp00bJycmuLsMpZBMAFC/yqXDIJwAoPmRT4bj0mIp//PGH3nnnHTVu3FjffPON/vnPf2rEiBH68MMPJUkHDx6UpHw7vLm3XWzixIkKCAiwXy7ehRUAYE2NGjXk6emZ5+DAqampCgkJcVFVxYdsAoDSgXwinwDA3ZS3bHJpUzEnJ0fXX3+9JkyYoOuuu04PPfSQhgwZoqlTpxZ6ztGjR+vEiRP2y549e4qwYgAof7y8vBQREaGkpCT7WE5OjpKSkhQVFeXCyooH2QQApQP5RD4BgLspb9nk0p8/16pVS82aNXMYa9q0qT777DNJsndxU1NTVatWLfsyqampCg8Pz3dOb2/vQv/2HQDKq/T0dO3cudN+PSUlRcnJyQoMDFSdOnUUHx+v2NhYtW7dWm3atFFCQoIyMjI0cOBAF1ZdPMgmAHAf5NN55BMAuAey6TyXNhXbt2+v7du3O4z99ttvqlu3rqS/DzwcEhKipKQkexCmpaXpxx9/dNsz3wBAabR+/Xp16dLFfj0+Pl6SFBsbq5kzZ2rAgAE6fPiwxowZo4MHDyo8PFxLlizJ8xOrsoBsAgD3QT6dRz4BgHsgm85zaVPx8ccfV7t27TRhwgT1799f69at03vvvaf33ntPkmSz2fTYY4/phRdeUOPGjVW/fn09++yzCg0NVZ8+fVxZOgCUKZ07d5Yx5pLLDB8+XMOHDy+hilyHbAIA90E+nUc+AYB7IJvOc2lT8YYbbtD8+fM1evRojR8/XvXr11dCQoLuvfde+zJPPfWUMjIy9NBDD+n48ePq0KGDlixZIh8fHxdWDgAoq8gmAIA7Ip8AAO7GpU1FSerVq5d69epV4O02m03jx4/X+PHjS7AqAEB5RjYBANwR+QQAcCcuPfszAAAAAAAAgNKHpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAAAAAAAAAS2gqAgAAAAAAALCEpiIAoMScOnVKdevW1ciRI11dCgAAduQTAMDdlIZsoqkIACgxL774otq2bevqMgAAcEA+AQDcTWnIJpqKAIASsWPHDm3btk3du3d3dSkAANiRTwAAd1NasommIgBAK1euVO/evRUaGiqbzaYFCxbkWSYxMVH16tWTj4+PIiMjtW7dOkuPMXLkSE2cOLGIKgYAlAfkEwDA3ZBN59FUBAAoIyNDrVq1UmJiYr63z5kzR/Hx8Ro7dqw2btyoVq1aKSYmRocOHbIvEx4erhYtWuS57N+/X1988YWuvvpqXX311SW1SgCAMoB8AgC4G7LpvAquLgAAUDzS0tIcrnt7e8vb2zvfZbt3737JXesnT56sIUOGaODAgZKkqVOnatGiRZo+fbpGjRolSUpOTi7w/mvXrtXs2bM1b948paen6+zZs/L399eYMWMsrhUAoLQjnwAA7oZsKhyaigDgZpalXq0K6fkHmDPOZWRKWqqwsDCH8bFjx2rcuHGW58vKytKGDRs0evRo+5iHh4eio6O1Zs0ap+aYOHGifff9mTNn6ueff3bLUAQA5O9Ks0kinwAARY9tJ9eiqQgAZdSePXvk7+9vv17QN22Xc+TIEWVnZys4ONhhPDg4WNu2bbuiGgEA5Q/5BABwN2RT4dBUBIAyyt/f3yEY3UVcXJyrSwAAuBD5BABwN2RT4XCiFgDAJdWoUUOenp5KTU11GE9NTVVISIiLqgIAlHfkEwDA3ZS3bKKpCAC4JC8vL0VERCgpKck+lpOTo6SkJEVFRbmwMgBAeUY+AQDcTXnLJn7+DABQenq6du7cab+ekpKi5ORkBQYGqk6dOoqPj1dsbKxat26tNm3aKCEhQRkZGfYzmgEAUBzIJwCAuyGbznPpnorjxo2TzWZzuDRp0sR++5kzZzRs2DBVr15dvr6+6tevX55dSAEAV279+vW67rrrdN1110mS4uPjdd1119nPMjZgwAC9+uqrGjNmjMLDw5WcnKwlS5bkOQBxWUA2AYD7IJ/OI58AwD2QTee5fE/F5s2b67vvvrNfr1DhfEmPP/64Fi1apHnz5ikgIEDDhw9X3759tXr1aleUCgBlVufOnWWMueQyw4cP1/Dhw0uoItcimwDAPZBPjsgnAHA9suk8lzcVK1SokO/BKk+cOKFp06Zp1qxZ6tq1qyRpxowZatq0qdauXau2bduWdKkAgHKCbAIAuCPyCQDgTlx+opYdO3YoNDRUDRo00L333qvdu3dLkjZs2KCzZ88qOjravmyTJk1Up04drVmzpsD5MjMzlZaW5nABAMAKsgkA4I7IJwCAO3FpUzEyMlIzZ87UkiVL9M477yglJUUdO3bUyZMndfDgQXl5ealq1aoO9wkODtbBgwcLnHPixIkKCAiwX8LCwop5LQAAZQnZBABwR+QTAMDduPTnz927d7f/+9prr1VkZKTq1q2ruXPnqlKlSoWac/To0YqPj7dfT0tLIxwBAE4jmwAA7oh8AgC4G5f//PlCVatW1dVXX62dO3cqJCREWVlZOn78uMMyqamp+R5HJJe3t7f8/f0dLgAAFBbZBABwR+QTAMDV3KqpmJ6ert9//121atVSRESEKlasqKSkJPvt27dv1+7duxUVFeXCKgEA5QnZBABwR+QTAMDVXPrz55EjR6p3796qW7eu9u/fr7Fjx8rT01N33323AgICNGjQIMXHxyswMFD+/v565JFHFBUVxdnLAADFhmwCALgj8gkA4G5c2lTcu3ev7r77bh09elQ1a9ZUhw4dtHbtWtWsWVOS9Prrr8vDw0P9+vVTZmamYmJiNGXKlEI9VtbVocqp4FOU5QOAJOncuTPSIVdXgaJSktkEAICzyCcAgLtxaVNx9uzZl7zdx8dHiYmJSkxMLKGKAADlHdkEAHBH5BMAwN241TEVAQAAAAAAALg/mooAAAAAAAAALKGpCAAAAAAAAMASlx5TEQCA8uxKTyLmtW1vEVYDAAAAAM6jqQgAQCmV1eQqV5cAwI2dO3dGOuTqKlAaFeZLL77oQknL/RzE3x7gOjQVAQAAAABXhC+64Cr87ZUufOFVtnBMRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACW0FQEAAAAAAAAYAlNRQAAAAAAAACWVHB1AQCA8qFevXry9/eXh4eHqlWrpmXLlrm6JAAAyCcAgNspLdlEUxEAUGJ++OEH+fr6uroMAAAckE8AAHdTGrKJnz8DAAAAAAAAsISmIgBAK1euVO/evRUaGiqbzaYFCxbkWSYxMVH16tWTj4+PIiMjtW7dOkuPYbPZ1KlTJ91www365JNPiqhyAEBZRj4BANwN2XQeP38GACgjI0OtWrXSgw8+qL59++a5fc6cOYqPj9fUqVMVGRmphIQExcTEaPv27QoKCpIkhYeH69y5c3nuu3TpUoWGhmrVqlWqXbu2Dhw4oOjoaLVs2VLXXnttsa8bAKD0Ip8AAO6GbDqPpiIAlFFpaWkO1729veXt7Z3vst27d1f37t0LnGvy5MkaMmSIBg4cKEmaOnWqFi1apOnTp2vUqFGSpOTk5EvWU7t2bUlSrVq11KNHD23cuNEtgxEAULzIJwCAuyGbCoemIgC4md37a8ijkk+h759z+owkKSwszGF87NixGjdunOX5srKytGHDBo0ePdo+5uHhoejoaK1Zs8apOTIyMpSTkyM/Pz+lp6fr+++/V//+/S3XAgBwjSvNJol8AgAUPbadXIumIgCUUXv27JG/v7/9ekHftF3OkSNHlJ2dreDgYIfx4OBgbdu2zak5UlNTdfvtt0uSsrOzNWTIEN1www2FqgcAULqRTwAAd0M2FY5TTcUvv/zS8sQ33XSTKlWqZPl+AICi4e/v7xCMrtSgQQNt3ry5yOclnwCg9Cnr+UQ2AUDpU9azqbg41VTs06ePpUltNpt27NihBg0aFKYmAIAbqVGjhjw9PZWamuownpqaqpCQEBdV9TfyCQDKL3fNJ7IJAMovd82m4uLh7IIHDx5UTk6OU5fKlSsXZ80AgBLk5eWliIgIJSUl2cdycnKUlJSkqKgoF1b2N/IJAMond84nsgkAyid3zqbi4NSeirGxsZZ2x7/vvvvcZrdRAMDlpaena+fOnfbrKSkpSk5OVmBgoOrUqaP4+HjFxsaqdevWatOmjRISEpSRkWE/o5mrkE8AULaVxnwimwCgbCuN2VRcnGoqzpgxw9Kk77zzTqGKAQC4xvr169WlSxf79fj4eEl/bxjNnDlTAwYM0OHDhzVmzBgdPHhQ4eHhWrJkSZ4DEJc08gkAyrbSmE9kEwCUbaUxm4oLZ38GAKhz584yxlxymeHDh2v48OElVBEAAOQTAMD9kE3nWW4qnjlzRm+99ZaWLVumQ4cOKScnx+H2jRs3FllxAAA4i3wCALgbsgkAUJZZbioOGjRIS5cu1R133KE2bdrIZrMVR10AAFhCPgEA3A3ZBAAoyyw3FRcuXKjFixerffv2xVEPAACFQj4BANwN2QQAKMs8rN6hdu3a8vPzK45aAAAoNPIJAOBuyCYAQFlmuan42muv6emnn9aff/5ZHPUAAFAo5BMAwN2QTQCAssxyU7F169Y6c+aMGjRoID8/PwUGBjpcCmvSpEmy2Wx67LHH7GNnzpzRsGHDVL16dfn6+qpfv35KTU0t9GMAAMou8gkA4G7IJgBAWWb5mIp333239u3bpwkTJig4OLhIDjb8008/6d1339W1117rMP74449r0aJFmjdvngICAjR8+HD17dtXq1evvuLHBACULeQTAMDdkE0AgLLMclPxhx9+0Jo1a9SqVasiKSA9PV333nuv3n//fb3wwgv28RMnTmjatGmaNWuWunbtKkmaMWOGmjZtqrVr16pt27ZF8vgAgLKBfAIAuBuyCQBQlln++XOTJk10+vTpIitg2LBh6tmzp6Kjox3GN2zYoLNnzzqMN2nSRHXq1NGaNWsKnC8zM1NpaWkOFwBA2efO+UQ2AUD55M7ZJJFPAIArY7mpOGnSJD3xxBNavny5jh49ekUhNHv2bG3cuFETJ07Mc9vBgwfl5eWlqlWrOowHBwfr4MGDBc45ceJEBQQE2C9hYWGWagIAlE7unE9kEwCUT+6cTRL5BAC4MpZ//nzLLbdIkrp16+YwboyRzWZTdna2U/Ps2bNHjz76qL799lv5+PhYLaNAo0ePVnx8vP16Wloa4QgA5YA75xPZBADlkztnk0Q+AQCujOWm4rJly4rkgTds2KBDhw7p+uuvt49lZ2dr5cqVevvtt/XNN98oKytLx48fd/jGLTU1VSEhIQXO6+3tLW9v7yKpEQBQerhzPpFNAFA+uXM2SeQTAODKWG4qtmvXThUrVsz3tiNHjjg9T7du3bRlyxaHsYEDB6pJkyZ6+umnFRYWpooVKyopKUn9+vWTJG3fvl27d+9WVFSU1bIBAGUc+QQAcDdkEwCgLLPcVLzrrrv06aefymazOYynpqaqW7du+vnnn52ax8/PTy1atHAYq1KliqpXr24fHzRokOLj4xUYGCh/f3898sgjioqK4uxlAAAHSUlJuu+++1SpUiXZbDY1bdpUjz32mKKjo8knAIBLkE0AAHeUlJSk119/Xb/++qskOeSTVZZP1LJ7924NHjzYYezAgQPq3LmzmjRpYrmAS3n99dfVq1cv9evXTzfeeKNCQkL0+eefF+ljAABKtylTpuiWW25RVlaWgoKC9Oijj8rf3189evTQhAkTyCcAQIkjmwAA7ig3n/z8/PToo4865FNiYqLl+Szvqbh48WLdeOONio+P1+TJk7V//3516dJFrVq10uzZsy0XcKHly5c7XPfx8VFiYmKhVgwAUD5MmDBBr7/+ugYMGKAbb7xRu3bt0qxZs9S8eXONGTNGffv2JZ8AACWKbAIAuKPcfBo+fLh9bMSIEWrfvr0mTJigYcOGWZrPclOxZs2aWrp0qTp06CBJWrhwoa6//np98skn8vCwvOMjAABX5Pjx47rlllvy5NP8+fMlSf/5z3/IJwBAiSKbAADuKDefLnbzzTfr6aeftjxfoZIsLCxM3377rT755BO1adNG//nPf+Tp6VmYqQAAuCK33nqrfSPtwnyqVq2a+vXrRz4BAEoc2QQAcEcX5tOFvvjiC/Xq1cvyfE7tqVitWrU8J2aRpFOnTumrr75S9erV7WPHjh2zXAQAAIVRrVo1ZWZmavbs2XrmmWdUocLfsZaZmalDhw5p27ZtqlKliiRp4sSJGjFihCvLBQCUA2QTAMBdNWvWTC+++KKWL1+uqKgoSdLatWu1evVqPfHEE3rzzTftyzqTT041FRMSEgpXLQAAxSghIUEjR460b5zluvh67rJsuAEAihvZBABwV9OmTVO1atW0detWbd261T5etWpVTZs2zX7dZrMVXVMxNja2EKUCAFC8YmNjySgAgFshmwAA7iolJaVI53PqmIppaWmWJj158mShigEAwAryCQDgbsgmAEB54fQxFQ8cOKCgoCCnJq1du7aSk5PVoEGDKyoOAIBLyc2nrKwsffnll9q9e7eysrIclpk8ebL93+QTAKC4kU0AAHe2d+9ep/LJGU41FY0x+uCDD+Tr6+vUpGfPnrVUBAAAhWGM0ejRo/XRRx+pRo0aSk1NVa1atXTs2DEZYxQWFqZ69erZlyefAADFjWwCALirpKQk3XrrrWrQoIG2bdumFi1aaNeuXTLG6Prrr7c8n1NNxTp16uj99993etKQkBBVrFjRcjEAAFhRp04dffzxx6pSpYq8vb1ljJHNZlNQUJAOHz6sY8eO6fXXX7cvTz4BAIob2QQAcFejR4/WyJEj9dxzz8nPz0+fffaZgoKCdO+99+qWW26xPJ9TTcVdu3ZZnhgAgOK2a9cu+fn5af369WrYsKGqVaumJUuWqHnz5tq8ebNuu+22Ij8YMQAAl0I2AQDc1a+//qr//Oc/kqQKFSro9OnT8vX11fjx43Xbbbfpn//8p6X5nDpRCwAA7qpKlSr2Y4HUqlVLv//+u/22I0eOuKosAEA5RjYBANxRUeeTU3sqAgDgrtq2batVq1apadOm6tGjh5544glt2bJFn3/+udq2bevq8gAA5RDZBABwR0WdTzQVAQCl2uTJk5Weni5Jeu6555Senq45c+aocePGls9eBgBAUSCbAADuqKjziaYiAKBUa9Cggf3fVapU0dSpU11YDQAAZBMAwD0VdT5xTEUAQKk2ePBgLV++3NVlAABgRzYBANxRUedToZqK//3vf3XfffcpKipK+/btkyR99NFHWrVqVZEVBgCAMw4fPqxbbrlFYWFhuvvuu9WzZ0/yCQDgUmQTAMAdXZhPTz75pDZv3nxF81luKn722WeKiYlRpUqVtGnTJmVmZkqSTpw4oQkTJlxRMQCAsislJUVdunRRs2bN1LJlS2VkZBTJvF988YUOHDignj17au7cuVq8eLF+/PFHvf7669q1axf5BAC4pOLIJ7IJAHAlinvb6dlnn9VPP/2k66+/Xs2bN9eECRO0a9cuy/NZbiq+8MILmjp1qt5//31VrFjRPt6+fXtt3LjRcgEAgPIhLi5O48eP19atW7VixQp5e3sX2dzVqlXTjz/+qBkzZmjPnj2qWLGi5s+fr0aNGpFPAIBLKq58IpsAAIVV3NtODz30kJYvX64///xTcXFx+uijj9SoUSPLc1k+Ucv27dt144035hkPCAjQ8ePHLRcAACj7fvnlF1WsWFEdO3aUJAUGBhb5Y2zfvl1RUVFav369cnJytHfvXgUHB5NPAIACFXc+kU0AAKtKYttJks6ePav169frxx9/1K5duxQcHGx5Dst7KoaEhGjnzp15xletWuVwFhkAQOmxcuVK9e7dW6GhobLZbFqwYEGeZRITE1WvXj35+PgoMjJS69atc3r+HTt2yNfXV71799b1119f5D/5WrZsmSpUqKDrr79ecXFxkqQPPvhAe/fuJZ8AoBQrzflENgFA2VSas0n6O5+GDBmi4OBgxcXFyd/fXwsXLtTevXstz2V5T8UhQ4bo0Ucf1fTp02Wz2bR//36tWbNGI0eO1LPPPmu5AACA62VkZKhVq1Z68MEH1bdv3zy3z5kzR/Hx8Zo6daoiIyOVkJCgmJgYbd++XUFBQZKk8PBwnTt3Ls99ly5dqnPnzum///2vkpOTFRQUpFtuuUU33HCDbrrppiuuvXbt2jp27JgaNGigtLQ0zZo1Sz179lT9+vU1a9Ys8gkASrHSmk9kEwCUXaU1m6Tz+XTLLbfovffeU+/eva/op9WWm4qjRo1STk6OunXrplOnTunGG2+Ut7e3Ro4cqUceeaTQhQAAilZaWprDdW9v7wIDo3v37urevXuBc02ePFlDhgzRwIEDJUlTp07VokWLNH36dI0aNUqSlJycXOD9a9eurdatWyssLEyS1KNHDyUnJxdJMI4bN0533nmnAgICNGHCBHXv3j3ffNq7d69CQ0Pl4WF5J30AQBEqD/lENgFA6VIeskk6n09Vq1a95HLO5pPlpqLNZtMzzzyjJ598Ujt37lR6erqaNWsmX19fq1MBAPLhtcdLnj5ehb5/9pkcSbKHUK6xY8dq3LhxlufLysrShg0bNHr0aPuYh4eHoqOjtWbNGqfmuOGGG3To0CH99ddfCggI0MqVKzV06FDLteRnyJAh9n9fKp+aNWum5ORkfm4GAIVwpdkkla98IpsAoGSw7WTNhfl0Kc7mk+WmYi4vLy81a9assHcHABSzPXv2yN/f3369sLu1HzlyRNnZ2XkO3BscHKxt27Y5NUeFChU0YcIE3XjjjTLG6Oabb1avXr0KVc/lFJRPxphieTwAgDXlMZ/IJgBwb+Uxmy7F2XxyqqmY32/EC/L55587vSwAoPj4+/s7BKOrXe5nAoVhJZ8AAO6hrOcT2QQApU9Zz6bi4tTBOwICAuwXf39/JSUlaf369fbbN2zYoKSkJAUEBBRboQAA16hRo4Y8PT2VmprqMJ6amqqQkBAXVfU38gkAyi93zSeyCQDKL3fNpuLi1J6KM2bMsP/76aefVv/+/TV16lR5enpKkrKzs/Xwww+7VVcXAFA0vLy8FBERoaSkJPXp00eSlJOTo6SkJA0fPtyltZFPAFB+uWs+kU0AUH65azYVF8vHVJw+fbpWrVplD0VJ8vT0VHx8vNq1a6dXXnmlSAsEABS/9PR07dy50349JSVFycnJCgwMVJ06dRQfH6/Y2Fi1bt1abdq0UUJCgjIyMuxnNHMHl8snm83mwuoAAIVR2vOJbAKAsqe0Z5MznM0ny03Fc+fOadu2bbrmmmscxrdt26acnByr0wEA3MD69evVpUsX+/X4+HhJUmxsrGbOnKkBAwbo8OHDGjNmjA4ePKjw8HAtWbIkzwGIXely+cTB8AGg9Cnt+UQ2AUDZU9qzyRlFeqKWCw0cOFCDBg3S77//rjZt2kiSfvzxR02aNKlUdV0BAOd17tz5ssExfPhwt95lf+DAgRo4cKCGDx+um2++WZJjPj3++OMKDQ11cZUAACtKez6RTQBQ9pT2bMq1d+9eSdJVV12V57atW7c6lU+Wm4qvvvqqQkJC9Nprr+nAgQOSpFq1aunJJ5/UE088YXU6AACuSE5Ojl544QV98MEHSk9P1/PPP6/nn39eNpvNIZ8u/OkZAADFiWwCALij3Hx67bXXlJ6eLkny8/PTE088oWeeeUYeHn+fzzksLMyp+Sw3FT08PPTUU0/pqaeeUlpamiRxkGEAgMs888wzmjZtml566SW1b99ekvTtt99q4sSJiouL01NPPeXiCgEA5Q3ZBABwR7n5NGnSJHs+rVq1SuPGjdOZM2f04osvWprPclPxQjQTAQCu9uGHH+qDDz7Qrbfeah+79tpr1ahRIz388MOWgxEAgCtFNgEA3FFB+VS7du1C5ZPlpmL9+vUveRaYP/74w+qUAAAU2rFjx9SkSZM8+XT27FkdOHBADRo0kEQ+AQBKDtkEAHBHufl0sSZNmujYsWOW57PcVHzsscccrp89e1abNm3SkiVL9OSTT1ouAACAK9GqVSu9/fbbefJp7ty5On36tE6cOEE+AQBKFNkEAHBHufn05ptvOoy//fbbatWqleX5LDcVH3300XzHExMTtX79essFAABwJV5++WX17NlTderUUVRUlCRpzZo12rNnjxYvXqz//e9/5BMAoESRTQAAd5SbT999912++WSVR1EV1r17d3322WdFNR0AAE7p1KmTfvvtN91+++06fvy4jh8/rr59+2r79u3q2LEj+QQAKHFkEwDAHV0un6y6ohO1XOjTTz9VYGBgUU0HAIDTQkNDCzyoMPkEAHAFsgkA4I4ulU9WWW4qXnfddQ4HGzbG6ODBgzp8+LCmTJlSJEUBAOCsnJwceXh45JtP+/bt07Fjx8gnAECJIpsAAO4oN5/yG9+7d6/q1KljaT7LTcXbbrvNIRg9PDxUs2ZNde7cOd8zyAAAUBzS0tI0ePBgffXVV/L391eTJk3UuXNne0ieOnVKr7zyirZu3Uo+AQBKBNkEAHBHF+fT0KFDNXbsWHl6ekqSDh8+rPr16ys7O9vSvJabiuPGjbN6FwAAityzzz6rzZs366OPPtLx48f1wgsvaMOGDfr888/l5eWl1NRUvfLKK2y0AQBKDNkEAHBH+eXTxo0b7fkk/b03vVWWT9Ti6empQ4cO5Rk/evSovcMJAEBxW7Bggd59913dcccdGjx4sPbs2aP9+/erd+/eyszMlCTZbDbyCQBQYsgmAIA7ujif1q9fr8OHD+fJJ6ssNxUL6lxmZmbau5vOeuedd3TttdfK399f/v7+ioqK0tdff22//cyZMxo2bJiqV68uX19f9evXT6mpqVZLBgCUQYcPH1bdunXt140x+vTTT3Xy5En16NFDp06dkmQ9n8gmAEBhFVc2SeQTAKDwLs6nGjVq6LvvvsuTT1Y5/fPnN998U9LfncsPPvhAvr6+9tuys7O1cuVKy7vxX3XVVZo0aZIaN24sY4w+/PBD3Xbbbdq0aZOaN2+uxx9/XIsWLdK8efMUEBCg4cOHq2/fvlq9erWlxwEAlD116tTRr7/+qq+++krS3/k0e/Zs3X777ZoyZYo6dOggY4yGDRtmKZ/IJgBAYRVXNknkEwCg8HLzqX79+vYxPz8/LV26VDfffLNuv/32Qs3rdFPx9ddfl/T3t21Tp0512F3fy8tL9erV09SpUy09eO/evR2uv/jii3rnnXe0du1aXXXVVZo2bZpmzZqlrl27SpJmzJihpk2bau3atWrbtq2lxwIAlC0333yzZsyYofXr10tyzCdjjI4ePSpjjE6dOmUpn8gmAEBhFVc2SeQTAKDwcvOpR48eDuO+vr765ptvdNNNNxVqXqebiikpKZKkLl266PPPP1e1atUK9YAFyc7O1rx585SRkaGoqCht2LBBZ8+eVXR0tH2ZJk2aqE6dOlqzZg3BCADl3HPPPaf9+/erefPmkvLm08mTJ7Vx40Z16tSp0I9BNgEArCiJbJLIJwCANbn5lB8/Pz99++232rhxo+V5LZ/9edmyZZYf5FK2bNmiqKgonTlzRr6+vpo/f76aNWum5ORkeXl5qWrVqg7LBwcH6+DBgwXOl5mZaT/IpPT3abMBAGVPtWrV7BtpSUlJioqK0pNPPqmcnByH5Qqz4UY2AQAKozizSSKfAACFc3E+JSUl6dChQ1ecT041FePj4/X888+rSpUqio+Pv+SykydPtlTANddco+TkZJ04cUKffvqpYmNjtWLFCktzXGjixIl67rnnCn1/AEDpER8fr0qVKmnSpEmqWbOmw/F+L1xGspZPZBMAoLCKK5sk8gkAcGWee+45jR8/Xq1bt1atWrUKdcbnCznVVNy0aZPOnj0rSdq4ceMVP+iFvLy81KhRI0lSRESEfvrpJ73xxhsaMGCAsrKydPz4cYdv3FJTUxUSElLgfKNHj3ZofKalpSksLKzI6gUAuI9NmzZp69atmjlzpqZNm5ZvPm3atMnyvGQTAKCwiiubJPIJAHBlpk6dqpkzZ+r+++8vkvmcaipe+JPn5cuXF8kDFyQnJ0eZmZmKiIhQxYoVlZSUpH79+kmStm/frt27dysqKqrA+3t7e8vb27tYawQAuIdly5apevXqateuXZEFY37IJgCAs0oqmyTyCQBgTVZWltq1a1dk83lYvcODDz6okydP5hnPyMjQgw8+aGmu0aNHa+XKldq1a5e2bNmi0aNHa/ny5br33nsVEBCgQYMGKT4+XsuWLdOGDRs0cOBARUVFcaBhAIDd4MGDNWvWrCLLJ7IJAHClijqbJPIJAHDlcvOpqFg+UcuHH36oSZMmyc/Pz2H89OnT+ve//63p06c7PdehQ4f0wAMP6MCBAwoICNC1117rcCrr119/XR4eHurXr58yMzMVExOjKVOmWC0ZAFDGXPhTrZycHL333ns6fvy4bDabAgICHJb917/+ZSmfyCYAQGEUZzZJ5BMAoHDyy6fvvvtO1157rSpWrOiwrNVj/TrdVExLS5MxRsYYnTx5Uj4+PvbbsrOztXjxYgUFBVl68GnTpl3ydh8fHyUmJioxMdHSvACAsu3CY1GdO3dOLVq00KpVq/TLL7/kCUar+UQ2AQAKozizSSKfAACFc/FxfMPDwyVJP//8s8N4Yc6f4nRTsWrVqrLZbLLZbLr66qvz3G6z2ThzGACgRFx4rF8PDw/ZbDZ5eHjop59+yrPsmjVryCcAQLEjmwAA7ujCfCpqTjcVly1bJmOMunbtqs8++0yBgYH227y8vFS3bl2FhoYWS5EAABSEfAIAuBuyCQBQHjjdVOzUqZMkKSUlRXXq1CnUbpEAABQ18gkA4G7IJgBAeeBUU/F///ufw/UtW7YUuOy11157ZRUBAOAk8gkA4G7IJgBAeeFUUzE8PFw2m03GmEsuZ7PZlJ2dXSSFAQBwOeQTAMDdkE0AgPLCqaZiSkpKcdcBAIBl5BMAwN2QTQCA8sKppmLdunWLuw4AACwjnwAA7oZsAgCUF06fqOViW7du1e7du5WVleUwfuutt15xUQAAFBb5BABwN2QTAKAsstxU/OOPP3T77bdry5YtDscKyT2jGccFAQC4AvkEAHA3ZBMAoCzzsHqHRx99VPXr19ehQ4dUuXJl/fLLL1q5cqVat26t5cuXF0OJAIDSbvv27QoPD7dfKlWqpAULFhTpY5BPAACrijufyCYAgFUlse1UVCzvqbhmzRp9//33qlGjhjw8POTh4aEOHTpo4sSJGjFihDZt2lQcdQIASrFrrrlGycnJkqT09HTVq1dPN910U5E+BvkEALCquPOJbAIAWFUS205FxfKeitnZ2fLz85Mk1ahRQ/v375f09wGJt2/fXrTVAQDKnC+//FLdunVTlSpVinRe8gkAcCWKI5/IJgDAlSiubaeiYrmp2KJFC23evFmSFBkZqZdfflmrV6/W+PHj1aBBgyIvEABQ/FauXKnevXsrNDRUNpst393rExMTVa9ePfn4+CgyMlLr1q0r1GPNnTtXAwYMuMKK8yKfAKDsKe35RDYBQNlT2rOpKFluKv7f//2fcnJyJEnjx49XSkqKOnbsqMWLF+vNN98s8gIBAMUvIyNDrVq1UmJiYr63z5kzR/Hx8Ro7dqw2btyoVq1aKSYmRocOHbIvEx4erhYtWuS55O6VIUlpaWn64Ycf1KNHjyJfB/IJAMqe0p5PZBMAlD2lPZuKkuVjKsbExNj/3ahRI23btk3Hjh1TtWrV7GcxAwC4XlpamsN1b29veXt757ts9+7d1b179wLnmjx5soYMGaKBAwdKkqZOnapFixZp+vTpGjVqlCTZj/txKV988YVuvvlm+fj4OLkWziOfAKB0KE/5RDYBQOlQnrKpKFluKuYnMDCwKKYBAEjy22Pk6WUKff/srL/vGxYW5jA+duxYjRs3zvJ8WVlZ2rBhg0aPHm0f8/DwUHR0tNasWWNprrlz5+qhhx6yXENhkU8AUDSuNJsk8ikX2QQARYdtJ9cqkqYiAMD97NmzR/7+/vbrBX3TdjlHjhxRdna2goODHcaDg4O1bds2p+c5ceKE1q1bp88++6xQdQAAygbyCQDgbsimwqGpCABllL+/v0MwulpAQIBSU1NdXQYAwMXIJwCAuyGbCsfyiVoAAOVLjRo15OnpmSfUUlNTFRIS4qKqAADlHfkEAHA35S2baCoCAC7Jy8tLERERSkpKso/l5OQoKSlJUVFRLqwMAFCekU8AAHdT3rKJnz8DAJSenq6dO3far6ekpCg5OVmBgYGqU6eO4uPjFRsbq9atW6tNmzZKSEhQRkaG/YxmAAAUB/IJAOBuyKbzaCoCALR+/Xp16dLFfj0+Pl6SFBsbq5kzZ2rAgAE6fPiwxowZo4MHDyo8PFxLlizJcwBiAACKEvkEAHA3ZNN5NBUBAOrcubOMMZdcZvjw4Ro+fHgJVQQAAPkEAHA/ZNN5HFMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYUsHVBQAAAAAA3EdafW95enmX6GMG/J5Zoo8HALhy5aap6IpgBFA+ZGcZaZWrq0BpRDYBKE7kE0qTEw3JQ6A8IJvKFn7+DAAAAAAAAMASmooAAAAAAAAALHFpU3HixIm64YYb5Ofnp6CgIPXp00fbt293WObMmTMaNmyYqlevLl9fX/Xr10+pqakuqhgAUNaRTQAAd0Q+AQDcjUubiitWrNCwYcO0du1affvttzp79qxuvvlmZWRk2Jd5/PHH9dVXX2nevHlasWKF9u/fr759+7qwagBAWUY2AQDcEfkEAHA3Lj1Ry5IlSxyuz5w5U0FBQdqwYYNuvPFGnThxQtOmTdOsWbPUtWtXSdKMGTPUtGlTrV27Vm3btnVF2QCAMoxsAgC4I/IJAOBu3OqYiidOnJAkBQYGSpI2bNigs2fPKjo62r5MkyZNVKdOHa1ZsybfOTIzM5WWluZwAQCgsMgmAIA7Ip8AAK7mNk3FnJwcPfbYY2rfvr1atGghSTp48KC8vLxUtWpVh2WDg4N18ODBfOeZOHGiAgIC7JewsLDiLh0AUEaRTQAAd0Q+AQDcgds0FYcNG6aff/5Zs2fPvqJ5Ro8erRMnTtgve/bsKaIKAQDlDdkEAHBH5BMAwB249JiKuYYPH66FCxdq5cqVuuqqq+zjISEhysrK0vHjxx2+cUtNTVVISEi+c3l7e8vb27u4SwYAlHFkEwDAHZFPAAB34dI9FY0xGj58uObPn6/vv/9e9evXd7g9IiJCFStWVFJSkn1s+/bt2r17t6Kiokq6XABAOUA2AQDcEfkEAHA3Lt1TcdiwYZo1a5a++OIL+fn52Y/1ERAQoEqVKikgIECDBg1SfHy8AgMD5e/vr0ceeURRUVGcvQwAUCzIJgCAOyKfAADuxqVNxXfeeUeS1LlzZ4fxGTNmKC4uTpL0+uuvy8PDQ/369VNmZqZiYmI0ZcqUEq4UAFBekE0AAHdEPgEA3I1Lm4rGmMsu4+Pjo8TERCUmJpZARQCA8o5sAgC4I/IJAOBu3ObszwAAAAAAAABKB5qKAIAS8frrr6t58+Zq1qyZRowY4dQeFwAAFDfyCQDgbkpLNtFUBAAUu8OHD+vtt9/Whg0btGXLFm3YsEFr1651dVkAgHKOfAIAuJvSlE0uPaYiAKD8OHfunM6cOSNJOnv2rIKCglxcEQAA5BMAwP2UlmxiT0UAgFauXKnevXsrNDRUNptNCxYsyLNMYmKi6tWrJx8fH0VGRmrdunVOz1+zZk2NHDlSderUUWhoqKKjo9WwYcMiXAMAQFlEPgEA3A3ZdB57KgIAlJGRoVatWunBBx9U375989w+Z84cxcfHa+rUqYqMjFRCQoJiYmK0fft2+7dm4eHhOnfuXJ77Ll26VJUqVdLChQu1a9cuVapUSd27d9fKlSt14403Fvu6ubOTYTZ5+thcXQaAMir7TOl/fyGfXIN8AlBcyKaylU00FQGgjEpLS3O47u3tLW9v73yX7d69u7p3717gXJMnT9aQIUM0cOBASdLUqVO1aNEiTZ8+XaNGjZIkJScnF3j/efPmqVGjRgoMDJQk9ezZU2vXrnXLYAQAFC/yCQDgbsimwik3TUW+bQNQXIr62zb/lExVqFD4Oc+dy5QkhYWFOYyPHTtW48aNszxfVlaWNmzYoNGjR9vHPDw8FB0drTVr1jg1R1hYmH744QedOXNGFStW1PLly/XQQw9ZrgUA4BpXmk0S+QQAKHpsO7lWuWkqAkB5s2fPHvn7+9uvF/RN2+UcOXJE2dnZCg4OdhgPDg7Wtm3bnJqjbdu26tGjh6677jp5eHioW7duuvXWWwtVDwCgdCOfAADuhmwqHJqKAFBG+fv7OwSjq7344ot68cUXXV0GAMDFyCcAgLshmwqHsz8DAC6pRo0a8vT0VGpqqsN4amqqQkJCXFQVAKC8I58AAO6mvGUTTUUAwCV5eXkpIiJCSUlJ9rGcnBwlJSUpKirKhZUBAMoz8gkA4G7KWzbx82cAgNLT07Vz50779ZSUFCUnJyswMFB16tRRfHy8YmNj1bp1a7Vp00YJCQnKyMiwn9EMAIDiQD4BANwN2XQeTUUAgNavX68uXbrYr8fHx0uSYmNjNXPmTA0YMECHDx/WmDFjdPDgQYWHh2vJkiV5DkAMAEBRIp8AAO6GbDqPpiIAQJ07d5Yx5pLLDB8+XMOHDy+higAAIJ8AAO6HbDqPYyoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLKri6AAAAyqussCx5VOL7PQDFI+d0lqtLQClFPgEoLmRT2UJSAAAAAAAAALCk3OypyLdtAIoL37YBAAAAAMobumwAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKGpCAAAAAAAAMASmooAAAAAAAAALKng6gIAAAAAAOVPvasOu7oEAJexa29NV5cAN0ZTEQAAF6kTekQVqni7ugwAZdS5jEztcXURKJXIJwC5irr5TzaVLeWmqUgwAiguBCMAAAAAoLzhmIoAAAAAAAAALKGpCAAAAAAAAMASlzYVV65cqd69eys0NFQ2m00LFixwuN0YozFjxqhWrVqqVKmSoqOjtWPHDtcUCwAoN8gnAIC7IZsAAO7GpU3FjIwMtWrVSomJifne/vLLL+vNN9/U1KlT9eOPP6pKlSqKiYnRmTNnSrhSAEB5Qj4BANwN2QQAcDcuPVFL9+7d1b1793xvM8YoISFB//d//6fbbrtNkvTvf/9bwcHBWrBgge66666SLBUAUI6QTwAAd0M2AQDcjdseUzElJUUHDx5UdHS0fSwgIECRkZFas2ZNgffLzMxUWlqawwUAgKJSmHwimwAAxYltJwCAK7htU/HgwYOSpODgYIfx4OBg+235mThxogICAuyXsLCwYq0TAFC+FCafyCYAQHFi2wkA4Apu21QsrNGjR+vEiRP2y549e1xdEgCgnCObAADuiHwCAFwJt20qhoSESJJSU1MdxlNTU+235cfb21v+/v4OFwCA67366qtq3ry5WrRooY8//tjV5RRaYfKJbAIA91UW8oltJwAoW0pLNrltU7F+/foKCQlRUlKSfSwtLU0//vijoqKiXFgZAMCqLVu2aNasWdqwYYN++uknvf322zp+/LiryyoU8gkAyo6ykk9kEwCUHaUpm1zaVExPT1dycrKSk5Ml/X2A4eTkZO3evVs2m02PPfaYXnjhBX355ZfasmWLHnjgAYWGhqpPnz6uLBsAYNGvv/6qqKgo+fj4qFKlSmrVqpWWLFni6rIKRD4BQPlQmvKJbAKA8qE0ZZNLm4rr16/Xddddp+uuu06SFB8fr+uuu05jxoyRJD311FN65JFH9NBDD+mGG25Qenq6lixZIh8fH1eWDQBlzsqVK9W7d2+FhobKZrNpwYIFeZZJTExUvXr15OPjo8jISK1bt87p+Vu0aKHly5fr+PHj+uuvv7R8+XLt27evCNegaJFPAOAeyKfzyCYAcA9k03kVXPngnTt3ljGmwNttNpvGjx+v8ePHl2BVAFD+ZGRkqFWrVnrwwQfVt2/fPLfPmTNH8fHxmjp1qiIjI5WQkKCYmBht375dQUFBkqTw8HCdO3cuz32XLl2qZs2aacSIEeratasCAgLUtm1beXp6Fvt6FRb5BADugXw6j2wCAPdANp3n0qYiAKD4pKWlOVz39vaWt7d3vst2795d3bt3L3CuyZMna8iQIRo4cKAkaerUqVq0aJGmT5+uUaNGSZL951gFGTp0qIYOHSpJGjx4sBo3buzsqgAAyhDyCQDgbsimwqGpCABuxuu3/arg4VXo+3vkZEmSwsLCHMbHjh2rcePGWZ4vKytLGzZs0OjRo88/hoeHoqOjtWbNGqfnOXTokIKCgrR9+3atW7dOU6dOtVwLAMA1rjSbJPIJAFD02HZyLZqKAFBG7dmzR/7+/vbrBX3TdjlHjhxRdna2goODHcaDg4O1bds2p+e57bbbdOLECVWpUkUzZsxQhQpEEACUR+QTAMDdkE2F455VAQCumL+/v0MwupqVb+YAAGUX+QQAcDdkU+G49OzPAAD3V6NGDXl6eio1NdVhPDU1VSEhIS6qCgBQ3pFPAAB3U96yiT0VAQCX5OXlpYiICCUlJalPnz6SpJycHCUlJWn48OGuLa6U6xL8m3x8K7q6jGL17cEmri4BQBlFPgEA3E15y6Zy01QsDxtuAFzjTPpZrXZ1EVcoPT1dO3futF9PSUlRcnKyAgMDVadOHcXHxys2NlatW7dWmzZtlJCQoIyMDPsZzYCC3BTi/LFjyiOarsClkU8AAHdDNp1XbpqKAICCrV+/Xl26dLFfj4+PlyTFxsZq5syZGjBggA4fPqwxY8bo4MGDCg8P15IlS/IcgBiANe7edKXpCVcjnwAA7oZsOo+mIgBAnTt3ljHmkssMHz68TO6yD6Bg7tb0pMlZ/pBPAAB3QzadR1MRAAAApYK7NTkvpbAN0KJcx7JweA4AAOC+aCoCAAAARaw0NUABoDwpzPsze8oD+aOpCAAAAAAAJF35lyL5NeBK+xctpb1+d8Je9GULTUUAAAAAAIpJeWtIlbf1BcozmooAAAAAAJehCQUApRNNRQAAAACAXZfg3+TjW9HVZQAA3JyHqwsAAAAAAAAAULrQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgCU1FAAAAAAAAAJbQVAQAAAAAAABgSQVXFwAAQHnVx2+zfP34fq84fZp2vatLAAAAAMokmooAAKDMusN/o6tLAFwm3ZajF1xdBAAAKLPYPQIAAAAAAACAJTQVAQAAAAAAAFhSbn7+zHGrABQXfl4GAADKktK07cSxc90HhxwpOvxdo7QoN01FAAAAAEDZUlYbWe7eVCqrz7u7KMvPLztklC00FQEAAAAAcCNluakEoOwoHfu0AwAAAAAAAHAbNBUBAAAAAAAAWEJTEQAAAAAAAIAlNBUBAAAAAAAAWEJTEQAAAAAAAIAlNBUBAAAAAAAAWEJTEQAAAAAAAIAlNBUBACXi9ttvV7Vq1XTHHXfkuW3hwoW65ppr1LhxY33wwQcuqA4AUF6RTwAAd1NasommIgCgRDz66KP697//nWf83Llzio+P1/fff69NmzbplVde0dGjR11QIQCgPCKfAADuprRkE01FAECJ6Ny5s/z8/PKMr1u3Ts2bN1ft2rXl6+ur7t27a+nSpS6oEABQHpFPAAB3U1qyiaYiAEArV65U7969FRoaKpvNpgULFuRZJjExUfXq1ZOPj48iIyO1bt26Inns/fv3q3bt2vbrtWvX1r59+4pkbgBA6UY+AQDcDdl0Hk1FAIAyMjLUqlUrJSYm5nv7nDlzFB8fr7Fjx2rjxo1q1aqVYmJidOjQIfsy4eHhatGiRZ7L/v37S2o1AABlDPkEAHA3ZNN5FVxdQHEzxkiS0tNzXFwJgLIq9/0l9/3mSp0zWdIVvGWdM1mSpLS0NIdxb29veXt753uf7t27q3v37gXOOXnyZA0ZMkQDBw6UJE2dOlWLFi3S9OnTNWrUKElScnJyoeoNDQ11+HZt3759atOmTaHmKi3IJgAloSjz6UqzyT6HyCd3Rj4BKG5sO5WxbDJl3J49e4wkLly4cCn2y++//35F71enT582ISEhRVKLr69vnrGxY8c6VYckM3/+fPv1zMxM4+np6TBmjDEPPPCAufXWWy2t47Jly0y/fv0cxs6ePWsaNWpk9u7da06ePGmuvvpqc+TIEUvzljZkExcuXEryciX5VJTZJJFP7o584sKFS0ld2Ha6vNKQTWV+T8XQ0FDt2bNHfn5+stlsri7HkrS0NIWFhWnPnj3y9/d3dTnFprysp8S6llUnTpxQnTp1FBgYeEXz+Pj4KCUlRVlZWVdckzEmz3teQd+0Xc6RI0eUnZ2t4OBgh/Hg4GBt27bN6Xmio6O1efNmZWRk6KqrrtK8efMUFRWlChUq6LXXXlOXLl2Uk5Ojp556StWrVy9UraUF2VQ6sK5lU3la16LIp6LMJol8cnfkU+lQXta1vKynVL7WlW0n55SWbCrzTUUPDw9dddVVri7jivj7+5f5Nxap/KynxLqWVR4eV36YWh8fH/n4+BRBNe7nu+++K/C2W2+9VbfeemsJVuNaZFPpwrqWTeVpXa80n8pyNknk04XIp9KlvKxreVlPqXytK9tOl1ZasokTtQAALqlGjRry9PRUamqqw3hqaqpCQkJcVBUAoLwjnwAA7qa8ZRNNRQDAJXl5eSkiIkJJSUn2sZycHCUlJSkqKsqFlQEAyjPyCQDgbspbNpX5nz+XZt7e3ho7dmyhf8tfWpSX9ZRY17KqLKxrenq6du7cab+ekpKi5ORkBQYGqk6dOoqPj1dsbKxat26tNm3aKCEhQRkZGfYzmqH8KAt/785iXcsm1rV0IZ/grLLw9+6s8rKu5WU9Jda1tCGbzrMZU0Tn8QYAlFrLly9Xly5d8ozHxsZq5syZkqS3335br7zyig4ePKjw8HC9+eabioyMLOFKAQDlCfkEAHA3ZNN5NBUBAAAAAAAAWMIxFQEAAAAAAABYQlMRAAAAAAAAgCU0FQEAAAAAAABYQlPRhRITE1WvXj35+PgoMjJS69atK3DZ999/Xx07dlS1atVUrVo1RUdHX3J5d2NlXS80e/Zs2Ww29enTp3gLLEJW1/X48eMaNmyYatWqJW9vb1199dVavHhxCVV7Zayua0JCgq655hpVqlRJYWFhevzxx3XmzJkSqrbwVq5cqd69eys0NFQ2m00LFiy47H2WL1+u66+/Xt7e3mrUqJH9gL1AaUA+XR755N7KQz6RTSiPyks+kU0FI5vcO5sk8qncMXCJ2bNnGy8vLzN9+nTzyy+/mCFDhpiqVaua1NTUfJe/5557TGJiotm0aZP59ddfTVxcnAkICDB79+4t4cqts7quuVJSUkzt2rVNx44dzW233VYyxV4hq+uamZlpWrdubXr06GFWrVplUlJSzPLly01ycnIJV26d1XX95JNPjLe3t/nkk09MSkqK+eabb0ytWrXM448/XsKVW7d48WLzzDPPmM8//9xIMvPnz7/k8n/88YepXLmyiY+PN1u3bjVvvfWW8fT0NEuWLCmZgoErQD6RT8aQT6Uhn8gmlDflJZ/IJrLJmNKbTcaQT+UNTUUXadOmjRk2bJj9enZ2tgkNDTUTJ0506v7nzp0zfn5+5sMPPyyuEotMYdb13Llzpl27duaDDz4wsbGxpSYYra7rO++8Yxo0aGCysrJKqsQiY3Vdhw0bZrp27eowFh8fb9q3b1+sdRY1Z4LxqaeeMs2bN3cYGzBggImJiSnGyoCiQT6RT8aQT6Utn8gmlAflJZ/IJrLJmLKRTcaQT+UBP392gaysLG3YsEHR0dH2MQ8PD0VHR2vNmjVOzXHq1CmdPXtWgYGBxVVmkSjsuo4fP15BQUEaNGhQSZRZJAqzrl9++aWioqI0bNgwBQcHq0WLFpowYYKys7NLquxCKcy6tmvXThs2bLDv5v/HH39o8eLF6tGjR4nUXJLWrFnj8NxIUkxMjNP/vwFXIZ/Ip1zkU9nLJ7IJpVl5ySeyiWzKVV6ySSKfSrsKri6gPDpy5Iiys7MVHBzsMB4cHKxt27Y5NcfTTz+t0NDQPP/53E1h1nXVqlWaNm2akpOTS6DColOYdf3jjz/0/fff695779XixYu1c+dOPfzwwzp79qzGjh1bEmUXSmHW9Z577tGRI0fUoUMHGWN07tw5/eMf/9C//vWvkii5RB08eDDf5yYtLU2nT59WpUqVXFQZcGnkE/mUi3wqe/lENqE0Ky/5RDaRTbnKSzZJ5FNpx56KpdCkSZM0e/ZszZ8/Xz4+Pq4up0idPHlS999/v95//33VqFHD1eUUu5ycHAUFBem9995TRESEBgwYoGeeeUZTp051dWlFbvny5ZowYYKmTJmijRs36vPPP9eiRYv0/PPPu7o0AEWEfCo7yCfyCShLymo+kU1kE+Bq7KnoAjVq1JCnp6dSU1MdxlNTUxUSEnLJ+7766quaNGmSvvvuO1177bXFWWaRsLquv//+u3bt2qXevXvbx3JyciRJFSpU0Pbt29WwYcPiLbqQCvO61qpVSxUrVpSnp6d9rGnTpjp48KCysrLk5eVVrDUXVmHW9dlnn9X999+vwYMHS5JatmypjIwMPfTQQ3rmmWfk4VF2vuMICQnJ97nx9/fnmza4NfKJfMpFPpW9fCKbUJqVl3wim8imXOUlmyTyqbQrO3+JpYiXl5ciIiKUlJRkH8vJyVFSUpKioqIKvN/LL7+s559/XkuWLFHr1q1LotQrZnVdmzRpoi1btig5Odl+ufXWW9WlSxclJycrLCysJMu3pDCva/v27bVz5057+EvSb7/9plq1arltKEqFW9dTp07lCb/cDwTGmOIr1gWioqIcnhtJ+vbbby/5/xtwB+QT+ZSLfCp7+UQ2oTQrL/lENpFNucpLNknkU6nnyrPElGezZ8823t7eZubMmWbr1q3moYceMlWrVjUHDx40xhhz//33m1GjRtmXnzRpkvHy8jKffvqpOXDggP1y8uRJV62C06yu68VK0xnMrK7r7t27jZ+fnxk+fLjZvn27WbhwoQkKCjIvvPCCq1bBaVbXdezYscbPz8/85z//MX/88YdZunSpadiwoenfv7+rVsFpJ0+eNJs2bTKbNm0ykszkyZPNpk2bzJ9//mmMMWbUqFHm/vvvty//xx9/mMqVK5snn3zS/PrrryYxMdF4enqaJUuWuGoVAKeRT+STMeRTacgnsgnlTXnJJ7KJbDKm9GaTMeRTeUNT0YXeeustU6dOHePl5WXatGlj1q5da7+tU6dOJjY21n69bt26RlKey9ixY0u+8EKwsq4XK03BaIz1df3hhx9MZGSk8fb2Ng0aNDAvvviiOXfuXAlXXThW1vXs2bNm3LhxpmHDhsbHx8eEhYWZhx9+2Pz1118lX7hFy5Yty/f/X+76xcbGmk6dOuW5T3h4uPHy8jINGjQwM2bMKPG6gcIin/5GPpFP7oxsQnlUXvKJbPob2VT6sskY8qm8sRlTxvadBQAAAAAAAFCsOKYiAAAAAAAAAEtoKgIAAAAAAACwhKYiAAAAAAAAAEtoKgIAAAAAAACwhKYiAAAAAAAAAEtoKgIAAAAAAACwhKYiAAAAAAAAAEtoKsKtLV++XDabTcePHy/xx7bZbLLZbKpateollxs3bpzCw8OL9LHj4uLsj79gwYIinRsAcGXIJrIJANwR+UQ+ASWNpiLcRufOnfXYY485jLVr104HDhxQQECAS2qaMWOGfvvttxJ/3DfeeEMHDhwo8ccFADgim84jmwDAfZBP55FPgOtUcHUBwKV4eXkpJCTEZY9ftWpVBQUFlfjjBgQEuOzDAADg0sgmAIA7Ip8AlDT2VIRbiIuL04oVK/TGG2/Yd13ftWtXnl34Z86cqapVq2rhwoW65pprVLlyZd1xxx06deqUPvzwQ9WrV0/VqlXTiBEjlJ2dbZ8/MzNTI0eOVO3atVWlShVFRkZq+fLlhap10qRJCg4Olp+fnwYNGqQzZ8443P7TTz/ppptuUo0aNRQQEKBOnTpp48aN9tsffPBB9erVy+E+Z8+eVVBQkKZNm1aomgAARY9sIpsAwB2RT+QT4C5oKsItvPHGG4qKitKQIUN04MABHThwQGFhYfkue+rUKb355puaPXu2lixZouXLl+v222/X4sWLtXjxYn300Ud699139emnn9rvM3z4cK1Zs0azZ8/W//73P91555265ZZbtGPHDkt1zp07V+PGjdOECRO0fv161apVS1OmTHFY5uTJk4qNjdWqVau0du1aNW7cWD169NDJkyclSYMHD9aSJUscdtFfuHChTp06pQEDBliqBwBQfMgmsgkA3BH5RD4BbsMAbqJTp07m0UcfdRhbtmyZkWT++usvY4wxM2bMMJLMzp077csMHTrUVK5c2Zw8edI+FhMTY4YOHWqMMebPP/80np6eZt++fQ5zd+vWzYwePbrAeiSZ+fPnO4xFRUWZhx9+2GEsMjLStGrVqsB5srOzjZ+fn/nqq6/sY82aNTMvvfSS/Xrv3r1NXFycUzUAAEoO2UQ2AYA7Ip/IJ8AdsKciSp3KlSurYcOG9uvBwcGqV6+efH19HcYOHTokSdqyZYuys7N19dVXy9fX135ZsWKFfv/9d0uP/euvvyoyMtJhLCoqyuF6amqqhgwZosaNGysgIED+/v5KT0/X7t277csMHjxYM2bMsC//9ddf68EHH7RUCwDAfZBNAAB3RD4BKE6cqAWlTsWKFR2u22y2fMdycnIkSenp6fL09NSGDRvk6enpsNyFYVpUYmNjdfToUb3xxhuqW7euvL29FRUVpaysLPsyDzzwgEaNGqU1a9bohx9+UP369dWxY8cirwUAUDLIJgCAOyKfABQnmopwG15eXg4HCC4q1113nbKzs3Xo0KErDp+mTZvqxx9/1AMPPGAfW7t2rcMyq1ev1pQpU9SjRw9J0p49e3TkyBGHZapXr64+ffpoxowZWrNmjQYOHHhFdQEAigfZBABwR+QTAHdAUxFuo169evrxxx+1a9cu+fr6KjAwsEjmvfrqq3XvvffqgQce0GuvvabrrrtOhw8fVlJSkq699lr17NnT6bkeffRRxcXFqXXr1mrfvr0++eQT/fLLL2rQoIF9mcaNG+ujjz5S69atlZaWpieffFKVKlXKM9fgwYPVq1cvZWdnKzY2tkjWFQBQtMgmAIA7Ip8AuAOOqQi3MXLkSHl6eqpZs2aqWbOmw3E0rtSMGTP0wAMP6IknntA111yjPn366KefflKdOnUszTNgwAA9++yzeuqppxQREaE///xT//znPx2WmTZtmv766y9df/31uv/++zVixAgFBQXlmSs6Olq1atVSTEyMQkNDr2j9AADFg2wCALgj8gmAO7AZY4yriwDckc1m0/z589WnT59imT89PV21a9fWjBkz1LdvX5fUAAAoXcgmAIA7Ip+A8ok9FYFLuPvuu3XVVVcV6Zw5OTk6dOiQnn/+eVWtWlW33nprnmX+8Y9/FMuBkAEApR/ZBABwR+QTUP6wpyJQgJ07d0qSPD09Vb9+/SKbd9euXapfv76uuuoqzZw5U926dcuzzKFDh5SWliZJqlWrlqpUqVJkjw8AKL3IJgCAOyKfgPKJpiIAAAAAAAAAS/j5MwAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABLaCoCAAAAAAAAsISmIgAAAAAAAABL/h/zpy/zH/d+pQAAAABJRU5ErkJggg==",
    193217      "text/plain": [
    194218       "<Figure size 640x480 with 6 Axes>"
     
    225249  {
    226250   "cell_type": "code",
    227    "execution_count": 8,
    228    "id": "e2aa2f5b-c527-44f8-98a5-ebde0e62f01f",
    229    "metadata": {},
    230    "outputs": [
    231     {
    232      "data": {
    233       "text/plain": [
    234        "'kg/kg'"
    235       ]
    236      },
    237      "execution_count": 8,
    238      "metadata": {},
    239      "output_type": "execute_result"
    240     }
    241    ],
    242    "source": [
    243     "profile = my_sim.get_subset('h2o_vap',)\n",
    244     "profile.units"
    245    ]
    246   },
    247   {
    248    "cell_type": "code",
    249    "execution_count": 9,
     251   "execution_count": 7,
    250252   "id": "4f544843-012d-41a6-8d7a-c4b40f45a5e1",
    251253   "metadata": {},
     
    253255    {
    254256     "data": {
    255       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAG1CAYAAADjkR6kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsF0lEQVR4nOzdd3xN5x/A8c/Jzd6JkBghMUKsEDOoTVCrtGatKv2pqlHVasuPqtHWbGu0KNpSrRqt2tTeYgtBjBgZiOx1c+/5/ZHm/lwxEsTN+L5fr/vinnPuOd/nOXd88zzPeY6iqqqKEEIIIUQ+ZGbqAIQQQgghnpUkMkIIIYTItySREUIIIUS+JYmMEEIIIfItSWSEEEIIkW9JIiOEEEKIfEsSGSGEEELkW+amDiC36fV6bt++jYODA4qimDocIYQQQmSDqqrEx8dTokQJzMwe3+5S4BOZ27dv4+npaeowhBBCCPEMbty4QalSpR67vsAnMg4ODkBGRTg6Oj51e61Wy9atW2ndujUWFha5HV6eIGWWMhdUUmYpc0FVGMocFxeHp6en4Xf8cQp8IpPZneTo6JjtRMbW1hZHR8cC++Z4mJRZylxQSZmlzAVVYSrz04aFyGBfIYQQQuRbksgIIYQQIt+SREYIIYQQ+VaBHyMjRE7pdDq0Wq2pw3jhtFot5ubmpKSkoNPpTB3OSyFlljIXVAWhzBYWFmg0mufejyQyQvxLVVUiIiKIiYkxdSi5QlVVPDw8uHHjRqGZU0nKLGUuqApKmZ2dnfHw8HiuMkgiI8S/MpOYYsWKYWtrm6+/HB5Fr9eTkJCAvb39EyeXKkikzFLmgiq/l1lVVZKSkoiKigKgePHiz7wvSWSEIKM7KTOJKVKkiKnDyRV6vZ60tDSsra3z5Rffs5AyS5kLqoJQZhsbGwCioqIoVqzYM3czmbT0Xl5eKIqS5TF06FAAUlJSGDp0KEWKFMHe3p6uXbsSGRlpypBFAZU5JsbW1tbEkQghROGR+Z37POMSTZrIHD16lPDwcMNj27ZtALzxxhsAjBw5kvXr17Nq1Sp2797N7du36dKliylDFgVcQetOEkKIvOxFfOeatGupaNGiRs+nTZtGuXLlaNKkCbGxsSxevJgVK1bQvHlzAJYsWYKvry+HDh2ifv36j9xnamoqqamphudxcXFARraXnYwvc5uCeNXK40iZM/5VVRW9Xo9erzdlaLlGVVXDvwW1jA+TMkuZC6qCUma9Xo+qqmi12ixdS9n9TcozY2TS0tL45ZdfGDVqFIqiEBQUhFarpWXLloZtKlWqROnSpTl48OBjE5mpU6cyceLELMu3bt2ao26DzNahwqQwl9nc3BwPDw8SEhJIS0szcVQv1rvvvktsbCzLly8HID4+3sQRvXhhYWH4+fmxZ88eqlWrlmX985R53759dOjQgWvXruHk5PTIbVasWMHYsWO5fv36Mx/nRcsr53natGls2LCBvXv35vqx8kqZX6b8Xua0tDSSk5PZs2cP6enpRuuSkpKytY88k8isW7eOmJgY+vfvD2RcQWJpaYmzs7PRdu7u7kRERDx2P2PHjmXUqFGG55k3nWrdunW277W0bds2WrVqVeDvX5FJymxBSkoKN27cwN7eHmtra1OHl21PGxw3fvx45s6di6qqODg4EB8fj4ODQ4HrQrO3twfAzs7O6HOuqupzl7lly5bcunULd3f3x+7D2toaRVGy9R2T215EmV8kKysrNBpNrtZNXivzy1BQypySkoKNjQ2NGzfO8t2b2aPyNHkmkVm8eDFt27alRIkSz7UfKysrrKyssiy3sLDI0Y90TrdXVTVfv5kg52UuCDLLrNPpUBQFMzOzfHUFQHh4uOH/v/32G+PHjyckJMSwzN7e3vAjn9n8nFnOgiSzPA+fv+cts1arxdra+qnfSw8e39QeLLOiKOh0OszNTfdVn/m9mJt1U5Df249TUMpsZmaGoiiP/P3J7u9Rnij99evX2b59O2+//bZhmYeHB2lpaVkmJ4uMjMTDw+MlR/h0y/u+wj8B1dg9uCp8XQGSok0dkigEPDw8DA8nJycURTFaZm9vT//+/encubPhNc2bN2fYsGGMGDECFxcX3N3dWbhwIYmJiQwYMAAHBwfKly/Ppk2bjI519uxZ2rZti729Pe7u7vTp04e7d+/mKN7Q0FA6deqEu7s79vb21KlTh+3btxtt4+XlxZQpU3jrrbdwcHCgdOnS/PDDD0bbHDlyhJo1a2JtbU3t2rU5ceLEU48dHh7Oq6++io2NDd7e3qxYsQIvLy9mz55t2EZRFObPn0/Hjh2xs7Nj8uTJ7Nq1C0VRjL6Lli5dSunSpbG1teW1117j3r17Tz3+0aNHadWqFW5ubjg5OdGkSROOHz9uWN+rVy+6d+9u9BqtVoubmxs//fQTkPHjNXXqVLy9vbGxscHPz48//vjDsP2uXbvQaDRs27aNOnXqYGVlxb59+7JV79mpn5iYGN5++22KFi2Ko6MjzZs359SpU0b7mTZtGu7u7jg4ODBw4EBSUlKeWjdCPI88kcgsWbKEYsWK8eqrrxqW1apVCwsLC3bs2GFYFhISQlhYGAEBAaYI87H0qh6H8PsUv5+Oq5oIiVGQIJeJ53eqqpKUlm6SR+ZAvtyybNky3NzcOHLkCMOGDWPIkCG88cYbNGjQgOPHj9O6dWv69Olj6KOOiYmhefPm1KxZk2PHjrF582YiIyPp1q1bjo6bkJBAu3bt2LFjBydOnKBNmzZ06NCBsLAwo+1mzJhhSFDeffddhgwZYmhpSkhIoH379lSuXJmgoCAmTJjA6NGjn3rsvn37cvv2bXbt2sXq1av54YcfDJNxPWjChAm89tprnDlzhrfeeivL+sOHDzNw4EDee+89Tp48SbNmzfjiiy+eevz4+Hj69evHvn37OHToEBUqVKBdu3aGMQ69e/dm/fr1JCQkGF6zZcsWkpKSeO2114CMMYA//fQTCxYs4Ny5c4wcOZI333yT3bt3Gx1r4sSJTJkyhfPnz1O9evVs1Xt26ueNN94gKiqKTZs2ERQUhL+/Py1atCA6OuMPt99//50JEyYwZcoUjh07RvHixZk3b95T60aI52HyriW9Xs+SJUvo16+fUfOnk5MTAwcOZNSoUbi6uuLo6MiwYcMICAh47EBfU4lMjMQtJqOZT2P1bx9fQiQU8zVhVOJ5JWt1VB6/xSTHDv48EFvL3Pt4+vn58dlnnwEZ48qmTZuGm5sbgwYNAjLG1syfP5/Tp09Tv359vvvuO2rWrMmUKVMM+/jxxx/x9PTk4sWL+Pj4ZPu4fn5+hueTJk1i7dq1/PXXX7z33nuG5e3atePdd98F4KOPPmLWrFns3LmTihUrsmLFCvR6PYsXL8ba2poqVapw8+ZNhgwZ8tjjXrhwge3bt3P06FFq164NwKJFi6hQoUKWbXv16sWAAQMMz69cuWK0fs6cObRp04YxY8YA4OPjw4EDB9i8efMTy5559WWmH374AWdnZ3bv3k379u0JDAzEzs6OtWvX0qdPHyBjEHHHjh1xcHAgNTWVKVOmsH37dsMfc2XLlmXfvn18//33NGnSxLDvTz75hFatWhm6HFxdXZ9Y79mpn3379nHkyBGioqIM3ffTp09n3bp1/PHHHwwePJjZs2czcOBABg4cCMAXX3zB9u3bpVVG5CqTt8hs376dsLCwR/7lM2vWLNq3b0/Xrl1p3LgxHh4erFmzxgRRPtnVOyG4/vtH1H3bf69qiJcWGZF3Va9e3fB/jUZDkSJFjK72cXd3BzD8RX7q1Cl27txpGHNjb29PpUqVgIzuouXLlxute9wVKgkJCYwePRpfX1+cnZ2xt7fn/PnzWVpkHowvs7ssM5bMVoYHBwY+rZU2JCQEc3Nz/P39DcvKly+Pi4tLlm0zf8gf5/z589SrV89o2YPHDwsLM6qLzOQvMjKSQYMGUaFCBZycnHB0dCQhIcFQdnNzc7p162a4uiwxMZE///yT3r17A3D58mWSkpJo1aqV0f5/+uknQkNDjeKpUaOG0fOn1Xt26ufUqVMkJCQYJijNfFy9etVw/KfVjRC5weQtMq1bt35sM7q1tTVz585l7ty5LzmqnAm/fBoXIMXSjCjLfz/40rWU79lYaAj+PNBkx85NDw+iyxxs9+Bz+P+AwoSEBDp06MCXX36ZZV/FixdHr9cb/YCVLFnykccdPXo027ZtY/r06ZQvXx4bGxtef/31LJe8Pyq+lzVXhp2d3XO9vkSJEpw8edLw3NXVFYB+/fpx79495syZQ5kyZbCysiIgIMCo7L1796ZJkyZERUWxbds2bGxsaNOmDYChy2nDhg1Z6vfhCxweLkN26/1JEhISKF68OLt27cqy7uGrS4V4mUyeyBQEMVcvAnDf2Y47SCJTUCiKkqvdO/mJv78/q1evxsvL67FXwDg4ODx1P/v376d///6GMR8JCQlcu3YtR7H4+vry888/k5KSYmiVOXTo0BNfU7FiRdLT0zlx4gS1atUCMlo47t+/n6NjZx7/8OHDRssePL65uTnly5fP8rr9+/czb9482rVrB8CNGzeyDJZu0KABnp6e/Pbbb2zatIk33njDkNRVrlwZKysrwsLCjLqRsuNp9Z6d+vH39yciIgJzc3O8vLweeZzMuunbt69h2dPOjRDPy+RdSwVByo2MSbASi7gRpTpnLJRERhQgQ4cOJTo6mp49e3L06FFCQ0PZsmULAwYMQKfTZXs/FSpUYM2aNZw8eZJTp07Rq1evHLe09OrVC0VRGDRoEMHBwWzcuJHp06c/8TWVKlWiZcuWDB48mCNHjnDixAkGDx6MjY1NjqdNeP/999m8eTPTp0/n0qVLfPfdd08dHwMZZf/55585f/48hw8fpnfv3oab5j1cvgULFrBt2zZDtxJkJIqjR49m5MiRLFu2jNDQUI4fP863337LsmXLnnrsJ9V7duqnZcuWBAQE0LlzZ7Zu3cq1a9c4cOAAn376KceOHQNg+PDh/PjjjyxZsoSLFy/y3//+l3PnzmWrXoV4VpLIvAjh/yYtHqW4o/47RkYSGVGAlChRgv3796PT6WjdujXVqlVjxIgRODs752gOi5kzZ+Li4kKDBg3o0KEDgYGBRuMyssPe3p7169dz5swZatasyaeffvrILq+H/fTTT7i7u9O4cWNee+01Bg0ahIODQ44nQKxfvz4LFy5kzpw5+Pn5sXXrVsPA6SdZvHgx9+/fx9/fnz59+vD+++9TrFixLNv17t2b4OBgSpYsScOGDY3WTZo0iXHjxjF16lR8fX1p06YNGzZswNvb+4nHzk69P61+FEVh48aNNG7cmAEDBuDj40OPHj24fv26YUxV9+7dGTduHGPGjKFWrVpcv379iYOwhXgRFDW3r/M0sbi4OJycnIiNjc32zL4bN26kXbt22ZqMJyU9hV+7+lM/RCW871ssTFD51XIyuFWE9468iCLkupyWuSB4uMwpKSlcvXoVb2/vfDWzb07o9Xri4uJwdHTM1xNo5cSTynzz5k08PT3Zvn07LVq0MFGEL96LOs/5qX7kvZ1/y/yk797s/n7LAIDndD3uOsViM3JBt3IVuXPy35lWpUVGiDzln3/+ISEhgWrVqhEeHs6YMWPw8vKicePGpg4tT5D6EfmVJDLP6VrcNYrFZPzfrYI3d04kZzxJiYH0VDDPersEIcTLp9Vq+eSTT7hy5QoODg40aNCA5cuXF5pWyKeR+hH5lSQyz+lGeAil/53rqWgFbxLMwkhVzbFS0jNaZZxLmzZAIQQAgYGBBAaa5nL6/EDqR+RX+bdjLY+IvnoBAK2DDRYO9hRzsOYOzhkrE7JOfy6EEEKIF0cSmeeUFHYVALV4UQDcHa25I5dgCyGEEC+FJDLPQVVV9LcjALDyzOhC8nC0/v8l2PERpgpNCCGEKBQkkXkO91Lu4XwvFQBHr4ybq3k4PdgiI11LQgghRG6SROY5XI29SrHYjP/beJYBMhIZmd1XCCGEeDkkkXkO1+KuUTQmYw4Zi1KlgH+7lgyDfSWREUIIIXKTJDLP4VrM/1tkLEtl3I3W/cExMpLIiDygf//+dO7c2dRh5DmKorBu3brHrr927RqKohjdyVpk2LVrF4qiEBMTY+pQhJBE5nlE3r6EtRZUBcxLlACMu5ZUSWRELlMU5YmPCRMmMGfOHJYuXWrqULOIjo6md+/eODo64uzszMCBA0lISHhpxw8PD6dt27Yv7XhCiNwhE+I9h8TrVwBQi7hgZmkJZF615JyxQUIUqCrk8O66QmRXeHi44f+//fYb48ePJyQkxLDM3t4ee3t7gBzfZTq39e7dm/DwcLZt24ZWq2XAgAEMHjyYFStW5Opx09LSsLS0xMPDI1ePk5u0Wq3MuCvEv6RF5hlpdVq4nXFVkuW/42MAbCw1pFm7AaDo0iD5vkniE4WDh4eH4eHk5ISiKEbL7O3ts3QtNW/enGHDhjFixAhcXFxwd3dn4cKFJCYmMmDAABwcHChfvjybNm0yOtbZs2dp27Yt9vb2uLu706dPH+7evftMcZ8/f57NmzezaNEi6tWrR6NGjfj2229ZuXIlt2/fzvZ+0tPTef/993F2dqZIkSJ89NFH9OvXz6i87du3N5TXzc3NMHvtw11LR44coWbNmlhbW1O7dm1OnDjx1OPfu3ePnj17UrJkSWxtbalWrRq//vqrYf0PP/xAiRIlsiSRnTp14q233jI8//PPP/H398fa2pqyZcsyceJE0tPTDesVRWH+/Pl07NgROzs7Jk+ejE6nY+DAgXh7e2NjY0PFihWZM2dOjutHr9czdepUw378/Pz4448/jPazceNGfHx8sLGxoVmzZly7du2pdSPEyyKJzDO6EX8Dt5iMLyfb0t5G64o4OXBfzfgrWC7BzsdUFdISTfPI5ZvSL1u2DDc3N44cOcKwYcMYMmQIb7zxBg0aNOD48eO0bt2aPn36kJSUBEBMTAzNmzenZs2aHDt2jM2bNxMZGUm3bt0M+5wyZYqhBehxj7CwMAAOHjyIs7MztWvXNry+ZcuWmJmZcfjw4WyX48svv2T58uUsWbKE/fv3ExcX98hxLz/99BOWlpbs37+fBQsWZFmfkJBA+/btqVy5MkFBQUyYMIHRo0c/9fgpKSnUqlWLDRs2cPbsWQYPHkyfPn04cuQIAG+88Qb37t1j586dhtdER0ezefNmevfuDcDevXvp27cvw4cPJzg4mO+//56lS5cyefJko2NNmDCB1157jTNnzvDWW2+h1+spVaoUq1atIjg4mPHjx/PJJ5/w+++/56h+pk6dyk8//cSCBQs4d+4cI0eO5M0332T37t0A3Lhxgy5dutChQwdOnjzJ22+/zccff/zUuhHiZZGupWd0Ne6q4a7XD7bIALg7WXPnvhMuSgIkRECxSqYIUTwvbRJMKWGaY39yGyztcm33fn5+fPbZZwCMHTuWadOm4ebmxqBBgwAYP3488+fP5/Tp09SvX5/vvvuOmjVrMmXKFMM+fvzxRzw9Pbl48SI+Pj785z//MUpsHqXEv2PJIiIiKFasmNE6c3NzXF1diYjI/kSS3377LWPHjuW1114D4LvvvmPjxo1ZtqtQoQJfffXVY/ezYsUK9Ho9ixcvxtramipVqnDz5k2GDBnyxOOXLFnSKOEZNmwYW7Zs4ffff6du3bq4uLjQtm1bVqxYQYsWLQD4448/cHNzo1mzZgBMnDiRjz/+mH79+gFQtmxZJk2axJgxY/jvf/9r2HevXr0YMGCA0fEnTpxo+L+3tzcHDx5k1apVtGnTJlv1k5qaypQpU9i+fTsBAQGG4+/bt4/vv/+eJk2aMH/+fMqVK8eMGTMAqFixImfOnOHLL798Yt0I8bJIIvOMrsX+/67XFg8lMh6OVkSpzvhwS1pkRJ5UvXp1w/81Gg1FihShWrVqhmXu7u4AREVlvH9PnTrFzp07DeNtHhQaGoqPjw+urq64urrmcuT/FxsbS2RkJHXr1jUs02g01KpVK0tXjr+//xP3df78eapXr461tbVhWeYPe6YqVapw/fp1AF555RU2bdqETqdjypQp/P7779y6dYu0tDRSU1OxtbU1vK53794MGjSIefPmYWVlxfLly+nRowdmZhkN4qdOnWL//v1GLTA6nY6UlBSSkpIM+3qw9SrT3Llz+fHHHwkLCyM5OZm0tDRq1KiR7fq5fPkySUlJtGrVymi/aWlp1KxZ01A39erVM1r/cN0IYUqSyDyjBG0CbmkZLTLaKOOrkzxdbLmtZoyTUUP/Qan+5L9SRR5lYZvRMmKqY+fm7h8aKKooitEy5d8B6pk/eAkJCXTo0OGRf4UXL14cyOhaerDF5lGCg4MpXbo0Hh4ehiQpU3p6OtHR0bkyCNfO7vlbtzZu3IhWqwXAxsYGgK+//po5c+Ywe/ZsqlWrhp2dHSNGjCAtLc3wug4dOqCqKhs2bKBOnTrs3buXWbNmGdYnJCQwceJEunTpkuWYDyZWD5dh5cqVjB49mhkzZhAQEICDgwNff/11jrrmMq8S27BhAyVLljRaZ2Vlle39CGFKksg8o07lOjG71o/43E4jav48nNp3MMwl06VWKYbvbEk3dsOplVD/XShe/Sl7FHmOouRq905+4u/vz+rVq/Hy8sLc/NFfGznpWgoICCAmJoagoCBq1aoFwD///INer8/y1//jODk54e7uztGjR2ncuDGQ0ZJx/PhxQ6tEdvn6+vLzzz+TkpJiSB4OHTpktE2ZMmWyvG7//v106tSJN998E8hI/C5evEjlypUN21hbW9OlSxeWL1/O5cuXqVixolELkb+/PyEhIZQvXz5HMe/fv58GDRrw7rvvGpaFhoYa/p+d+qlcuTJWVlaEhYXRpEmTRx7H19eXv/76y2jZw3UjhCnJYN9n5OXkRc1+IzlbWsEsVcv1/36K+u8AzZLONvjVb8lfugAUVNStn+X64E0hctPQoUOJjo6mZ8+eHD16lNDQULZs2cKAAQPQ6XQAuLq6Ur58+Sc+MpMgX19f2rRpw6BBgzhy5Aj79+/nvffeo0ePHoZkJzuGDRvG1KlT+fPPPwkJCWH48OHcv3/f0KKUXb169UJRFAYNGkRwcDAbN25k+vTpT31dhQoV2LZtGwcOHOD8+fO88847REZmnT+qd+/ebNiwgR9//NEwyDfT+PHj+emnn5g4cSLnzp3j/PnzrFy50jCG6UnHPnbsGFu2bOHixYuMGzeOo0ePGm3ztPpxcHBg9OjRjBw5kmXLlhEaGsrx48f59ttvWbZsGZCRoF66dIkPP/yQkJAQVqxYkSfnJRKFlyQyz+HNyn3Y29MXrQbS9x8mbssWw7p3m5bjO6UXqao5ytXdcGmbCSMV4vmUKFGC/fv3o9PpaN26NdWqVWPEiBE4Ozsbxnrk1PLly6lUqRItWrSgXbt2NGrUiB9++MFoG0VRnvij+dFHH9GzZ0/69u1LQEAA9vb2BAYGGnXJZIe9vT3r16/nzJkz1KxZk08//TRbg1k/++wz/P39CQwMpGnTpnh4eDxyFuXmzZvj6upKSEgIvXr1MloXGBjI33//zdatW6lTpw7169dn1qxZj2wBetA777xDly5d6N69O/Xq1ePevXtGrTOQvfqZNGkS48aNY+rUqYYEc8OGDXh7Z1yNWbp0aVavXs26devw8/NjwYIFT+1CFOJlUlS1YDcVxMXF4eTkRGxsLI6Ojk/dXqvVsnHjRtq1a5etCaeuxF7h19Gd6LI3Ha2rA1W27EDj4ADA7O0Xsd41kf+Y/43qVhFlyAHQ5L3evJyWuSB4uMwpKSlcvXoVb2/vHP8I5hd6vZ64uDgcHR2fOfl4ma5evYqPjw/BwcFUqFAhW6/R6/X4+vrSrVs3Jk2alO/K/CI8qcwP109BIec5/5b5Sd+92f39zr+lzyPKOpWlxJBh3HYFi+h4rk+falj39itlWWH5BtGqPcrdEDjxkwkjFSJ/2bhxI4MHD35iEnP9+nUWLlzIxYsXOXPmDEOGDOHq1atZWj0KK6kfURhIIvMC9KnxFtu7lQMg5fe1JJ06BYC9lTn9mvsxJ70rAOrOKZASZ7I4hchPhg4dyty5c5+4jZmZGUuXLqVOnTo0bNiQM2fOsH37dnx9fV9SlHmb1I8oDPJeP0c+ZG5mzsB+s9mxvzONz+i4+PFI/NZvRTE3p3e90gTufZUryVsomxgB++dAi3GmDlmIAsHT05P9+/ebOow8S+pHFAbSIvOClHcpj9XwwcRbg9XVcMIWzwfA2kLD0FaVmZbeEwD14HcQe9OUoQohhBAFhiQyL9CbDd5lR8eMWX5j5y4g7WZGwtKlZkmuFGnKYX0llPQU+OcLU4YphBBCFBiSyLxA5mbmdBnxHedLK1ik6Tn9yfuoqoq5xozRgRWZrP13/ohTv8LtkyaNVQghhCgIJJF5wSq6ViRh+Jukm4HdkfPc3rAGgMAqHigl/Vmna5CxoUySJ4QQQjw3SWRyQc+2H7KveVEAwidNIj0+HkVR+KhNJb7WdidVtYBre+HiZhNHKoQQQuRvksjkAgszC5p9OpcIFwW72FSCJn0AQIPybniX9+VHXZuMDbeOA53WhJEKIYQQ+ZskMrmkUvFqRLzbEQD7v/YScWwfAB8GVmReeifuqQ5w7xIELTVhlKIw6N+//yOnzRd517Vr11AUhZMnT2b7NS/jPE+YMCHHN+TMr5o2bcqIESMMz728vJg9e7bJ4snPFEVh3bp1ubZ/SWRy0eu9JnHS3wkz4NLYD1DT0/HzdKZR1bLM/neSPHZNhZRYk8Yp8i9FUZ74mDBhAnPmzMmTN/mLjo6md+/eODo64uzszMCBA0lISDB1WM/sRf7QeXp6Eh4eTtWqVV/I/oQoyCSRyUUWGgv8Pp9FgjW43Yjj4DcZE+F90Loiv+mbE6ovDkn3YN8sE0cq8qvw8HDDY/bs2Tg6OhotGz16NE5OTjg7O5s61Cx69+7NuXPn2LZtG3///Td79uxh8ODBpg7L5NLS0tBoNHh4eBjuFi7Es0pLSzN1CLnO5InMrVu3ePPNNylSpAg2NjZUq1aNY8eOGdarqsr48eMpXrw4NjY2tGzZkkuXLpkw4pypXD6AsD5NAbBZ+id3r56nfDF7XqvlzdT0jPudqAfnQcwNE0Yp8isPDw/Dw8nJCUVRjJbZ29tn6XJo3rw5w4YNY8SIEbi4uODu7s7ChQtJTExkwIABODg4UL58eTZt2mR0rLNnz9K2bVvs7e1xd3enT58+3L1795niPn/+PJs3b2bRokXUq1ePRo0a8e2337Jy5Upu376do30tWrQIX19frK2tqVSpEvPmzTNaHxQURK1atbC2tqZ27dqsXbvWqNtm6dKlWRK9devWoSiK4XloaCidOnXC3d0de3t76tSpw/bt2w3rmzZtyvXr1xk5cqShNSzT6tWrqVKlClZWVnh5eTFjxgyjY3l5eTFp0iT69u2Lo6MjgwcPztK1pNPpGDhwIN7e3tjY2FCxYkXmzJmT7TqKi4vDxsYmyzldu3YtDg4OJCUlARl3y/bx8cHW1payZcsybtw4tNrHj+N7uPsFoHPnzvTv39/wPDU1ldGjR1OyZEns7OyoV68eu3bteuw+ly5d+tjWRci4WeLnn39OqVKlsLKyokaNGmze/P8LJzLrbs2aNTRr1gxbW1v8/Pw4ePCgYZt79+7Rs2dPSpYsia2tLdWqVePXX399Si3+31tvvUX79u2Nlmm1WooVK8bixYsf+7on1e/FixdRFIULFy4YvWbWrFmUK1fO8Dzzc+jo6IiPjw99+/Y1+hw2bdqU9957jxEjRuDm5kZgYCAAM2fOpFq1atjZ2eHp6cm7776bpQV04cKFeHp6Ymtry2uvvcbMmTOzfDb+/PNP/P39sba2pmzZskycOJH09HTD+kuXLtG4cWOsra2pXLky27Zty0aNPh+TJjL379+nYcOGWFhYsGnTJoKDg5kxYwYuLi6Gbb766iu++eYbFixYwOHDh7GzsyMwMJCUlBQTRp4z7d+fxTUvG6zTVI59PASA4S0rsMesNof0vii6VNjxuYmjFA9TVZUkbZJJHrl9U/ply5bh5ubGkSNHGDZsGEOGDOGNN96gQYMGHD9+nNatW9OnTx/DD1xMTAzNmzenZs2aHDt2jM2bNxMZGUm3bt0M+5wyZQr29vZPfISFhQFw8OBBnJ2dqV27tuH1LVu2xMzMjMOHD2e7HMuXL2f8+PFMnjyZ8+fPM2XKFMaNG8eyZcsASEhIoEePHvj6+hIUFMSECRMYPXp0jusrISGBdu3asWPHDk6cOEGbNm3o0KGDoTxr1qyhVKlSfP7554bWMMhIorp160aPHj04c+YMEyZMYNy4cVm6+qZPn46fnx8nTpxg3ListzDR6/WUKlWKVatWERwczPjx4/nkk0/4/fffsxW/o6Mj7du3Z8WKFUbLly9fTufOnbG1tQXAwcGBpUuXEhwczJw5c1i4cCGzZj1fi/F7773HwYMHWblyJadPn+aNN96gTZs2j/2DtHv37katir/++ivm5uY0bNgQgDlz5jBjxgymT5/O6dOnCQwMpHPnzoSGhhrt59NPP2X06NGcPHkSHx8fevbsafjBTUlJoVatWmzYsIGzZ88yePBg+vTpw5EjR7JVprfffpvNmzcbzjPA33//TVJSEt27d3/s655Uvz4+PtSuXZvly5cbvWb58uWGm3w++Dk8cuQIf/zxR5bPIWR8vi0tLdm/fz8LFiwAMu679c0333Du3DmWLVvGP//8w5gxYwyv2b9/P//5z38YPnw4J0+epFWrVkyePNlov3v37qVv374MHz6c4OBgvv/+e5YuXWrYTq/X06VLFywtLTl8+DALFizgo48+yladPhfVhD766CO1UaNGj12v1+tVDw8P9euvvzYsi4mJUa2srNRff/01W8eIjY1VATU2NjZb26elpanr1q1T09LSsrV9dp09skk97VtJDa5YSd23Yoaqqqo6af059dWPv1HV/zpmPG4GvdBjZldulTkve7jMycnJanBwsJqcnGzYJjEtUa26tKpJHolpiTku05IlS1QnJ6csy/v166d26tRJ1el06v3799UmTZoYfe7S09NVOzs7tU+fPoZl4eHhKqAePHhQVVVVnTRpktq6dWuj/d64cUMF1JCQEFVVVfXevXvqpUuXnvjQarWqqqrq5MmTVR8fnyyxFi1aVJ03b162y1yuXDl1xYoVRssmTZqkBgQEqKqqqvPnz1ddXV3VxMT/1+f8+fNVQD1x4oSqqo+ut7Vr16pP+3qsUqWK+u233xqelylTRp01a5bRNr169VJbtWpltOzDDz9UK1eubPS6zp07G21z9epVoxgfZejQoWrXrl0Nzx8+zzqdLkuZ7O3tDXURGxurWltbq5s2bXrsMb7++mu1Vq1ahuf//e9/VT8/P8PzJk2aqMOHDzd6TadOndR+/fqpqqqq169fVzUajXrr1i2jbVq0aKGOHTv2scfNdPnyZdXV1VX96quvDMtKlCihTp482Wi7OnXqqAMHDlR1Op2h7hYtWmRYf+7cORVQz58//9hjvfrqq+oHH3zw2LI9fH4rV66sfvnll4bnHTp0UPv37//UMj3o4fqdNWuWWq5cOcPzkJAQo7gf/Bxmnufr168bfQ6bNGmi1qxZ86nHXrVqlVqkSBHD8+7du6uvvvqq0Ta9e/c2+my0aNFCnTJlitE2P//8s1q8eHFVVVV1y5Ytqrm5udH53rRpkwqoa9eufWQcj/ruzZTd32+TdsD+9ddfBAYG8sYbb7B7925KlizJu+++y6BBgwC4evUqERERtGzZ0vAaJycn6tWrx8GDB+nRo0eWfaamppKammp4HheXcbdprVb7xCbSTJnbZGfbnPCp0YLN7WtQ/q+TKLMWE9m8K4MaleHXoxVYo2tEF80+9Fs+QffmX/BAs/TLkFtlzsseLrNWq0VVVfR6PXq9HsDwryk8GEdOXvPgv5lUVTU8Mp9Xq1bNsJ2iKBQpUoSqVasalhUtmjEPUkREBHq9npMnT7Jz507s7e2zHPfSpUuUL18eZ2fnbI3F0ev1hlgeVcbslj0xMZHQ0FAGDhxo+M4ASE9Px8nJCb1ez/nz5w3dOpn7rFevntFxHlVvDy9LSEhg4sSJbNy4kfDwcNLT00lOTub69etGr8t8D2U6f/48HTt2NFoWEBDA7Nmz0Wq1aDQaAGrVqvXY42f+f968eSxZsoSwsDCSk5NJS0ujRo0ahvWPOs8P7rNNmzZYWFiwbt06evTowapVq3B0dKR58+aG7X777Te+++47QkNDSUhIID09HUdHR6NjPFxXDx8nMwa9Xs+pU6fQ6XT4+PgYnbvU1FRcXV2feJ5jY2Np37497dq144MPPkCv1xMXF8ft27cJCAjIUqcnTpwwiuXB97O7uzuQ8X728fFBp9MxdepUVq1axa1bt0hLSyM1NRUbG5unli3z+cCBA1m4cCGjR48mMjKSTZs2sX37dvR6PUOGDDFqWcn8HXpa/Xbr1o3Ro0dz4MAB6tevzy+//IK/vz8+Pj7Z/hwC+Pv7Z6nb7du38+WXX3LhwgXi4uJIT08nJSWFhIQEbG1tCQkJoXPnzkavq1OnDn///bdh2alTp9i/f79RS41OpzPsJzg4GE9PTzw8PB77eXtY5vfBg5+HTNn9TTJpInPlyhXmz5/PqFGj+OSTTzh69Cjvv/8+lpaW9OvXj4iICOD/b8JM7u7uhnUPmzp1KhMnTsyyfOvWrYbm0+zIjX699DodubP3DEXv69g8pi/OXUbRuKjC9JvdaKc5jHXYQY7++gURzrVe+LGz42X0ZeY1mWU2NzfHw8ODhIQEw+A4VVXZ+upWk8SlTdISp8Tl6DUpKSmoqmr40jTsS6slPT2d+Ph4IOOL5+HtVFVFp9NleW1iYiJxcXHExMTQpk0bwziFB7m7uxMXF8eMGTOe2g1x8OBBPD09cXJyIjIy0uh46enpREdH4+TklCWOR4mKigJg9uzZRl1UABqNhri4OMMXYWbZAcO4gMyypaWlGX4kM2X+P/PfkSNHsmvXLiZNmmQYp9KvXz8SEhIM2+j1elJSUoz2o9PpSE1NNVqWnJxs2LdGo0Gv1xvifVyMq1ev5sMPP2TSpEnUrVsXe3t7vvnmG4KCgoz+WHvwPD9Y5kwdO3bk559/pl27dvzyyy907tzZ0H145MgR+vTpw8cff8wXX3yBo6Mja9as4bvvvjMcIzU11eh9otfrH1k+Ozs74uLiuHPnDhqNhp07d2b5kcrc5lF0Oh3du3fHzs6Or7/+Osv5SEpKMnrtg+c5s+7S0tIM22Quyzxfs2bN4rvvvmPKlClUrlwZOzs7xo4da7Tf9PR0o308fH47d+7M2LFj2b59O0eOHKFMmTL4+fkRFxfH6NGjeeeddwzxxcXFZat+bW1tady4McuWLaNy5cosX76ct956y7A+O5/D9PR0LCwsjOonLCyMjh078tZbb/Hxxx/j4uLCoUOHGDZsGPfu3SM9Pf2R79WHv1MSEhL4+OOP6dChQ5bjp6WlkZKS8tjPUnJy8iPPd1paGsnJyezZs8dorE3mec4OkyYyer2e2rVrM2XKFABq1qzJ2bNnWbBgAf369XumfY4dO5ZRo0YZnsfFxeHp6Unr1q1xdHR86uu1Wi3btm2jVatWWFhYPFMMT3LOKhXGfEntI1Hc7X2PKf170mLWXhantmWo+V/Ujf2b9O4fg+bFH/txcrvMedHDZU5JSeHGjRvY29tjbW1t2M4JJxNGmTPW1tYoipLlfW5hYYG5uTkODg7Ex8ej0WiwtLQ02s7MzAxra+ssr7WxscHR0ZG6deuyZs0aqlat+tgraYYPH06fPn2eGKOXlxfm5uY0a9aM2NhYLl26RK1aGYn71q1b0ev1NG3aNFufVUdHR0qUKEFERMRj5zapXr06v/32GxYWFtjY2AAZgyUh44fU0dERT09PEhIS0Gg02NnZARkDLzOPAXDs2DEGDBhgGKuQkJDAjRs3jOrR2toaCwsLo9irVKnCsWPHjJadOHECHx8fw1jAR9V95l/cmTGeOHGCBg0aGH233bx5E41GY3jdw+fZwcHBaNAxQL9+/QgMDOTGjRvs2bOHKVOmGF5/+vRpypQpw+ef/3+83rx584zeU1ZWVkbH9PDw4N69e4bnOp2OkJAQihcvjqOjIw0aNECn05GUlMQrr7zy6BP5CMOHD+f8+fMcOXKEYsWKGZZnnvOTJ0/Stm1bw/KjR49So0YNHBwcstQd/L8FydbWFkdHR4KCgujUqZOhJU+v13P16lV8fX0NrzE3Nzc6vw+fJ0dHRzp16sSqVas4dOgQb731ltG6h2WnfgFDstO3b1+uXbtGv379DOsf/BxqNJpHnueH4wYICQlBr9fzzTffYGaWMTQ2c+C3g4MDjo6O+Pr6cvr0aaPXnTlzxig+f39/rl+//tjPW40aNbh16xaJiYkUL14cwDDIOvO75GEpKSnY2NgYBgg/KDt/0ICJE5nixYtTuXJlo2W+vr6sXr0ayPiQAERGRhoqJfP54yrSysoKKyurLMstLCxy9COd0+2zq0bH/uxY9wclDoSSMnUWyt+deK9ZBWb+3ZGe5rtwjQ7F4tQvUO/lX4aaW2XOyzLLrNPpUBQFMzMzwwc9v8mM++H4H7zy48Hnj9ru4WWZ9fHee++xaNEievfuzZgxY3B1deXy5cusXLmSRYsWodFocHNzw83NLVuxVqlShTZt2vDOO++wYMECtFot77//Pj169KBUqVLZLvPEiRN5//33cXZ2pk2bNqSmpnLs2DHu37/PqFGj6NWrF5999hnvvPMOn3zyCdeuXWPmzJlGZQsICMDW1pbPPvuM999/n8OHDxsGC2fWR4UKFVi7di0dO3ZEURTGjRuHXq83qjMvLy/27t1Lz549sbKyws3NjdGjR1OnTh0mT55M9+7dOXjwIHPnzmXevHlGdf1w3T94Ls3MzPDx8eHnn39m27ZteHt78/PPP3P06FG8vb0N2z7qPD98Pps2bYqHhwd9+vTB29ubgIAAwzofHx/CwsL4/fffqVOnDhs2bDBMYvbgMR583qJFC0aNGsWmTZsoV64cM2fOJCYmxnDsSpUq0bt3b/r378+MGTOoWbMmd+7cYceOHVSvXp1XX301yzldsmQJ8+fPZ+3atWg0GkPLW+aA8Q8//JD//ve/lC9fnho1arBkyRJOnTrFggULjMr84Gf5UfX5xx9/cOjQIVxcXJg5cyaRkZFUrlz5iefl4eeDBg2iffv26HQ6+vfv/8TvjuzUL8Drr7/O0KFDGTp0KM2aNTP6PDz4ORw9ejSWlpZERETw+++/Gz6Hj4rTx8cHrVbL3Llz6dChA/v37+f77783qpP333+fxo0bM3v2bDp06MA///zD5s2bjfY1fvx42rdvT5kyZXj99dcxMzPj1KlTnD17li+++ILWrVvj4+PDgAEDDC1pmYPXH/fdamZmhqIoj/z9ye7vkUm/sRs2bEhISIjRsosXL1KmTBkAvL298fDwYMeOHYb1cXFxHD582OgDmN/Un/I9SdZmlA5PZ+N3o+ldvzROzkWYqc2cJG8KJN4zbZBCPKBEiRLs378fnU5H69atqVatGiNGjMDZ2fmZE7/ly5dTqVIlWrRoQbt27WjUqBE//PCD0TaKojxxMr+3336bRYsWsWTJEqpVq0aTJk1YunQp3t7eQMaP36+//srZs2epWbMmn376KV9++aXRPlxdXfnll1/YuHGj4TLch5vuZ86ciYuLCw0aNKBDhw4EBgbi7+9vtM3nn3/OtWvXKFeunGGMkb+/P7///jsrV66katWqjB8/ns8//9zo8uTseOedd+jSpQvdu3enXr163Lt3j3fffTdH+4CM+uzZsyenTp2id+/eRus6duzIyJEjee+996hRowYHDhx45BVUD3rrrbfo168fffv2pUmTJpQtW5ZmzZoZbbNkyRL69u3LBx98QMWKFencuTNHjx6ldOnSj9zn7t270el0dOzYkeLFixse06dPB+D9999n1KhRfPDBB1SrVo3Nmzezbt06o0uUn+azzz7D39+fwMBAQ3L3LLMit2zZkuLFixMYGEiJEiWeuG1269fBwYEOHTo88hw9+Dls06YNDRs2ZNSoUU/9HPr5+TFz5ky+/PJLqlatyvLly5k6darRNg0bNmTBggXMnDkTPz8/Nm/ezMiRI41aSQIDA/n777/ZunUrderUoX79+syaNcvwm21mZsbatWtJTk6mbt26vP3221mufMoVTxwKnMuOHDmimpubq5MnT1YvXbqkLl++XLW1tVV/+eUXwzbTpk1TnZ2d1T///FM9ffq02qlTJ9Xb2/uRI5wfJa9ctfSwoDkT1OCKldTddX3VqNhwdXXQDbXsR3+qIeOrZlzBtO7dXD3+g+SqpSePnC8oHnc1S1515coV1dzcXL148eIz7+NRZc7OFUH5WX47zy+CqcocHx+vOjo6qqtXr36px1XVl1Pmt99++4lXFr8IL+KqJZO2yNSpU4e1a9fy66+/UrVqVSZNmsTs2bONstAxY8YwbNgwBg8eTJ06dUhISGDz5s1Z+tLyG7+3PyTBwZyisSo7F02gc42SVCnlyti0ARkbnPgFwg6ZNkghTGjjxo0MHjyYChUqmDoUIYzo9XqioqKYNGkSzs7OdOzY0dQhvRDTp0/n1KlTXL58mW+//ZZly5Y983jVl8nk81+3b98+ywyJD1IUhc8//9xogFRBoLG1Re3ZCX5YTbFVe4l7J5px7SvzxoJYVuqa0UOzE/4eCe/seakDf4XIK4YOHWrqEIR4pLCwMLy9vSlVqhRLly4tMLeSOHLkCF999RXx8fGULVuWb775hrffftvUYT1Vwaj9fMr/nY85uXwd7vd1/PPj53QZNodXqxdn2uketLM4jmNUMByaBw2HmzpUIQoMLy+vXJ85WRRsBfU9lN2ZovOa/Hl5RgFhbmdParc2ALis3E5iSjwft6lEkrkTk1L/neZ61zS5D5MQQgjxGJLImFjdd8eTaGOGxz09/yz9Ak9XWwY28uYPXWNOmVUGbRJsegn3qhBCCCHyIUlkTMzCwZHErs0BsFu+kRRtMu82LUcRextGJ/dHr5hDyAa4sNHEkQohhBB5jyQyeUC99yaSZK1Q/E46u36ehoO1BaNb+3BJLcUS9d8JozaNgbRE0wYqhBBC5DGSyOQB1s6uxHTOmL7bYtlatOlpvFHbE9/ijkxP6cR9Sw+IvQG7vzJxpEIIIUTeIolMHlFv2OckWymUiNSy99cZaMwUxr3qSzLWjEl8M2Ojg99BZLBpAxVCCCHyEElk8gj7Iu7cbZ9xu3P1x9/Q6XU0KO9Gq8rubNP5c9ymAejTYcMHUAAv+xO5p3///s80/bownWvXrqEoCidPnsz2a17GeZ4wYcJj73OXm+Q9LJ5EEpk8pO7wz0mxhBLhqRxc9Q0An7TzxUKj8N79Hug0NhB2AE6uMHGkIq948EaBj3pMmDCBOXPmPPF+RaYSHR1N7969cXR0xNnZmYEDB5KQkGDqsJ6Zl5cXs2fPfiH78vT0JDw8nKpVq76Q/YmXIzvv6YULF1KmTBlq1qzJ4cOHTRRpwSKJTB7iXMyT8DY1AUhZ+DN6vR5vNzv6BnhxGzcWm/87t8zWzyAp2oSRirwiPDzc8Jg9ezaOjo5Gy0aPHo2TkxPOzs6mDjWL3r17c+7cObZt28bff//Nnj17GDz45d/1Pa9JS0tDo9Hg4eFRYGaMLSye9p4OCwvjq6++YuXKlXz66acMGDDAhNEWHJLI5DH1RnxBqgWUvJnMsXUZdwJ+v3kFXGwt+Cq2Offty0NyNGz/r4kjFXmBh4eH4eHk5ISiKEbL7O3tszTLN2/enGHDhjFixAhcXFxwd3dn4cKFJCYmMmDAABwcHChfvjybNm0yOtbZs2dp27Yt9vb2uLu706dPH+7evftMcZ8/f57NmzezaNEi6tWrR6NGjfj2229ZuXIlt2/fztG+Fi1ahK+vL9bW1lSqVIl58+YZrQ8KCqJWrVpYW1tTu3Zt1q5da9Rts3Tp0iyJ3rp161AUxfA8NDSUTp064e7ujr29PXXq1GH79u2G9U2bNuX69euMHDnS0BqWafXq1VSpUgUrKyu8vLyYMWOG0bG8vLyYNGkSffv2xdHRkcGDB2fpWtLpdAwcOBBvb29sbGyoWLEic+bMyXYdxcXFYWNjk+Wcrl27FgcHB5KSkgD46KOP8PHxwdbWlrJlyzJu3Di0Wu1j99u0aVNGjBhhtKxz585Gd/dOTU1l9OjRlCxZEjs7O+rVq8euXbuyHfujpKam8v7771OsWDGsra1p3Lgxx48fN6zftWsXiqKwY8cOateuja2tLQ0aNCAkJOS5jvsk2XlPx8XF4ezsTPXq1alVqxbJycm5Fk9hIolMHlOkRFlutMpoTo77fhGqquJka8HIVj6kY87IxH9v4HX8J7mpZC5TVRV9UpJJHrk9/fmyZctwc3PjyJEjDBs2jCFDhvDGG2/QoEEDjh8/TuvWrenTp4/hBy4mJobmzZtTs2ZNjh07xubNm4mMjKRbt26GfU6ZMgV7e/snPsLCwgA4ePAgzs7O1K5d2/D6li1bYmZmlqPm9uXLlzN+/HgmT57M+fPnmTJlCuPGjWPZsmUAJCQk0KNHD3x9fQkKCmLChAmMHj06x/WVkJBAu3bt2LFjBydOnKBNmzZ06NDBUJ41a9ZQqlQpPv/8c0NrGGQkUd26daNHjx6cOXOGCRMmMG7cuCxdfdOnT8fPz48TJ04wbty4LMfX6/WUKlWKVatWERwczPjx4/nkk0+yPaW8o6Mj7du3Z8UK427p5cuX07lzZ2xtbQFwcHBg6dKlBAcHM2fOHBYuXMisWbNyWl1G3nvvPQ4ePMjKlSs5ffo0b7zxBm3atOHSpUvPvM8xY8awevVqli1bxvHjxylXrhxdu3YlOtq4pfrTTz9lxowZHDt2DHNzc956660n7rdKlSpPfP+2bdv2sa/Nznu6atWqVK9eHScnJ6pUqcIXX3zxzHUg/k/aLfOg2iM+J2prF0peT+TkhmXUbN+fXnVL89PB6+yKKsfJUh2ocXc9/D0K3tktN5XMJWpyMiH+tUxy7IrHg1D+/XHJDX5+fnz22WcAjB07lmnTpuHm5sagQYMAGD9+PPPnz+f06dPUr1+f7777jpo1azJlyhTDPn788Uc8PT25ePEiPj4+/Oc//zFKbB6lRIkSAERERFCsWDGjdebm5ri6uhIREZHtcvz3v/9lxowZdOnSBQBvb2+Cg4P5/vvv6devHytWrECv17No0SJsbW2pUqUKN2/eZMiQIdk+BmTUl5+fn+H5pEmTWLt2LX/99Rfvvfcerq6uaDQaHBwc8PDwMGw3c+ZMWrRoYUhOfHx8CA4O5uuvvzZqtWjevDkffPCB4fm1a9eMjm9hYcHEiRMNz729vTl48CC///77U+s8U+/evQ3Jqa2tLXFxcWzYsIG1a9catsl8T0BGS9Ho0aNZuXIlY8aMydYxHhYWFsaSJUsICwsznPvRo0ezefNmlixZYvR+yq7ExETmz5/P0qVLDYnFDz/8wLZt2/jxxx+NYp08eTJNmjQB4OOPP+bVV18lJSUFa2vrR+5748aNT2yBsrGxeey67L6nFy9ezFdffYWtre0T9yeyTxKZPKh4aV+ONPfBZ+tFoufNR321H+YaMz571Zf+S44yKLwDhxz2oYk6B4fmQ8P3TR2yyGeqV69u+L9Go6FIkSJUq1bNsMzd3R2AqKgoAE6dOsXOnTuxt7fPsq/Q0FB8fHxwdXXF1dU1lyP/v8TEREJDQxk4cKAhAQNIT0/HyckJgAsXLlClShWjH66AgIAcHyshIYEJEyawYcMGwsPDSU9PJzk52dAi8zjnz5+nU6dORssaNmzI7Nmz0el0aDQaAKO/4h9n7ty5/Pjjj4SFhZGcnExaWlqOriBq164dFhYW/PXXX/To0YPVq1fj6OhIy5YtDdv89ttvfPPNN4SGhpKQkEB6ejqOjo7ZPsbDzpw5g06nw8fHx2h5amoqRYoUeaZ9hoaGotVqadiwoWGZhYUF/v7+nD9/3mjbB9/nxYsXBzLe06VLl37kvsuUKfNMMeXUs5ZdPJokMnlUjRETidnRkxJX4gje9jtVWnenacViNPEpyu6L8LPD2/RP+TrjppJVu4BTKVOHXOAoNjZUPB5ksmPnJgsL41Y8RVGMlmWO8dDr9UDGD3mHDh348ssvs+wr8wdiypQpT/0LOzg4mNKlS+Ph4WFIkjKlp6cTHR1t1KLxJJlXgyxcuJB69eoZrctMELLDzMwsS1few3+Vjx49mm3btjF9+nTKly+PjY0Nr7/+Omlpadk+zpPY2dk9cf3KlSsZPXo0M2bMICAgAAcHB77++uscdcNZWlry+uuvs2LFCnr06MGKFSvo3r27YUDxwYMH6d27NxMnTiQwMBAnJydWrlyZZUzPg55WdwkJCWg0GoKCgrKck0clxS/ak97Tj1KlShWuX7/+2PWvvPJKlnFGmV7Ee1o8G0lk8qgyZWsQ1Ngb351XifjuG6q0zrhi6bNXfdl3+S4Tb/jRpXRtHKOOZdxUssdyE0dc8CiKkqvdO/mJv78/q1evxsvL67FX0uSkaykgIICYmBjDQFyAf/75B71enyUpeRx3d3dKlCjBlStX6N279yO3qVSpEj///DMpKSmGcSCHDhmPLStatCjx8fEkJiYaEoqH52/Zv38//fv357XXXgMyfqAf7v6xtLREp9MZLfP19WX//v1Z9uXj45OjZGv//v00aNCAd99917AsNDQ026/P1Lt3b1q1asW5c+f4559/jMZoHDhwgDJlyvDpp58alj3pRx0y6i5zPBBkDEo+e/YszZo1A6BmzZrodDqioqJ45ZVXchzvo5QrVw5LS0v2799vaEHRarWcOHEiy8DjnHqerqUX8Z4Wz0YG++Zh1UaMR6uBEhejubTzTwAquDvQq25pVMz4KKU/qpk5XPgbQjabOFpRkA0dOpTo6Gh69uzJ0aNHCQ0NZcuWLQwYMMDw4+3q6kr58uWf+MhMgnx9fWnTpg2DBg3iyJEj7N+/n/fee48ePXoYkp3smDhxIlOnTuWbb77h4sWLnDlzhiVLljBz5kwAevXqhaIoDB48mODgYDZu3Mj06dON9lGvXj1sbW355JNPCA0NZcWKFVkG41aoUIE1a9Zw8uRJTp06Ra9evbL8Ze/l5cWePXu4deuW4WquDz74gB07djBp0iQuXrzIsmXL+O6773I84LhChQocO3aMLVu2cPHiRcaNG8fRo0dztA+Axo0b4+HhQe/evfH29jb6ga1QoQJhYWGsXLmS0NBQvvnmG6PxM4/SvHlzNmzYwIYNG7hw4QJDhgwhJibGsN7Hx4fevXvTt29f1qxZw9WrVzly5AhTp05lw4YNOY4fMlqvhgwZwocffsjmzZsJDg5m8ODBJCUlPXUw79OUKVPmie/fkiVLPva1L+o9LXJOEpk8rELF+lxskNFldOOb/zfvjmzlg4O1OZuiXLng1Sdj4cYPIS3JFGGKQqBEiRLs378fnU5H69atqVatGiNGjMDZ2Rkzs2f7Glm+fDmVKlWiRYsWtGvXjkaNGvHDDz8YbaMoyhMn83v77bdZtGgRS5YsoVq1ajRp0oSlS5fi7e0NZHRf/Prrr5w9e5aaNWvy6aefZukec3V15ZdffmHjxo1Uq1aNX3/9lQkTJhhtM3PmTFxcXGjQoAEdOnQgMDAQf39/o20+//xzrl27Rrly5ShatCiQ0ZL1+++/s3LlSqpWrcr48eP5/PPPjQb6Zsc777xDly5d6N69O/Xq1ePevXtGrTPZpSgKPXv25NSpU1lasTp27MjIkSN57733qFGjBgcOHHjkFVQPeuutt+jXrx99+/alSZMmlC1b1tAak2nJkiX07duXDz74gIoVK9K5c2eOHj1qNE7laef5YdOmTaNr16706dMHf39/QkNDWb16NS4uLtneR27IzntavHiKmtvXeZpYXFwcTk5OxMbGZmvQmlarZePGjYaBcaZ27uwu9N2GYK4H20WzKdMoEIBFe6/wxYbzlLJT2WP3EWZxN6HRSGg5IcfHyGtlfhkeLnNKSgpXr17F29v7sVc05Hd6vZ64uDgcHR2fOfl4ma5evWq4yqdChQrPtI9HlfnatWt4e3tz4sQJk0y3n9vkPOf9Mr8IBaXMT/ruze7vd/4tfSFRpWpTztfLGCh2Zc7//5LsG+CFVxFbbiYqrCs+PGPhgW8h6vyjdiNEvrNx40YGDx78zD9uIn+Q8yyelyQy+UDZYaPRKeBxJpxrezPGwliam/FJO18APj7nSbJ34L83lRwtN5UUBcLQoUOZO3euqcMQuUzOs3heksjkA7VqtuNs/Yx5PW5+Opb05IyxMK0qu9OgXBHS0vV8oe8H5jZwfR+cX2/KcIXI07y8vFBVtUB2KwlRGEkikw8oikKDSfO4b69QJCqFfRPfMywf36EyGjOF5SFww3dgxgu2jYP0VBNGLIQQQrwcksjkE6VLVeb++xlzdBT98yBX928BoJKHI33qZ8yl8O61V1DtPeD+NTj8valCzdcK+Nh3IYTIU17Ed64kMvlI2z7jOVenKGYq3Bz7Mdp/u5hGtvTB1c6SM3d07C397z1k9nwNic92Z+LCKPNqrcybJAohhMh9md+5z3PFrMzsm4+YKWbUn/Y9Nzp1xS0qhT0Th9Ji2hKcbC34MLAiY9ec4b3gihx3r4555GnYOQXazzR12PmCRqPB2dnZMMW4ra2tYUrzgkKv15OWlkZKSkq+vlwzJ6TMUuaCKr+XWVVVkpKSiIqKwtnZOUczXT9MEpl8plRJX8693xPnKSvw+PMQlzttpnxAG7rV9mT54eucvRXHYtu3eYf3IWgJ1B0ExXxNHXa+kHk/lIfvl1JQqKpKcnIyNjY2BS5Jexwps5S5oCooZXZ2dn7ue1FJIpMPte7zGeu2bqfSsShufzyW0lsaY2lty4QOVXh9wUGmXXCjh08gTte3wJZPoc8aU4ecLyiKQvHixSlWrNgT77eSX2m1Wvbs2UPjxo0L1cSHUuaCT8qcP8tsYWHxXC0xmSSRyYcURaHelz8Q1vE1ikamsGviu7SeupTaXq68VrMka0/cYmz8G8w1+wcldAdc2gYVWpk67HxDo9G8kA9XXqPRaEhPT8fa2jrffvHllJRZylxQFcYyP07+61gTAJQoWZHE4Rn3Simx7jAXD2wE4OO2lbC11LDxti2XvP+9l8qWT0FX8FoYhBBCCElk8rHmfT7hUi13NCrc/uQT0lIScXe0ZljzjKm+37neHL1NEbgbAkFLTRusEEIIkQskkcnHFEWh3lcLibNVcI9IZcfnGZdev9Uo4z5MVxPM2VZsQMbGO6dAcozpghVCCCFygSQy+Zx7yQokj+gDgOfao5w/8DdW5hrGd6gMwPDLNUhz8YHk6Iy5ZYQQQogCRBKZAqBJn4+54u+BRoXwTz8jNTmR5pXcaV6pGCk6M74x75+x4eHv4V6oSWMVQgghXiRJZAoARVGo+/VC4m0Vioensm3SfwAY174yFhqF7254cdfjFdBrYdt4E0crhBBCvDiSyBQQRUuWJ214PwDKrDvG2YPr8XazY2CjsgB8EPsGqqKBC3/D1b2mDFUIIYR4YSSRKUAa9h3DtZoemOsh8pNxpKQk8F7z8hRzsGL3fTfOFX8tY8Mtn4BeZ9pghRBCiBdAEpkCRFEU6k5fTIKNQonwVLZM+g/2VuaMbVcJgHduBqK3coSI03DqVxNHK4QQQjw/kyYyEyZMQFEUo0elSpUM61NSUhg6dChFihTB3t6erl27EhkZacKI874iJcuiG5FxyXXZtUGcOvgnnWuUxL+0M7fS7PjLsVfGhjs+h9QEE0YqhBBCPD+Tt8hUqVKF8PBww2Pfvn2GdSNHjmT9+vWsWrWK3bt3c/v2bbp06WLCaPOHen1Hc6NGccz1EPXpeJJT4pnYsSqKAmNuBJDiUAYSImH/bFOHKoQQQjwXkycy5ubmeHh4GB5ubm4AxMbGsnjxYmbOnEnz5s2pVasWS5Ys4cCBAxw6dMjEUedtiqJQZ8YiEm0USt1OY/Pk/1CtlBM96niShgXT9f/euuDAtxBzw7TBCiGEEM/B5DeNvHTpEiVKlMDa2pqAgACmTp1K6dKlCQoKQqvV0rJlS8O2lSpVonTp0hw8eJD69es/cn+pqamkpqYansfFxQEZdwrNzh2NM7fJ73c/ti/mSfqwfvDVUiqsOcGRwD8Y3rwtG06Hs+heFd4uXguP+0Hot09A2+5bIP+XOScKynnOCSlz4SBlLhwKQ5mzWzZFVVU1l2N5rE2bNpGQkEDFihUJDw9n4sSJ3Lp1i7Nnz7J+/XoGDBhglJQA1K1bl2bNmvHll18+cp8TJkxg4sSJWZavWLECW1vbXClHnqWqmP34FeUv3udacXPi3/uEw3fsWH1NQ23zK6wyH4eCym6f/xJjV87U0QohhBAGSUlJ9OrVi9jYWBwdHR+7nUkTmYfFxMRQpkwZZs6ciY2NzTMlMo9qkfH09OTu3btPrIhMWq2Wbdu20apVqwJxa/TY21e53qkztikqp7v60XHcMjrOO8ilqETWFP8Z//ub0JWsw99F36NV69YFoszZUdDOc3ZImaXMBZWUuWCWOS4uDjc3t6cmMibvWnqQs7MzPj4+XL58mVatWpGWlkZMTAzOzs6GbSIjI/Hw8HjsPqysrLCyssqy3MLCIkcnO6fb51VuZXwIGz4QvlyE77pTnGr3FxM7NqPXosO8G9GeA3a70Nw6SgmLw1hYvFogypwTBeU854SUuXCQMhcOBbnM2S2XyQf7PighIYHQ0FCKFy9OrVq1sLCwYMeOHYb1ISEhhIWFERAQYMIo85+a/UcRUb0EFjqI+/RzKntAu2oeRKgu/GbVFYAqt38HbbKJIxVCCCFyxqSJzOjRo9m9ezfXrl3jwIEDvPbaa2g0Gnr27ImTkxMDBw5k1KhR7Ny5k6CgIAYMGEBAQMBjB/qKR1MUhVqzfiTRxgzPiHS2fDaAce0rY29lzsR7LUi0csc27S5mRxaYOlQhhBAiR0yayNy8eZOePXtSsWJFunXrRpEiRTh06BBFixYFYNasWbRv356uXbvSuHFjPDw8WLNmjSlDzrccS5bB+pMRAFTdfJng3Yv5MLAiKVgxMaU7AGb7Z0N8hOmCFEIIIXLIpInMypUruX37Nqmpqdy8eZOVK1dSrtz/r56xtrZm7ty5REdHk5iYyJo1a544PkY8WdU3BhHR2BczwHLyfFp4p1PD05nfU+sRYlYORZsI/0wydZhCCCFEtuWpMTIi9zWYvpj7rpa4xeo5+NFAJr9WBXMzMz5O7puxwYnlcPukSWMUQgghsksSmULGytEF9ymT0QNVj0RxZdPXvNWwDCfUCmwxewVQM+6OnXeuyhdCCCEeSxKZQqhc0/bcff0VANy/W0M7z2iKWKlMSOqGVrGC6/vh/HoTRymEEEI8nSQyhdQr474lytMeh2QI+2wUXb1TCacI87XtMjbY+hmkpz55J0IIIYSJSSJTSJlZWVFx9nzSzKHCxQRcT/1EJ7/iLEjvwF3FFWKuw6H5pg5TCCGEeCJJZAoxjyq1SR78OgAB2y7S2SMUS1sHpqR2y9hgz3RIiDJhhEIIIcSTSSJTyNV7byK3KxfDMh20kybxYYsSrNU34oxaFtLiYedkU4cohBBCPJYkMoWcYmaG36yFJNgoeN7WYrl6HPXLFmVi2psAqMd/goizJo5SCCGEeDRJZAROJbwJ7dwSgMqbLtDd5SinNZX5W1cfRdXL5dhCCCHyLElkBAA2NVpws1EFzFRwnbGAd+rYMi29J6lYwNXdELLJ1CEKIYQQWUgiIwwCpi7kvosFRWP0lFk7AeuiXixKb5uxcuunkJ5m2gCFEEKIh0giIwysnF1xmzIJPVDlUAT9LLYwL70Td1QniL4CRxeaOkQhhBDCiCQywohPs05EvhYAQMUf/6RDRZWv0jPujq3umgaJ90wZnhBCCGFEEhmRRZMJ84gqaYdDskrAn1+z27op5/RlUFLjYNcUU4cnhBBCGEgiI7LQWFlTfta3aDXgcyGet9NWMym9DwDqsSUQdd7EEQohhBAZJJERj1SyegBxAzsBUHftQVyK2LBJVwdF1aFulsuxhRBC5A2SyIjHajhiCrd83bBKh84bFzKb10lVzVGu/AOXtpk6PCGEEEISGfF4ipkZ/nN+JNFGofStNLrc28gSXRsA0jd/AjqtiSMUQghR2EkiI57ItXQF+PAdABrtvMQpPLmrOmIefQmO/Wji6IQQQhR2ksiIp6rdazg3GpTFTIUeO/5mRtqrAGh3TIakaBNHJ4QQojCTREZkS6MZS7nvbE6x+zp8Q88RrPfEIi2WtC3jTB2aEEKIQkwSGZEtti5FcZk8Ab0CdU7fZfWdigBYnvoFru4xcXRCCCEKK0lkRLb5tujKjW4NAGi/L5jFcRkzACevHgppSaYMTQghRCEliYzIkZafzedaBUestVD6WARh6a7YJISRumOyqUMTQghRCJlnZ6O//vorxztu1aoVNjY2OX6dyNvMLSyp8s0PhHftSamoVP65UJr+VaOxODwP/F6HEjVNHaIQQohCJFuJTOfOnXO0U0VRuHTpEmXLln2WmEQeV9rbjwtj+uE4YSn1zkbxh0tlXi8ZTMLvQ7Afthc0FqYOUQghRCGR7a6liIgI9Hp9th62tra5GbPIA1p1H8PJ1l4AeB2N5WaCA/Yx50nZPcu0gQkhhChUspXI9OvXL0fdRG+++SaOjo7PHJTI+xRFofXkZVwpZYFdisq5Y0VR9aDZ+zXcvWTq8IQQQhQS2UpklixZgoODQ7Z3On/+fNzc3J45KJE/FHEohtO0CSRYQ+mIFLae88ZCTSP2t/+AXm/q8IQQQhQCctWSeC6Nanfh9MBXACh9LpWwCAec7hwj+dBCE0cmhBCiMMjWYN8HpaSk8O2337Jz506ioqLQP/SX9/Hjx19YcCJ/6Pmf2fwa1IwGh+KIPOxE8daJKNsnQJVXwamUqcMTQghRgOU4kRk4cCBbt27l9ddfp27duiiKkhtxiXzE1sKWOl/M5XqvvpSJ0nPkSAkavHKTe7+9R5FBa0HeI0IIIXJJjhOZv//+m40bN9KwYcPciEfkU9VL1eb4R71w/3g5ruF6Qi84Ud5sJ0knfsPWv4epwxNCCFFA5XiMTMmSJXM08FcUHr3bfsSWrqUBSD1jR0KUJfoNYyDxnokjE0IIUVDlOJGZMWMGH330EdevX8+NeEQ+ZmFmQY+R37O/mjlmKlw87IZ1UhwRq0aaOjQhhBAFVI4Tmdq1a5OSkkLZsmVxcHDA1dXV6CEKNy8nL5w/HcNtV7BJhEtHXHG/+idJ5zaZOjQhhBAFUI7HyPTs2ZNbt24xZcoU3N3dZbCvyKKr35v8d/BWun59DMtbVty5aIfFuvexLX8crKRbUgghxIuT40TmwIEDHDx4ED8/vxcayLRp0xg7dizDhw9n9uzZQMal3h988AErV64kNTWVwMBA5s2bh7u7+ws9tnixFEXh/e6zmHO6Db02JhJ1ypFyRe9y84+xlOr9nanDE0IIUYDkuGupUqVKJCcnv9Agjh49yvfff0/16tWNlo8cOZL169ezatUqdu/eze3bt+nSpcsLPbbIHW42bjR9fxqHfRQ0eoUrB11xD15O4uX9pg5NCCFEAZLjRGbatGl88MEH7Nq1i3v37hEXF2f0yKmEhAR69+7NwoULcXFxMSyPjY1l8eLFzJw5k+bNm1OrVi2WLFnCgQMHOHToUI6PI16+Fl4tCXuvA1FOYBav4fYxJ+J//w+kp5o6NCGEEAVEjruW2rRpA0CLFi2MlquqiqIo6HS6HO1v6NChvPrqq7Rs2ZIvvvjCsDwoKAitVkvLli0NyypVqkTp0qU5ePAg9evXf+T+UlNTSU39/w9lZnKl1WrRarVPjSdzm+xsW1DkZpmHNfqYj7sfZtjCSJKu2+B0/i5XVv8Xzy6TXvixckLOc+EgZS4cpMwFU3bLluNEZufOnTkO5nFWrlzJ8ePHOXr0aJZ1ERERWFpa4uzsbLTc3d2diIiIx+5z6tSpTJw4McvyrVu3Ymtrm+3Ytm3blu1tC4rcKnPlMq+xsskP9N6l59ZxJ8oUWcx2bUnSHErnyvFyQs5z4SBlLhykzAVLUlJStrbLcSLToEEDLCwsHrnu7t272d7PjRs3GD58ONu2bcPa2jqnYTzW2LFjGTVqlOF5XFwcnp6etG7dGkdHx6e+XqvVsm3bNlq1avXYchY0L6PM35ZK5+T1xdS4CrcPOlHZ7WdKfLgHzDS5crynkfMsZS6opMxS5oIiu8NVcpzI9OjRgz/++CPLZdeRkZG0aNGCs2fPZms/QUFBREVF4e/vb1im0+nYs2cP3333HVu2bCEtLY2YmBijVpnIyEg8PDweu18rKyusrKyyLLewsMjRyc7p9gVBbpZ5WO33GdRnH2VmXMAl1gKLAxFc3zyb8p0+zpXjZZec58JBylw4SJkLluyWK8eDfcPCwnj77beNloWHh9O0aVMqVaqU7f20aNGCM2fOcPLkScOjdu3a9O7d2/B/CwsLduzYYXhNSEgIYWFhBAQE5DRsYWIWGgs+a/s1CzpZoQdir9jhsv5bku/dMHVoQggh8rEcJzIbN27kwIEDhu6b27dv07RpU6pVq8bvv/+e7f04ODhQtWpVo4ednR1FihShatWqODk5MXDgQEaNGsXOnTsJCgpiwIABBAQEPHagr8jbyruUp0XXkayvn9Gad/e4HVdXjDVxVEIIIfKzHHctFS1alK1bt9KoUSMg427Y/v7+LF++HDOzHOdFTzRr1izMzMzo2rWr0YR4Iv960/dN+nfcSL0Lp/GI0eCydQ8xnc7hXLqKqUMTQgiRDz1T5uHp6cm2bdtYvnw5devW5ddff0Wjef5Bm7t27TLM6gtgbW3N3LlziY6OJjExkTVr1jxxfIzI+zRmGj5r+jlL2mT0fd6/bEv4ArmppBBCiGeTrRYZFxeXR95TKSkpifXr11OkSBHDsujo6BcXnSiQKrpWpE6nQew9PZ9XgsFi5xUiTu/Eo3ozU4cmhBAin8lWIvNgK4kQL8I71d+h/2ubqHnlKvb3LYid/iEey46C3IRUCCFEDmQrkenXr19uxyEKGUuNJaNbf8Gy4334zyY9uuMJXPl7CWU7vGXq0IQQQuQj2Rojk9N7KMXHxz9TMKJw8Xf3p+gbPThfCpR0hbQ509GnF9zptoUQQrx42UpkXFxciIqKyvZOS5YsyZUrV545KFF4jKg9klUd3Ug3A/WmSsiMT0wdkhBCiHwkW11LqqqyaNEi7O3ts7XTgnwTK/Fi2Vva85/XvuDPk0PoekBFv3I9aW9/iGWRYqYOTQghRD6QrUSmdOnSLFy4MNs79fDwKLBTJosXr4lnE/58owXh57dT/L5CyMi3qfbTX6YOSwghRD6QrUTm2rVruRyGKOw+bTqBD47s46NfU9AcuUjMwb04B7xi6rCEEELkcS92Kl4hnlERmyJ06P4Zu6sqKChcGzMSVboohRBCPIUkMiLP6FKxC4cCvYi3Bqs7idyaO9vUIQkhhMjjJJEReYaiKHzebQG/Nst4W8YsWkLazVsmjkoIIUReJomMyFNKO5WmaLMOnCsNmnSVy2OGo6qqqcMSQgiRR0kiI/KcMa9+wcYWVmg1oBw/R9ymTaYOSQghRB71TInM3r17efPNNwkICODWrYym/59//pl9+/a90OBE4WSuMad703H8GZBx36XrEz5Dl8PZpYUQQhQOOU5kVq9eTWBgIDY2Npw4cYLU1FQAYmNjmTJlygsPUBROgfW6kuRXjFuuYBGXzM2vp5k6JCGEEHlQjhOZL774ggULFrBw4UKjSe8aNmzI8ePHX2hwonAb9Opc1rfM+H/SqrUknThh2oCEEELkOTlOZEJCQmjcuHGW5U5OTsTExLyImIQAoGzZKtQs6c/O6hldTFfGfihzywghhDCS40TGw8ODy5cvZ1m+b98+ypYt+0KCEiJTx64zia6tJc4GNNduEbE4+7fKEEIIUfDlOJEZNGgQw4cP5/DhwyiKwu3bt1m+fDmjR49myJAhuRGjKMRc3dyp796Fdc0ynt+bO4+0sDDTBiWEECLPyNa9lh708ccfo9fradGiBUlJSTRu3BgrKytGjx7NsGHDciNGUcg1eP0zEsNXc9rLkurXdFz+bAy+y35FURRThyaEEMLEctwioygKn376KdHR0Zw9e5ZDhw5x584dJk2alBvxCYGtnQMeFYZx6ZVU0jSgHDlF/LZtpg5LCCFEHvDME+JZWlpSuXJl6tati729/YuMSYgsanUcQle9yj9+Ga0wcYcPmjgiIYQQeUG2upa6dOmS7R2uWbPmmYMR4nHMLSxJsSjPfaebACTdjTRxREIIIfKCbLXIODk5GR6Ojo7s2LGDY8eOGdYHBQWxY8cOnJycci1QIRKdyqNY6QFIi75r4miEEELkBdlqkVmyZInh/x999BHdunVjwYIFaDQaAHQ6He+++y6Ojo65E6UQAMV8Mbu+HdCgu3/f1NEIIYTIA3I8RubHH39k9OjRhiQGQKPRMGrUKH788ccXGpwQD7IrVQ1Ly4wWGTVG7r0khBDiGRKZ9PR0Lly4kGX5hQsX0Ov1LyQoIR7FvVx1bCx0AGjiEk0cjRBCiLwgx/PIDBgwgIEDBxIaGkrdunUBOHz4MNOmTWPAgAEvPEAhMnm4uqBaWgNgnqZDn5yMmY2NiaMSQghhSjlOZKZPn46HhwczZswgPDwcgOLFi/Phhx/ywQcfvPAAhchkZqaQblGEdLN7mOtBd/++JDJCCFHI5TiRMTMzY8yYMYwZM4a4uIxxCjLIV7wsFtaexNnewzUB0u/fx6JECVOHJIQQwoSeeUI8yEhgJIkRL5Odkw9xthn/192PMWksQgghTC/HLTLe3t5PvMfNlStXnisgIZ6kqIc/8TarABXtPZlLRgghCrscJzIjRowweq7Vajlx4gSbN2/mww8/fFFxCfFI5crX5ei/w2Lib17AhU6mDUgIIYRJ5TiRGT58+COXz50712i2XyFyQ1mPouzNuHCJmBsXKG3acIQQQpjYc42ReVDbtm1ZvXr1i9qdEI9kZ2VOqk3GZIwJ4TdNHI0QQghTe2GJzB9//IGrq+uL2p0Qj5Vmk9Eko4uR2xQIIURhl+OupZo1axoN9lVVlYiICO7cucO8efNeaHBCPEq6vROQgJKQbOpQhBBCmFiOE5lOnToZJTJmZmYULVqUpk2bUqlSpRcanBCPYuZaHLiFeXI66PVg9sIaFoUQQuQzOU5kJkyY8MIOPn/+fObPn8+1a9cAqFKlCuPHj6dt27YApKSk8MEHH7By5UpSU1MJDAxk3rx5uLu7v7AYRP5jW7I8cAyLFAViw8DFy9QhCSGEMJEc/ymr0WiIiorKsvzevXtGd8TOjlKlSjFt2jSCgoI4duwYzZs3p1OnTpw7dw6AkSNHsn79elatWsXu3bu5ffs2Xbp0yWnIooApXrosAFYpkB5+zsTRCCGEMKUct8ioqvrI5ampqVhaWuZoXx06dDB6PnnyZObPn8+hQ4coVaoUixcvZsWKFTRv3hyAJUuW4Ovry6FDh6hfv35OQxcFRFmvcgBo9AqxIUEUqfyqiSMSQghhKtlOZL755hsAFEVh0aJF2NvbG9bpdDr27NnzXGNkdDodq1atIjExkYCAAIKCgtBqtbRs2dKwTaVKlShdujQHDx58bCKTmppKamqq4Xnm/aC0Wi1arfapcWRuk51tC4r8VmYXe3diLcEmDZKunMbxGeLOb2V+EaTMhYOUuXAoDGXObtkU9XFNLA/x9vYG4Pr165QqVcqoG8nS0hIvLy8+//xz6tWrl6NAz5w5Q0BAACkpKdjb27NixQratWvHihUrGDBggFFSAlC3bl2aNWvGl19++cj9TZgwgYkTJ2ZZvmLFCmxtbXMUm8ibUtVU3Kf+l2KxoGmj4XyzyaYOSQghxAuWlJREr169iI2NfeJ9HbPdInP16lUAmjVrxpo1a3BxcXn+KIGKFSty8uRJYmNj+eOPP+jXrx+7d+9+5v2NHTuWUaNGGZ7HxcXh6elJ69ats3WDS61Wy7Zt22jVqhUWFhbPHEd+kh/LvH3WBIhVUbRxtGvXLsevz49lfl5SZilzQSVlLphlzuxReZocj5HZuXNnjoN5EktLS8qXLw9ArVq1OHr0KHPmzKF79+6kpaURExODs7OzYfvIyEg8PDweuz8rKyusrKyyLLewsMjRyc7p9gVB/iqzAqgoaLHQaJ75Euz8VeYXQ8pcOEiZC4eCXObslitbicyoUaOYNGkSdnZ2Rq0djzJz5sxsHfhx9Ho9qamp1KpVCwsLC3bs2EHXrl0BCAkJISwsjICAgOc6hsj/zMiYyyhdAbSJYOVg2oCEEEKYRLYSmRMnThgG3Rw/ftxoQrznMXbsWNq2bUvp0qWJj49nxYoV7Nq1iy1btuDk5MTAgQMZNWoUrq6uODo6MmzYMAICAuSKJYGSmcigQGqCJDJCCFFIZSuRebA7adeuXS/s4FFRUfTt25fw8HCcnJyoXr06W7ZsoVWrVgDMmjULMzMzunbtajQhnhCKmpHIaM2AtATTBiOEEMJkcjxG5q233mLOnDk4OBj/BZyYmMiwYcP48ccfs72vxYsXP3G9tbU1c+fOZe7cuTkNUxRwmge7llLjTRuMEEIIk8nxCMlly5aRnJz1Zn3Jycn89NNPLyQoIZ7G0LWkKJLICCFEIZbtFpm4uDhUVUVVVeLj47G2tjas0+l0bNy4kWLFiuVKkEI8LHOwr1ZRpGtJCCEKsWwnMs7OziiKgqIo+Pj4ZFmvKMojJ6ITIjeY/TuNY0bXkiQyQghRWGU7kdm5cyeqqtK8eXNWr16Nq6urYZ2lpSVlypShRIkSuRKkEA8ztMiYKZAmXUtCCFFYZTuRadKkCZAxw2/p0qVf2CXYQjwL5YHBvunJcTkftS6EEKJAyNb3/+nTp42enzlz5rHbVq9e/fkiEiIbMkepaxWF9OR4SWSEEKKQytb3f40aNVAUhafdX1JRFHQ63QsJTIgneXBmX11y9u7HIYQQouDJViKTecNIIfIK5d+cWqso6FJkjIwQQhRW2UpkypQpk9txCJEjDyYyqswjI4QQhdYzDy0IDg4mLCyMtLQ0o+UdO3Z87qCEeJrMoeZpZgqqtMgIIUShleNE5sqVK7z22mucOXPGaNxM5lVMMkZGvAyKYR4ZFUUmxBNCiEIrx7coGD58ON7e3kRFRWFra8u5c+fYs2cPtWvXfqE3lBTiSTJbZLRmCopWEhkhhCisctwic/DgQf755x/c3NwwMzPDzMyMRo0aMXXqVN5//31OnDiRG3EKYSTz7tdpioJGm2jiaIQQQphKjltkdDqd4c7Xbm5u3L59G8gYEBwSEvJioxPiMZR/uzTTFQVNuiQyQghRWOW4RaZq1aqcOnUKb29v6tWrx1dffYWlpSU//PADZcuWzY0YhcjKxgpiEkm/Y4FS9B7E3QZHuUWGEEIUNjlukfnss8/Q6/UAfP7551y9epVXXnmFjRs38s0337zwAIV4lKJ9BwAQuE9hrbkDKUeWmDgiIYQQppDjFpnAwEDD/8uXL8+FCxeIjo7GxcVF7r8kXprifQcQvmYldpdukXrUnnsWSyjZbAxoLEwdmhBCiJcoxy0yj+Lq6ipJjHipFI2GStPmoFOgbghsitKjv7DB1GEJIYR4yV5IIiOEKdhVqULq620A8NlrxfEdc0wckRBCiJdNEhmRr9UcO5loJ0uKxsH5Q7dQo+TKOSGEKEwkkRH5mpmtLVZjxgLgf0LDthVjTRyREEKIl0kSGZHv1e7ag3OVXDFTgbXnSY2/Y+qQhBBCvCSSyIgCwfWj70i0As9I2P7FW6YORwghxEsiiYwoEJrVr8GxeiUBKLHxMlGh50wckRBCiJdBEhlRICiKgnPPL7leUsVaC6c/+o/hzuxCCCEKLklkRIHRoYEfN2sXJ90MSp69y4U1S00dkhBCiFwmiYwoMOyszFFqvsuZWukAJHw5i/S4OBNHJYQQIjdJIiMKlJYt2+JR1oZwV7CP03Li8w9MHZIQQohcJImMKFDKuNlz3e11whsmA2C7YR+xQUdMHJUQQojcIomMKHAqtOhPS7tUDlUFMxUuffwBqlZr6rCEEELkAklkRIHT0NeTvRYtKOYXS5wN2N24S9j335k6LCGEELlAEhlR4CiKgnm9t2mrS+SfJnoA4r5fRFpYmIkjE0II8aJJIiMKpJavNOKIWo1Xi0VzykvBXKvn8icfytwyQghRwEgiIwokeytzrpfrSfW0NC43TiXNHJRjpznauA4nJ44m+ewZkKRGCCHyPUlkRIHVpEM/Dmv8eUcXzV8t9KSag8OdRKx+3cCtnr3xmDaRy1PGk3z6tLTUCCFEPiWJjCiwPFzs8R+7nQsBS2nu7oXujXscCEzlaEVIsQDHmBT4dR3XunXnVOP6XJ88keSTJ1H1elOHLoQQIpvMTR2AELnJwlzDKy07obboyMnTJym9/Rv8XTZyvJ7C2bv2OF61xP+yivWdOJJ+Xsm1n1eS7uaMa9tXcWnbDpsaNVDMJN8XQoi8yqTf0FOnTqVOnTo4ODhQrFgxOnfuTEhIiNE2KSkpDB06lCJFimBvb0/Xrl2JjIw0UcQiv1IUhZp+NWn1wRJiB54g1fUt3nBQea1mOOf7xLGyo569lRWSLMH8bgxxPy/neq/enG/SiIjJk0k6dkxaaoQQIg8yaSKze/duhg4dyqFDh9i2bRtarZbWrVuTmJho2GbkyJGsX7+eVatWsXv3bm7fvk2XLl1MGLXI78p6liBw4ET2VP2a/eUnUzmpFBNtI2hZK5ID/RJZ8Jo5e6ooJFmBcuc+93/+hetv9iGk8StEfD6JxCNHUHU6UxdDCCEEJu5a2rx5s9HzpUuXUqxYMYKCgmjcuDGxsbEsXryYFStW0Lx5cwCWLFmCr68vhw4don79+qYIWxQQdpYa2nQehI532PzPFiyOzuc/cfvRWMVyrI4VvzVx4/4dc/wvpFPnoord3Wjur1jB/RUrMCviimPr1jgGBmJbuzaKufTSCiGEKeSpb9/Y2FgAXF1dAQgKCkKr1dKyZUvDNpUqVaJ06dIcPHjwkYlMamoqqamphudx/979WKvVos3GNPWZ22Rn24KisJfZwsKCFs1boW/akv2nzhKzex5NEzbyVcotks0VNtVzZm670uiv3qfeBR11LqrY34sm5teVxPy6EjMXF+xbtMC+dWts6uTdpKawn+fCQspcOBSGMme3bIqaR6471ev1dOzYkZiYGPbt2wfAihUrGDBggFFiAlC3bl2aNWvGl19+mWU/EyZMYOLEiVmWr1ixAltb29wJXhQ44XGpmN3cT8vkLZQ1CwcgQqNhiXNF9tiZU+R6NPUvqNQNUXFI+f/r0m1tSaxShfjq1UgqVw40GhOVQAgh8rekpCR69epFbGwsjo6Oj90uzyQyQ4YMYdOmTezbt49SpUoBz5bIPKpFxtPTk7t37z6xIjJptVq2bdtGq1atsLCweM5S5Q9S5seX+fb9RA5s/R2vS8sIUM4alu9zqsTu8lX5J/4y7hfvUv+CSr0QFcfk/7/WzMkJu+bNsW/VEtv69VFMXLdynqXMBZWUuWCWOS4uDjc3t6cmMnmiDfy9997j77//Zs+ePYYkBsDDw4O0tDRiYmJwdnY2LI+MjMTDw+OR+7KyssLKyirLcgsLixyd7JxuXxBImbMqU8yZMm8OJj5lAGv+2YFl0Pe0St9Do9gLNAq6wDsWxTjq/yq7mii8f2MvZa8mG1pqnGNjiV+7lvi1azFzdMSheXMc2gRi16ABZpaWL7GUxuQ8Fw5S5sKhIJc5u+UyaSKjqirDhg1j7dq17Nq1C29vb6P1tWrVwsLCgh07dtC1a1cAQkJCCAsLIyAgwBQhi0LKwdqCLu3akB7Ymh3HzhK9az6tkv7GTRtF2+NLaK5Yc6vCa5zu6M/6+of58fYRKt3QE3BBpd5FcI6LI3bdOmLXrcPMwQGH5s1wCGyDXcMGmD0i8RZCCJE9Jk1khg4dyooVK/jzzz9xcHAgIiICACcnJ2xsbHBycmLgwIGMGjUKV1dXHB0dGTZsGAEBAXLFkjAJc40ZgfWqo9adx9HL41i/ZRH1o37H1+wGZS/+itfFldT3aEr6KxPZXOsef11Zz4/3r1DpJtS/oCfgooJzfDyxf/5F7J9/YWZnh33z5jgGtsauUSPMrK1NXUQhhMhXTJrIzJ8/H4CmTZsaLV+yZAn9+/cHYNasWZiZmdG1a1dSU1MJDAxk3rx5LzlSIYwpikLdCiWoW2E8oVEjWbz5D8peXkYzsxN4ROyEVTt5zd6HXq+8x9WA6vx1bTPrKmxiaUo0Prc01D+vp9ElDU6xicStX0/c+vWY2dpi37QpDm0CsX/lFcxsbExdTCGEyPNM3rX0NNbW1sydO5e5c+e+hIiEyLlyxRwo13cA9xJ6seyfPdieWEh7/U6KJFyETe9TxsKVobUGMrrdb+yPDeGv0L9YUXoXP7VMo/wtDQEhKo0vWeB4P4m4jRuJ27gRxdYW+yaNcQwMxL5xY8zkijshhHikPDHYV4iCoIi9Ff06tiKlbXM2HA4mes/3tE/dQHFtNBz6Gu3h2VT36UrT5sOJDfgvW69vZX3oen4qdYKfmqdT/raGRpfMaHzRAvt7ScRv2kz8ps0o1tbYN26MY5tA7Js0wczOztRFFUKIPEMSGSFeMGsLDV0bVUPf4Ft2X/iYP7b+ROPoVfiZXcE1ZCWErCTdvQFdm4/gjcCl3Ei4xd9X/uYvh79YWvImS5ukUjZCQ4vLNjQMUbC9E0/81q3Eb92KYmWFfeNXcAhsg33TpmjsJakRQhRuksgIkUvMzBSaVS5Fs8qfcPbmu8ze+hcVr/1Ma+UoRSIPwK8HuG/rhVKpGwOrNuU/HfpzKiaj62mz1WYWFo9nYSMV70gN7a+5Ujs4DZvIWOK3bSd+23YUS0vsXnkFu4AAbKpXw7pSJRQTXtYthBCmIImMEC9B1VLOVH2rL7dj3mDBzgM4nFzMa/yDS9I1XI5/Bce/Qos5bva+9C1Zj6GVPuC4rcJft3ayz2wf33rch3oqZaI01L+gp/FFc4reTSNhxw4SduwAQLGwwKqyLzbV/bCpXh0bv+pYeHqiKIqJSy+EELlHEhkhXqISzjYMfa0F8W0b8/fRENRTv+Fx7zDV9OcpqsRRKuEMhJyBkEW0AvwsS3PL3Y8gd1dCrLScc7zOb+43+K2xHs87GupeVKlwO+PhkKwl5dRpUk6d5v6/x9O4uGBdvRo21atjUaUKZklJpiy+EEK8cJLICGECDtYW9HylKrxSFVVVuX43kaPBp0i4tA/7yGNUSD1HBbNbFEsLo9iNMGreyHhdnJkzV4tU52qJstzyciC4xj12RgcTnXwP9xgo/29SU/62inckcP8+ibv3kLh7DwDlgevLlmHr54d19erYVPfDuqKPdEkJIfItSWSEMDFFUfAqao9Xk4bQpCEA9xPT2H3xCnfO78X81mE8E05TlVAc9TH43dmD352MxCQNS8IdKhNRoikR/iW5XF/PmZhL/HYvGG1KEmWiMLTYlL+tUvw+aK9dJ/badWL//Cvj+JaWWPv6Yu2XkdjY+FXHolQp6ZISQuQLksgIkQe52FnSpGYlqFkJGERquo5zYVGEnT1I+rUDuEWfoLp6AVclgTLxJykTchJCMl4bYeVNvHst7nv7cqOWA+eSI9l+9yzz7l/EJjGd8uGZiU1GC45DShrJp06RfOoU9/kZAI2rKzbVqv0/ualeDU02broqhBAvmyQyQuQDVuYa/MsWx79sF6ALqqpy5U4Ch88dz+iOigqiYto5yppF4JF6FY+wqxAGdYGWGlfuFfEn3bMbe83i0DSoQHBsCMvvniMs7joe9zG02Bi6pKKjSdi9m4Tduw0xWHp7Y1O9uiG5sa7oY/I7egshhCQyQuRDiqJkzChcrAk0awLAvYRUdoVc5u6FvVjcOkzphDNUUa7gpIvGKWo7RG3HB0gJtSLSoSqqZ30saw7kqqM9Z+KucPbuWf68e4a4hHt4Rf4/ualwW8UjBtKuXiXt6lVi//wzIwYrK6x9fbHxq54x3sbPD4uSJaVLSgjxUkkiI0QBUcTeiqa1qkCtKsB/SNHqOH09kptn96G7fpCi90/ip17AiSTKxAXBuSA4Bx4oeFuXo5VHbRwrvI3W25ezadGcvXuWg3fPsOjeOczjkgwtNhVuQ/lwFfuUVJJPniT55ElDDJoiRbCpVu3/yU016ZISQuQuSWSEKKCsLTTULl+C2uW7Ad1ITU1j6eoNlCxqT8qVgzjeCaJiWjBlzKIokXIZrl2GaysBsDEvSvki/nQv24AijYdxw9aOs9HBnL17lrV3z3Ap+iJF76UbXSXlFQXcu0fCrl0k7NpliMOybFnDvDbW1atj7SNdUkKIF0cSGSEKCTMzBQ87MwKbNsWiVSsA7sSnsvNCCNEX9mBx+yheiaeprFzDJf0OLpFbIHILHISSii0WjtWoWboeRau8g8bTjwuJNzl79yxn7p5h+92zhN+/jlek8SXgHjGQduUKaVeuELtuHfBvl1Tlyg8kN35YlCwhXVJCiGciiYwQhVhRByua1akOdaoDkKLVceLKbW6d24cadohiMSeorl7EgSS8Yg/DmcNw5ht0mFHUpjwBxevStuIruLZ4nzhre87dPceZu2c4ffcsy++eIS367gOJzQNdUidOkHzihCEOTZEihsTGpnp1rKtVQ+PgYKpqEULkI5LICCEMrC001KnoSZ2KPYGe6PUqlyNj2Xv2KEmh+3C6E4Rv+nlKKXcpmXwRrlyEK7/AJtCae+Du5o9XuYYMrDIYjXtlIlPucObuGc7cPcO2u2eZc+csjlFJRnPblMnsktq5k4SdOzMCURSjLimb6tWxqlBBuqSEEFlIIiOEeCwzMwWf4s74FG8F/3ZHRcWnsDM4mPshe7G8fRTvpDNUUq7jlh6BW8RGiNgI+yFRsSPZqTrlSwfQsEpjbKv9B525FVdjr3Lm7hnO3TvHz3fPcDUyhFIR6f9PbsJV3GNU0kJDSQsNJXbtWgAUa2ujLimb6tUxLyFdUkIUdpLICCFypJiDNcXq+UM9fwCS03QEhd4gPHgvatghPGJPUU29iB2JeMcchJiDcHom6WiIsK0IxevQxLcxr1UdDPbFSNWlciH6gmG8zbq7Z7kffi1Ll5RdSgrJx4+TfPy4IRZNkSLY+P3/JpnW1aqhsbc3VdUIIUxAEhkhxHOxsdRQ19cLfL2APuj1Khcj7nPlzGFSQvfjdO84VdKD8VDuUyopGEKDIXQZ/A13LEoQW7Q2buUa0K1yY3pX7AlmZsSmxnLu3jnO3j3L/rtn+D7yNJbh96hw699LwMNVSmd2Sf3zDwn//JMRjKJgWa6s4Q7gFn7VQVVNVzlCiFwniYwQ4oUyM1OoVMKVSiXaAm0BiIxN5p/gs8SE7MU6/Chlk8/go9ykqPY2RW//Bbf/gr2QpNgQaV+Z9OK1qFAhgIBKHVGqD0ZVVSKTIg2tNmvuniUk/Awetx6c30alWKxK2uVQ0i6HErtmDQBerq7cDT6PU+tW2NSsiaLRmLB2hBAvmiQyQohc5+5kg3tAHQioA0BiajpHQ8OIOLcHbhyiRNwpqqih2JKMd3wQxAfBxR9gA9zTFCPapTqa0rWp79uIltXeAUtbdHod1+KucebuGc7ePcvWO6eJuHGBsrd1hon7Kt1QsYyOJuann4j56SfMXJxxaNYch5YtsGvQADNraxPXjBDieUkiI4R46eyszKlXuSxULgv0R69XuRIVy7XgYyReOYzNnRN4JZ+nvHKLIrooitzdDne3w3HQYUa4dTkSi9bE1rse7So3onPZjmBmRlxaHEERQRyJOMJvEYcJi7yI31WVOhdVal1Wsb8fQ+yaNcSuWYNqbYltgwY4twrEvmkTzF1cTF0tQohnIImMEMLkzMwUyns4U96jJTRvCWTMaXPq2i3Czx8kPewoLvdPUTH9IsWUGEqlXIIbl+DG77An4wqpCPsqpBf3p4pPA5pWfgul7kdExkeycPNCIl5N54vwY9gEX6XOxYzEpmhcGsn/7CL5n13ozRTU6pUo1qYDzi1bY1mqpIlrRAiRXZLICCHyJGsLDTUrlKZmhdJAdwDuxaew/+J5oi8eRHM7CI/4s/iqV7AjkXLxRyD+CFxcAH9DlLkH952rUV9fjNrVeuBc92Mi2sZwNOIoW28f4taJfXifvkOdiypeUSqcPM+9k+e5N+0rEsoUxaZ5E7zbd8e2chW5xFuIPEwSGSFEvlHEwZqGtWpCrZoAqKrKtahYrgYfJfHKIWyjTuKVEkw55TbF0iModjeCSgArl6PFnDTrclQoWoPq3vXx6NaHqP62HI44wqozu2DvYSoHJ+B7A+yv34ElfxC25A/iXK1Jrl8Vj7adqNC0IxoLSxPWgBDiYZLICCHyLUVR8HZ3xtu9FTTLmLAvNV3H6as3CD9/AO31ozjeO0FlNRQ3JY7SKSFwIwRu/AZ7wFmxp4ZDFaoW98f5zXEklCxJUNgJ7u3YgtOREKpc1uIYnYLjxmOoG49x3GY8t/1KYNG0IRXbdKesu6+01ghhYpLICCEKFCtzDdUreFG9ghda7Rts3LgRfZMWHAoNMeqSqqRexYEEHOIOQ9xhCJkPgL15Ce67VIcBbxLvUZxr586h23MYz1OROCSr+By6BYd+J2H67/xezor4+r4UbdWOWhWbUcqhlIlLL0ThI4mMEKLAc7Gzon6tWlCrFpDRJRV2J4Zr544YrpIqk3yesko4Hum38bhzG+5sBiANc25XqkBsw4aEp9mSHnIDh6ArON9LpXpIKoScRP/TSQ6XmsIvVV0wa1yfyn7NqetRl2K2xUxZbCEKBUlkhBCFjqIolCnmQpligdAsEIC0dD3nrt8gPHgf6WFHcY4+jU96CK5KAl4p5+HW+YwXu0JMK0duppfn7h0rrEKjcb4ZT+UbUPnGfdi0ibCim/ihgsIt/1KUrPUKdYvXo45HHVys5RJvIV40SWSEEAKwNDejSrkyVClXBugNQGxiGkcunOb+v11S7vFn8VGv4qzE4Wx+HIoDxUGbqOFahAfREdbY30ym9B0ofUeFAze467CCYxV+ZamPQrpfJWqXqkc9j3r4u/vjYOlg0jILURBIIiOEEI/hZGdJ3Vq1oVZtIKNL6uadGK6dO0zilcPY3jlB6eTzeNlFUKHcLSgHulSFhHBr7t6yJTncCrd4aHNcpc1xlYR1wZwod55fKixjTDkN5UpUpa5HXeoWr0vNYjWxMbcxcYmFyH8kkRFCiGxSFAXPYi54FmsDzdoAoNXpOX8tzNAl5RJ9igplLlLO6x56HSRGWpFw05rY29bYp2h45ZzKK+dUtBo9Z7xOctTnFH+UX0SiowV+Rf2o55HRDVW9aHUsNXKptxBPI4mMEEI8BwuNGb7lvPAt5wW8CUBcchpB508RffEAGpcgPEqepVz6NXTRGuJvWRN/0xoSzPEPVfEPVRkEXCqp46jPUdZWOMa8IgrWGmtqFqtJ3eJ1qedRD98ivpibyVe2EA+TT4UQQrxgjjaW1PKvA/4ZN8lUVZXb92K4fvZgRpdU5HFKRV7A7lYS8besSYm2pOItqHhLz5s74XYR2FMlie01DnAw/CAA9hb21HavTcOSDWlcqjEl7EuYsohC5BmSyAghRC5TFIWSbi6UbNoOmrYDIF2nJ/TaNcKD96MP3kORcydxCLtPaqQ5Je4p9Nijp9s+lYsVVVbWtSC4RAK7bu5i181dTD48mfLO5Xml1Cs0LtmYGsVqSGuNKLTknS+EECZgrjGjYrmyVCxXFjr0ASAhJY1Lx/aT9PfvOOw/jMWdZCqdV5hwXodaVEuIn451lS04aWvF5ZjLXI65zJKzS3CwcKBByQY0LtWY+sXqm7hkQrxcksgIIUQeYW9tSc1GzaBRMwDijp/kxvy5KPsPoNyxoNJ2Cz7br8PG5z5nq+rZ5WrNfhtrYohny7UtbLm2BQWFkpqS3DpziyZlmuDr6ouZYmbikgmReySREUKIPMrRvwZVFi5EGxVFzMrfuP/bb6Tfu0f8KQdKn1V4u3Q6430iuehhxh5bG/ba2HDBypKbupvMPzOf+Wfm42ZdhFdKNaZxqcYElAjAzsLO1MUS4oWSREYIIfI4i2LFKPr+MIr85x3iN20i+qefSTl3Du1VDdevFkMpU5z65c153fUyGss77LW1Zo+NDYdsrLmbco+1l9ey9vJazNHgX6wGjUs3o3Gpxng5eslNL0W+Z9L2xj179tChQwdKlCiBoiisW7fOaL2qqowfP57ixYtjY2NDy5YtuXTpkmmCFUIIEzOztMSpUye8/lhFmV9X4Njuf+3deVxU9f7H8dcMDMwMgywu7IsrgiJoihu5hSimUubN0nuv7ctt0WvWzW6/tqt1r9fMe7ve2152M9vMJUtLzQVFwSVQExRMEFld2IZ1YM7vD65ThDszDMvn+Xj4yPM9Z8583gzJh+/5zpxJ4OiIU3Y+rltzqNgVzFnVXOprpjOjIpLPs6t4M7+I35aWEWgyUUc9yUUHWLJ/CVPXTiV21RheTvwLibmJ1NTX2DueENfFrjMyFRUVREREcM899zBt2rQm+xcvXsw///lPVqxYQffu3fm///s/JkyYwNGjR9FqtXaoWAgh7E+lUqEfOBD9wIF0KyykeNUqSj79jLr8fNQfraK/RoP71Kl4/HYR1ZgYfmgzN+Yk4lT9A2n6GnbqtezXaikwnWdVxmesyvgMJ0VNhCGE2L5TGdM9Bm8Xb3vHFOKq2LWRiYuLIy4u7qL7FEVh2bJlPPvss8THxwPw4Ycf4uXlxdq1a7njjjtaslQhhGiVNF5edJs7ly4PP0zZ199w7sMPqU1Pp2z1aspWr0Y/bBgDf/dbDNPnYEZFp4wjBKduZebpBM7VH+awvo4EnZYzjo7sq0hj34E0Fh34GwGKgcGeN3DzwDsZ7DcMB7WDvaMKcVGtdo3MyZMnKSgoICYmxjLm5ubG0KFD2bNnzyUbmZqaGmpqfp4iLSsrA8BkMmEyma74vBeOuZpj2wvJ3DFI5nZOrcZlymQ0E2LZ9fY79D2RSeX326jcu5fKvXtx9PPF7c47CbzlVrpPexR4FHO9mf4n0rjp8BYKCraRQwYHdXDY2YkclZGc4h2s+X4HBrOKMLyI8o5m8uC76Obeuj6Mr0O9zv/TETJfbTaVoiiKjWu5KiqVijVr1nDLLbcAkJiYyMiRI8nLy8PHx8dy3O23345KpeLTTz+96HleeOEFXnzxxSbjH3/8MXq93ia1CyFEa+RYXIL73r24JSfjUFkJgFmjoeyGQZSMGEGtl1ej481mhcqyImqLD3Gm/jA52kIO6Bwod/h5OaVaUehZ40APkzeBThH4eQ7GUePcorlEx1BZWcnMmTMpLS2lU6dOlzyu1c7IXK8FCxYwb948y3ZZWRkBAQHExsZe9gtxgclkYvPmzYwfPx6NRmPLUlsNySyZ2yvJrIFZMzFXV2P85htKVn5M7fHjuO9Nwn1vErrhw3GfNRP9jTeiUjd974diNvNT5mH2HvqUoyVJpDue5aSTAxlaMxnaPCAPr9IN9K/W0sc5jBt6TSFsYCxavcG+mTuAjpD5whWVK2m1jYy3d8NCs8LCwkYzMoWFhURGRl7ycc7Ozjg7N/3tQKPRXNOLfa3HtweSuWOQzB1Do8waDc4zZuB5++1U7ttH8X8/onzrVqr27KFqzx40gYF4zpqJ27RpOLi6NjpP336D6dtvMNDQ2Oz/cTtbj3zCEeMh0h2NFDo6UGgwsZVUNFkp3JD2LH1r3ejlMoQeIZPoOWgMehfXX5dn+8wdRHvOfLW5Wm0j0717d7y9vdm6daulcSkrKyMpKYmHH37YvsUJIUQbpFKpcImKwiUqitrTuRSv+piSz7/AdOoUha/8lTP/+Cdd5zyO5+zZF3+8Ws2Q8HEMCR8HQFVtJRtTvmBHxlccqsnkrEMde/Va9uprgF0Ep28j5kA1/at90QZMovuNd+Ib2LMFE4uOwK6NjNFoJDMz07J98uRJUlJS8PT0JDAwkLlz57Jw4UJ69+5tefu1r6+vZR2NEEKI6+Pk74fXk0/S9ZFHKP1qA8Uf/ZeajEzOvvnWJRuZX9M56ZkW9XumRf0eRVH4qeQEXx36nN0535NRV0CWk4Z3nDRAOTeUryD+s38TUBNEVdAkgqPvJCC4l21Dig7Bro3M/v37GTt2rGX7wtqW2bNn88EHH/DUU09RUVHBAw88QElJCdHR0WzatEk+Q0YIIaxErdfjMeN2DKNuJHPsOOrLy1EU5Zo/8VelUtHToxdzRy9gLgsory1nR84OvjjyMQdLDnNAp+WATovOXMb4kve45ZPXKa7rQWnQzQRG30FQ9942SijaO7s2MmPGjOFyb5pSqVS89NJLvPTSSy1YlRBCdDzqC2tjTCaUmhpUzfyF0dXJlck9JzO552QKKgrY8NMGVqd/zunKPNa7GljvasDPVMrUc2/TfeVr/Kj04WzQzQRGz6B7jz5WSCQ6CrklqhBCCNR6PfxvFsZsNFr13N4u3twXfh/fTN/Ef+P+y229b0PvoCNX48h/PNyIC/Dj1a7nKCn6D17/jeLIX4axbcVLnMg8ftlfdoWAVrzYVwghRMtRqdWoXVwwG43Ul5fj2KWL9Z9DpSKyWySR3SL5U9Sf2HpqK+sy15GUn8Q+nZZ9Oi2LOnsQW1HILfn/osdHr3LEIZQzgZPwHzGD3r36yE0uRRPSyAghhAAaLi+ZjUarz8hcjM5Rx+Qek5ncYzL5xny++ukr1mWu41T5Kda5GljnasDfZGKqMZf4nGX4rnyVw+pQCgPi8B95ByG9pakRDaSREUIIAYCDwUAdYC4vb9Hn9TH48MCAB7g//H5+KPqBdSfWsenkJk5Tyb893Pm3hztDq6qJN2Zz06nX0Gcv5ZA6lMKAifiNuINe3Xu0aL2idZFGRgghBPDzgt/6ctvPyFyMSqVikNcgBnkN4k9DfnHpqSCJJJ2WJJ0WXWeIqzASX/4TMdmvocp+jVRVXyq0g/mxZw8i+vWXmZoORhoZIYQQAKhdG24tYDa27IzMxeg1eqb0nMKUnlPINeay/sR61mWuI9eYy5euBr50NeBTp+K28mKmlmcQUZUOX3xE6uq+5PtNxHfEDPr3DUWtlqamvZNGRgghBAAOhoYZmZZYI3Mt/Ax+PBzxMA8OeJCDhQdZd2Id32Z9Sz5V/MvDneUe7vSvUjOzvIhxlceIOJ0Ony0jVdWXPL8JeA+7g4gwaWraK2lkhBBCAD/PyBQteZWSdevQhoaiDQ1DGxaKc58QHAwu9q1PpWaw92AGew9mQdQCNmdvZt2Jdewr2MdhnZkFui44oCa0VsVY4zmGVf9E7Ol/oPr8nxxU96egezx9xsykT6CfXXMI65JGRgghBACdYmMp3/Qt9SUl1BxNo+ZoGqV82bBTpcIpMBDnsFC0fUPRhoWiDQ21ydu0r4Zeoye+VzzxveLJKs7ite9e47jjcU4bT3PECY54uvM64GKG4VWVDKs6yfBTf6Xru39ju9MwKvveRuSY2/Dt3Mku9QvrkUZGCCEEAC4jRtB7TyKm3Fyqjx6lOi2NmrR0qtPSqCsspDY7m9rsbMo3brI8xqFrl59nbkL7og0NRRMQgErdcp+36mfwY5x2HH+P+zsF1QXsydvDnvw9JOcnU24qZ4uLni0u+oZjTXUMq/6RYT8doPrIc2zSj0EdMYOh0bG46Z1arGZhPdLICCGEsFCpVDj5++Pk70+n2FjLeN3581QfTaMmPY3qo2lUp6VRm5VF/ZmzVJxJoGJnguVYtYsLzqF9G2ZuQhtmb5x79kTlZNtGQaVSEdgpkMBOgczoO4M6cx1Hzx21NDapZ1LJ1cBqjYHVrgZUikLf2mSGp+2g6oCeev1NdB76e4YNHoyzo4NNaxXWI42MEEKIK3L09MQQPRJD9EjLmLmykupjxxrN3NQcP465ooKq/Qeo2n/g5xNoNDj36tXQ2PTt29Dc9O2Lg8Fgu5rVjgzoOoABXQfwYMSDVJoq2V+4nz15e9ibv5fMkkzSnJ1Ic3YCd3A2b+eGH75l1x5XOhvGMGjEQwwO7SOLhFs5aWSEEEJcF7Vej37gQPQDB1rGFJOJmp9ONpq5qU5Px1xWRk1aGjVpaZT+4hyaoMDGMzd9+6Lp1s0m9eo1ekb5j2KU/ygAzlSeYW/+XvacTmB3zk7OU0GiXkeivg7YgkfSt/TcocffMJy4EQ8yold/m9QlmkcaGSGEEFaj0mjQhvRBG9IHt/h4ABRFwZSbR3XaUWrS0qi+sO6moABT9ilM2aco//ZbyzkcunRpNHOjDQ1FExho9XU3XfVdLZ9VoygKJ0pOkHjyO7alr+dITS7FDg7sd6lhv7Kdtbu303W7hh4uEcRF3k5sz2hcnVytWo+4PtLICCGEsKmGdTd+OPn7wfjxlvG68+cbLkelp/+87ubkSerPnqUiIYGKhF+su9Hrce7bt9HMjXPv3qittO5GpVLRy6MXvTx68ftBf8BUb2J/+jo2H/yIH6sySHdScUZj4kztfpKS9/NSEgQ4BzOu13jGBEYT3jUcjVpjlVrEtZFGRgghhF04enpiGDkSw8jG625qjh9vuCT1y3U3lZVUHTxI1cGDvziBI869euHUpw8edSbK1Wq0fv5ofH1w7NoVlcP1L9jVOGgY3m86w/tNB7OZvLRNbEt6m4yKI+zXOZCt0ZBdm8X7R9/m/aNv46zWEuUTRbTfSEYHjMbPIJ9V01KkkRFCCNFqqPV6dJGR6CIjLWNKXR01P/3UaOamOj0dc2kpNenp1KSn0xUo/GbjzydycMDRqxsabx803t4NzY23Dxrfhm1HHx8c3N2v7r5MajW+/SYxq98kMFVz7of1ZOz7gJyqwyTrNCTptBRTTULuThJyd/JK8iv0cu/FmIAxjPYfTXiXcBzU8i4oW5FGRgghRKumcnRE26cP2j59cJs6FWhYd1OXl0d1WhoVR46QvTeJbmo19QUFmIqKoK6Ourx86vLyqbrUebXaxk2Ojw8an4YmR+PT0PCo9frGD9Jo6Rx1O52jbmdo5XmiE1dR98NHGE0Z7NFpSdDpOKh1JrMkk8ySTN45/A6eWk9G+Y9ijP8YhvsOR6/RX7wgcV2kkRFCCNHmqFQqNH5+aPz80I4eTVL37gyaNAmNRoNSX0/d2bPU5edjys/HlF+AKT+fuoKf/15/7hxKdTW1WVnUZmVd8nkc3Nx+bmwuNDm/mNnxHv0AqphHqCs4isv2d5ie8SWKcpYEnZYdeh07dS6crz7P2sy1rM1ci0atIconijH+YxgTMAZvF++W+6K1U9LICCGEaFdUDg5ovLzQeHk1ukT1S+aamoZ3TV2kyakryMeUl4+5ooL60lLq/3cJ66LUahy7dm24XOXrQ5XXgygU069gP2NNh1HriznkpmGLi4Hv9G6c15jYnbub3bm7WZS0iBCPEMYENDQ1YZ3DUKta7hOR2wtpZIQQQnQ4amdnnIKCcAoKuuQx9eXlmPIu3uSYCgqoKyhAMZmoKyykrrAQUlMbPf4UDfeh6uQAM3R1/FZfSrXBzDE3LQc6u/CTZw1n3NJZUZDOm4fepIuuC6P9RzPafzTDfIehc9TZ9GvQXkgjI4QQQlyEg6srDiGuENLnovsVs5n6c+cwFRT83PD8r8kxFTSsz6k7exbqFUxGR0xGRyiC3kBvKhudq8IZznYq4FynzzjU6TN2ujniHtSbXn2GMjA8Fp/gMJvf4qGtkkZGCCGEuA6q/11WcuzaFV14+EWPUWprMRUV/bxe5/Qpqn/cS3XmEdSlRkwVDphNalxqwOUMBJ1R/vdIE3AUOEop71OiApO7C3q/QHR+gTj1C8PJbEZRlIs+b0cijYwQQghhIyonJ8tNOH/2aMN/zv9ESeIKOLAKXck5TJUOmCodyK/wILuuG471CrrSUlyLa3CqB6fiCuqK0yg/kgbffkswkPXxKgzR0RiiR+IyYgQO7u4tH9LOpJERQggh7MGzB+6TX4RJz2HO3Eb57vdwO7WZMCWXMHKpVRzYptxAsn8s+Ok4fXoLJacy8CqGftkK/U+Bc1ERpV9+SemXX4JajS48HJfoaAw3RqMND2/WhwK2FdLICCGEEPakdkDdJ4YufWKgqpiqg59RmfQBncuOMkGVzIS8ZApz3dmiGUvB4Pmc8TzJ66e/xVRdQd8chUFZakbk6PHILaMqNZWq1FTOLl+O2s0Nw8gRuIyMxiU6Go2XbW7GaW/SyAghhBCthc4D3cgH0Y18EAp/5GzCe+jSvsCrvoRZdWsgdQ0HzL0J7hLLPkMdxQNPsKL7cVZQiWeZA7GF3RiX54HH4RzMpaWUfbORsv994rFzSAgu0SMx3HgjukGDrHafKnuTRkYIIYRojbz60WX6q1D3CrVpGzm3+z26FezkBnUGN5zPYPY5J7bkDCW99+843e0cux228kmnM3zS+wwuY7XMUm7ipnxPdAeOUX34MDXHjlFz7Bjn330PlV6PS1QULjdGY7jxRpwCA+2d9rpJIyOEEEK0Zo5OOIXH4xMeD+WFnN/zIeaDH9GlOospSgJTjieQle5FuMdEcvoFkVK5k59Kf+ItdvCWN0TeFcn9gX8nIgsqdu3CuGsX9WfPYty+HeP27RQCrhMm4PvXV1Dr2t5n10gjI4QQQrQVrl54xj6Jacwctn3+Or1MaXTO/oZgdSH3la6gZreGrY4jON7vXk555LL99FZSzqTwyJkUenv05t4H7iV24YvUZ5zAuGsXFQm7qDxwgPJvv+VUQQH+//k3jp6e9k55TeSzkIUQQoi2RqWizNAL71n/Qb8gg5KYVynQh+CsMjGpfgdzDz3Pfdu/44+1N3NL0O3oHfVkFGfwdMLTTFk3lXWqQ7je83uCPlxB0IoPULu5UZWaStadd1KbnW3vdNdEGhkhhBCiLXNywT36PryfTKJ69nec9JtKLRrCVFn8LuefPLnt3ywo6MUtXePxcPYg15jLwqSFTPhiAu8cfof6ASEEf7wSja8vpuxTZN1xJ1W/ut1CayaNjBBCCNEeqFRouw+l+/3/RfPkMbIGLaDI0ZdOqkpuKd/AX5JfZ3FmHdO1o/HWe3Ou+hz/OPgPYr+I5c3Sr+n80Ttow8KoLy4me/ZdGBMS7J3oqkgjI4QQQrQzKpfOBE99mm7P/EhR/CqOuY+iXlExrO5Hnk/7L2//mMXvGEKwIRijycjbh99m6s7fs/fZyehvjEaprqbwr3+zd4yrIo2MEEII0V6p1XQbOImQuV9R82gqh7rfRwmuBFPEUydX89GhfTxcHUKQ3p+SmhJePryUZ4afAqD2VDaK2WznAFcmjYwQQgjRAei7BjFg9qsYnk4nNfIFTqn9cVNV8Yf8zaw+soe7yzvj7mjgiCqXehVgquNQ+g57l31F0sgIIYQQHYij1kDELX8k4NlDHB7zLoecB+GsUph39gc2ZaYx3ejAOTcVAP/68FEe//5xjhcft3PVl9YmGpnly5cTHByMVqtl6NChJCcn27skIYQQok1TqR0IHzOdAQu2cezWb0nsFIeD2ZH/O5dFoF85AHfuMJNw8numr5/O0wlPk1OWY+eqm2r1jcynn37KvHnzeP755zl48CARERFMmDCBoqIie5cmhBBCtAshEcMYMe8Tzj+YwvcBj+LY1xkHbT0+xfDgDzUoKHz909dMWTuFFxJfIM+YZ++SLVp9I7N06VLuv/9+7r77bsLCwnjjjTfQ6/W899579i5NCCGEaFd8ff0Zd+8iPJ/9kdKhIwCIz6rhk9x8RlZWUa/UszpjNZNWx/Hn7a1jhqZV36KgtraWAwcOsGDBAsuYWq0mJiaGPXv2XPQxNTU11NTUWLbLysoAMJlMmEymKz7nhWOu5tj2QjJ3DJK5Y5DMHYOtMzs5qgkePpazO5I412Uche5uPFe4gSLnAv7l4U6STsv67K9Zn/013VSuPDrsSSZ3n2zVGq42m0pRFMWqz2xFeXl5+Pn5kZiYyPDhwy3jTz31FDt27CApKanJY1544QVefPHFJuMff/wxer3epvUKIYQQ7YVbUhJeX67BGBZG3uzfU1dvpupMJl3PJWPmMOs86titb7jJ5HT9dCKdIq36/JWVlcycOZPS0lI6dep0yeNa9YzM9ViwYAHz5s2zbJeVlREQEEBsbOxlvxAXmEwmNm/ezPjx49FoNLYstdWQzJK5vZLMkrm9aonMdVFRmG69FQc3NyK7d2+yf1BRLhnHdlHsoSWq1414aq17s8kLV1SupFU3Ml26dMHBwYHCwsJG44WFhXh7e1/0Mc7Ozjg7OzcZ12g01/RiX+vx7YFk7hgkc8cgmTsGW2bW+Pig8/G55H4vv2C8/IJt8tzAVedq1Yt9nZycuOGGG9i6datlzGw2s3Xr1kaXmoQQQgjRMbXqGRmAefPmMXv2bAYPHkxUVBTLli2joqKCu+++296lCSGEEMLOWn0jM2PGDM6cOcNzzz1HQUEBkZGRbNq0CS8vL3uXJoQQQgg7a/WNDMCjjz7Ko48+au8yhBBCCNHKtOo1MkIIIYQQlyONjBBCCCHaLGlkhBBCCNFmSSMjhBBCiDZLGhkhhBBCtFnSyAghhBCizZJGRgghhBBtljQyQgghhGizpJERQgghRJvVJj7ZtzkURQGu/nbgJpOJyspKysrKOsxdVCWzZG6vJLNkbq86QuYLP7cv/By/lHbfyJSXlwMQEBBg50qEEEIIca3Ky8txc3O75H6VcqVWp40zm83k5eXh6upKVFQU+/bts+wbMmSIZfvC38vKyggICCAnJ4dOnTo167l/ef7mHHupfRcb//XY5bYls2S+XpL5+o+VzJcfl8yS+cJ2cnIy5eXl+Pr6olZfeiVMu5+RUavV+Pv7A+Dg4NDoBf/l9q/3derUqdnfHL8+5/Uee6l9Fxu/XMZfb0tmyXy9JPP1HyuZLz8umSXzhW03N7fLzsRc0KEW+z7yyCOX3P71Pls83/Uee6l9Fxu/XMZfb0tm65DM13+sZL78uGSWzL/e7oiZr6TdX1q6VmVlZbi5uVFaWtrsLretkMySub2SzJK5veqImS+lQ83IXA1nZ2eef/55nJ2d7V1Ki5HMHYNk7hgkc8fQETNfiszICCGEEKLNkhkZIYQQQrRZ0sgIIYQQos2SRkYIIYQQbZY0MkIIIYRos6SREUIIIUSbJY3MNbr11lvx8PBg+vTpTfZt2LCBkJAQevfuzTvvvGOH6mxvyZIl9OvXj/79+/PRRx/Zu5wW8dprr9GvXz/CwsJ4/PHHr3gDs7bu2LFjREZGWv7odDrWrl1r77Js7uTJk4wdO5awsDDCw8OpqKiwd0k2FxwczIABA4iMjGTs2LH2LqfFVFZWEhQUxPz58+1dis2VlJQwePBgIiMj6d+/P2+//ba9S7I+RVyTbdu2KevXr1duu+22RuMmk0np3bu3cvr0aaW8vFzp06ePcvbsWTtVaRuHDh1SBg4cqFRVVSmVlZXK0KFDleLiYnuXZVNFRUVKjx49lKqqKqWurk4ZMWKEkpiYaO+yWkx5ebnSuXNnxWg02rsUmxs1apSyc+dORVEU5dy5c4rJZLJzRbYXFBSklJeX27uMFvfMM88ot99+u/LEE0/YuxSbq6urUyoqKhRFURSj0agEBwe3u59NMiNzjcaMGYOrq2uT8eTkZPr164efnx8Gg4G4uDi+++47O1RoO2lpaQwfPhytVotOpyMiIoJNmzbZuyybq6uro7q6GpPJhMlkolu3bvYuqcWsX7+em266CRcXF3uXYlM//vgjGo2GG2+8EQBPT08cHdv9reg6pIyMDNLT04mLi7N3KS3CwcEBvV4PQE1NDYqitLtZ5XbVyOzcuZMpU6bg6+uLSqW66HT48uXLCQ4ORqvVMnToUJKTk63y3Hl5efj5+Vm2/fz8yM3Ntcq5r5at8/fv35/t27dTUlJCcXEx27dvb/GMv2brzF27dmX+/PkEBgbi6+tLTEwMPXv2tGKCa9eS3+efffYZM2bMaGbFzWfrzBkZGRgMBqZMmcKgQYN4+eWXrVj99WmJ11mlUjF69GiGDBnCypUrrVT59WuJzPPnz+eVV16xUsXN1xKZS0pKiIiIwN/fnyeffJIuXbpYqfrWoV39ylFRUUFERAT33HMP06ZNa7L/008/Zd68ebzxxhsMHTqUZcuWMWHCBI4dO2b5LTsyMpK6uromj/3uu+/w9fW1eYbmsHX+C2tExo0bh5ubG8OGDcPBwcHmuS7H1pl1Oh0bNmwgKysLnU5HXFwcO3fuZNSoUTbPdikt9X1eVlZGYmIin3zyiW0DXQVbZ66rqyMhIYGUlBS6devGxIkTGTJkCOPHj7d5tktpidd5165d+Pn5kZ+fT0xMDOHh4QwYMMDm2S7F1pn37dtHnz596NOnD4mJiTbPczVa4nV2d3cnNTWVwsJCpk2bxvTp0/Hy8rJ5thZj72tbtgIoa9asaTQWFRWlPPLII5bt+vp6xdfXV3nllVeu6dzbtm1rskZm9+7dyi233GLZnjNnjrJy5cprL9xKbJn/gnvvvVfZsGFDc8q0Kltk/uyzz5Q//OEPlu3Fixcrf/vb36xSrzXY8nX+8MMPlVmzZlmjTKuyRebExEQlNjbWsr148WJl8eLFVqnXGlri/+f58+cr77//fjOqtC5bZH766acVf39/JSgoSOncubPSqVMn5cUXX7Rm2c3SEq/zww8/rHz++efNKbPVaVeXli6ntraWAwcOEBMTYxlTq9XExMSwZ8+eZp8/KiqKI0eOkJubi9FoZOPGjUyYMKHZ57UWa+UvKioCGt7Zkpyc3Koy/po1MgcEBJCYmEh1dTX19fVs376dkJAQW5XcbNb8Pm8tl5WuxBqZhwwZQlFREcXFxZjNZnbu3EloaKitSm42a2SuqKigvLwcAKPRyPfff0+/fv1sUq81WCPzK6+8Qk5ODllZWSxZsoT777+f5557zlYlN5s1MhcWFlpe59LSUnbu3Nmq/w27Hu3q0tLlnD17lvr6+ibTaV5eXqSnp1/1eWJiYkhNTaWiogJ/f38+//xzhg8fjqOjI6+++ipjx47FbDbz1FNP0blzZ2vHuG7Wyh8fH09paSkuLi68//77rXpBpDUyDxs2jEmTJjFw4EDUajU33XQTU6dOtUW5VmGt17m0tJTk5GRWr15t7RKtzhqZHR0defnllxk1ahSKohAbG8vkyZNtUa5VWCNzYWEht956KwD19fXcf//9DBkyxOq1Wou1vrfbEmtkzs7O5oEHHrAs8n3ssccIDw+3Rbl203p/CrVSW7ZsueS+qVOntuofctZgjdmrtmbRokUsWrTI3mW0KDc3NwoLC+1dRouKi4vrMO9kAejRowepqan2LsNu7rrrLnuX0CKioqJISUmxdxk21WEuLXXp0gUHB4cm/zgXFhbi7e1tp6paTkfML5l/JpnbF8n8M8ksOkwj4+TkxA033MDWrVstY2azma1btzJ8+HA7VtYyOmJ+ydxAMrc/krmBZBbQzi4tGY1GMjMzLdsnT54kJSUFT09PAgMDmTdvHrNnz2bw4MFERUWxbNkyKioquPvuu+1YtfV0xPySWTJLZsksmTs4O79ryqq2bdumAE3+zJ4923LM66+/rgQGBipOTk5KVFSUsnfvXvsVbGUdMb9klswXSGbJ3BZ1xMzWplKUdvZZxUIIIYToMDrMGhkhhBBCtD/SyAghhBCizZJGRgghhBBtljQyQgghhGizpJERQgghRJsljYwQQggh2ixpZIQQQgjRZkkjI4QQQog2SxoZIYQQQrRZ0sgI0QGMGTOGuXPn2rsMu7jrrrtQqVSoVCrWrl0LQFZWFiqVipSUFKs+1wsvvEBkZGSzzvHBBx9Y6u2or5kQ10IaGSEE58+f57HHHiMkJASdTkdgYCCPP/44paWl9i7NKiZOnEh+fj5xcXFWP3dVVRUuLi6NbvzXHDNmzCA/P1/ubizEVWpXd78WQlyfvLw88vLyWLJkCWFhYWRnZ/PQQw+Rl5fHF198Ye/yms3Z2Rlvb2+bnHvz5s0EBQXRq1cvq5xPp9Oh0+lwcnKyyvmEaO9kRkaIDsJsNvPUU0/h6emJt7c3L7zwgmVf//79Wb16NVOmTKFnz56MGzeORYsW8dVXX1FXV2c5bseOHURFReHs7IyPjw9PP/10o/2X8tZbb+Hr64vZbG40Hh8fzz333APAiRMniI+Px8vLC4PBwJAhQ9iyZUuj44ODg/nLX/7CnXfeiYuLC35+fixfvrwZX5UG9fX13HPPPfTt25dTp04BkJ6eTnR0NFqtlrCwMLZs2dLo8tQF69atY+rUqRc974kTJ+jRowePPvooF+7P+/bbbxMQEIBer+fWW29l6dKluLu7NzuDEB2VNDJCdBArVqzAxcWFpKQkFi9ezEsvvcTmzZsveXxpaSmdOnXC0bFh4jY3N5dJkyYxZMgQUlNT+c9//sO7777LwoULr/jcv/nNbzh37hzbtm2zjJ0/f55NmzYxa9YsAIxGI5MmTWLr1q388MMPTJw4kSlTplgaiwv+/ve/ExERwQ8//MDTTz/NnDlzLpvjSmpqavjNb35DSkoKCQkJBAYGUl9fzy233IJerycpKYm33nqLP//5z00eazab2bBhA/Hx8U32HTp0iOjoaGbOnMm//vUvVCoVu3fv5qGHHmLOnDmkpKQwfvx4Fi1adN21CyEARQjR7o0ePVqJjo5uNDZkyBDlT3/600WPP3PmjBIYGKg888wzlrFnnnlGCQkJUcxms2Vs+fLlisFgUOrr669YQ3x8vHLPPfdYtt98803F19f3so/t16+f8vrrr1u2g4KClIkTJzY6ZsaMGUpcXNwlzzF79mwlPj6+0djJkycVQElISFBuuukmJTo6WikpKbHs37hxo+Lo6Kjk5+dbxjZv3qwAypo1ayxju3fvVrp162bJ8PzzzysRERHK7t27FQ8PD2XJkiVNar355psbjc2aNUtxc3NrUvfo0aOVOXPmXDKXEKKBzMgI0UEMGDCg0baPjw9FRUVNjisrK+Pmm28mLCys0eWntLQ0hg8fjkqlsoyNHDkSo9HI6dOnr/j8s2bNYvXq1dTU1ACwcuVK7rjjDtTqhn+GjEYj8+fPJzQ0FHd3dwwGA2lpaU1mZH69CHb48OGkpaVd8fkv5s4776SiooLvvvsONzc3y/ixY8cICAhotK4mKiqqyePXrVvH5MmTLRkATp06xfjx43nuued44oknGh1/7NixJue52HmFEFdPGhkhOgiNRtNoW6VSNVmzUl5ezsSJE3F1dWXNmjVNHtMcU6ZMQVEUvv76a3JyckhISLBcVgKYP38+a9as4eWXXyYhIYGUlBTCw8Opra21Wg2/NmnSJA4dOsSePXuu6/Hr169vsj6ma9euREVFsWrVKsrKyqxRphDiMqSREUIADTMxsbGxODk5sX79erRabaP9oaGh7Nmzx7JoFWD37t24urri7+9/xfNrtVqmTZvGypUrWbVqFSEhIQwaNKjRue666y5uvfVWwsPD8fb2Jisrq8l59u7d22Q7NDT0GtM2ePjhh/nrX//K1KlT2bFjh2U8JCSEnJwcCgsLLWP79u1r9NiMjAyys7MZP358o3GdTseGDRvQarVMmDCB8vLyRuf99Xl+vS2EuDbSyAghLE1MRUUF7777LmVlZRQUFFBQUEB9fT0Af/jDH8jJyeGxxx4jPT2ddevW8fzzzzNv3rxGl1YuZ9asWXz99de89957jWZjAHr37s2XX35JSkoKqampzJw5s8mMETQ0PIsXL+b48eMsX76czz//nDlz5lx39scee4yFCxcyefJkdu3aBcD48ePp2bMns2fP5tChQ+zevZtnn30WwHJpbd26dcTExKDX65uc08XFha+//hpHR0fi4uIwGo2W5/rmm29YunQpGRkZvPnmm2zcuLHR5TohxLWRRkYIwcGDB0lKSuLw4cP06tULHx8fy5+cnBwA/Pz8+Oabb0hOTiYiIoKHHnqIe++91/ID/mqMGzcOT09Pjh07xsyZMxvtW7p0KR4eHowYMYIpU6YwYcKERjM2FzzxxBPs37+fgQMHsnDhQpYuXcqECROalX/u3Lm8+OKLTJo0icTERBwcHFi7di1Go5EhQ4Zw3333Wd61dGGm6nJvuwYwGAxs3LgRRVG4+eabqaioYOTIkbzxxhssXbqUiIgINm3axB//+Mcms19CiKunUn45TyyEEK1YcHAwc+fOvaaP7r/rrrsoKSlp8vkv12r37t1ER0eTmZmJm5sbPj4+nD59Gi8vr2ad9/777yc9PZ2EhIRG42PGjCEyMpJly5Y16/xCtHcyIyOEaPc2bNiAwWBgw4YNV/2YNWvWsHnzZrKystiyZQsPPPAAI0eOpGfPnpw/f56lS5deVxOzZMkSUlNTyczM5PXXX2fFihXMnj3bsn/lypUYDIYmjY0Q4uJkRkYI0WynTp0iLCzskvuPHj1KYGBgs5/nemZkioqKLO8e8vHxwcXF5aoe9+GHH7Jw4UJOnTpFly5diImJ4dVXX6Vz587XU7rF7bffzvbt2ykvL6dHjx489thjPPTQQ5b95eXllkXG7u7udOnSpVnPJ0R7J42MEKLZ6urqLvoOowuCg4MtnxAshBDWJI2MEEIIIdosWSMjhBBCiDZLGhkhhBBCtFnSyAghhBCizZJGRgghhBBtljQyQgghhGizpJERQgghRJsljYwQQggh2qz/By4WWNV7Xh0HAAAAAElFTkSuQmCC",
     257      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAG1CAYAAADjkR6kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqeklEQVR4nOzdd3xN9//A8dfNnjeTRAhJEImIETOovWuVao2iKP2qalHVakupFh1WW6OlRpXqQJdV1BZirxCECDIQksi+uff8/khzf64YiSZukvt+Ph73wT3z/f7c9c7nfM45KkVRFIQQQgghSiEzYwcghBBCCPGkpJARQgghRKklhYwQQgghSi0pZIQQQghRakkhI4QQQohSSwoZIYQQQpRaUsgIIYQQotSyMHYAxU2n0xEbG4ujoyMqlcrY4QghhBCiABRF4e7du3h5eWFm9vB+lzJfyMTGxuLt7W3sMIQQQgjxBK5evUqlSpUeOr/MFzKOjo5AbkOo1eqHLqfRaPj777/p0KEDlpaWTys8ozPFvE0xZzDNvE0xZzDNvE0xZyjbeaekpODt7a3/HX+YMl/I5B1OUqvVjy1k7OzsUKvVZe7N8CimmLcp5gymmbcp5gymmbcp5gymkffjhoXIYF8hhBBClFpSyAghhBCi1JJCRgghhBClVpkfIyNEYWm1WjQajbHDKHIajQYLCwsyMzPRarXGDuepMMWcwTTzNsWcoXTnbWlpibm5+X/ejhQyQvxLURTi4+NJSkoydijFQlEUPD09uXr1qslcU8kUcwbTzNsUc4bSn7ezszOenp7/KXYpZIT4V14RU758eezs7Erll8Kj6HQ6UlNTcXBweOTFpcoSU8wZTDNvU8wZSm/eiqKQnp7OjRs3AKhQocITb0sKGSHIPZyUV8S4ubkZO5xiodPpyM7OxsbGplR94f0XppgzmGbeppgzlO68bW1tAbhx4wbly5d/4sNMRs3ax8cHlUqV7zFq1CgAMjMzGTVqFG5ubjg4ONC7d28SEhKMGbIoo/LGxNjZ2Rk5EiGEMB1537n/ZVyiUQuZQ4cOERcXp39s3boVgD59+gAwduxY/vzzT3755Rd27dpFbGwsvXr1MmbIoowra4eThBCiJCuK71yjHloqV66cwfOZM2dStWpVWrZsSXJyMt999x2rV6+mTZs2ACxbtozAwEAOHDhAkyZNHrjNrKwssrKy9M9TUlKA3GrvURVf3ryyeLbKo5hi3g/KWaPRoCgKOp0OnU5nrNCKlaIo+n/Lao73M8WcwTTzNsWcofTnrdPpUBQFjUaT79BSQX+XSswYmezsbH744QfGjRuHSqXiyJEjaDQa2rVrp18mICCAypUrExYW9tBCZsaMGUydOjXf9L///rtAhw3yeoVMjSnmfW/OFhYWeHp6kpqaSnZ2thGjKnqvvfYaycnJrFq1CoC7d+8aOaKiFxMTQ506ddi9ezfBwcH55v+XnPfu3Uu3bt2Ijo7GycnpgcusXr2aiRMncuXKlSfeT3EoCa/1zJkz2bBhA3v27Hkq+ysJORtDac07OzubjIwMdu/eTU5OjsG89PT0Am2jxBQyv/32G0lJSbz88stA7hkkVlZWODs7Gyzn4eFBfHz8Q7czceJExo0bp3+ed9OpDh06PPZeS1u3bqV9+/Zl9n4VD2KKeT8o58zMTK5evYqDgwM2NjZGjrDgHjc4bvLkycyfPx9FUXB0dOTu3bs4OjqWuUNoDg4OANjb2xt8zhVF+c85t2vXjuvXr+Ph4fHQbdjY2KBSqR75HfM0FUXeRcXa2hpzc/Nib5uSlPPTVNrzzszMxNbWlhYtWuT77s07ovI4JaaQ+e677+jcuTNeXl7/aTvW1tZYW1vnm25paVmgH+qCLnc/RadDVcpGjN/rSfMuze7NWavVolKpMDMzK1Uj/+Pi4vT//+mnn5g8eTKRkZH6aQ4ODvof+bxu57w8y5K8fO5//f5rzhqNBhsbm8d+L927/5Lg3kMMOp0OCwvjfdXn/bgWd9uU5ff3o5T2vM3MzFCpVA/8DSrob1KJyPrKlSts27aNV155RT/N09OT7OzsfBcnS0hIwNPT8ylHmJ82NY2wZnXZ3SSI7R8HcuzrgcYOSZggT09P/cPJyQmVSmUwzcHBgZdffpmePXvq12nTpg2jR49mzJgxuLi44OHhweLFi0lLS2PIkCE4OjpSrVo1Nm3aZLCv06dP07lzZxwcHPDw8GDgwIHcunWrUPFGRUXRo0cPPDw8cHBwoGHDhmzbts1gGR8fH6ZPn87QoUNxdHSkcuXKfPvttwbLhIeHU69ePWxsbGjQoAHHjh177L7j4uJ49tlnsbW1xdfXl9WrV+Pj48PcuXP1y6hUKhYuXEj37t2xt7fnk08+YefOnahUKoPvouXLl1O5cmXs7Ox47rnnSExMfOz+Dx06RPv27XF3d8fJyYmWLVty9OhR/fz+/fvz4osvGqyj0Whwd3fn+++/B3J/tGbMmIGvry+2trbUqVOHX3/9Vb98XqybNm2iVatW2Nrasnfv3gK1e0HaJykpiVdeeYVy5cqhVqtp06YNJ06cMNjOzJkz8fDwwNHRkWHDhpGZmfnYthHivygRhcyyZcsoX748zz77rH5a/fr1sbS0ZPv27fppkZGRxMTEEBoaaowwDem0OCdmUS5Jh4dyC/Xd88aOSBQxRVFIz84xyiNvAF9xWbFiBe7u7oSHhzN69GhGjhxJnz59aNq0KUePHqVDhw4MHDhQf4w6KSmJNm3aUK9ePQ4fPszmzZtJSEjghRdeKNR+U1NT6dKlC9u3b+fYsWN06tSJbt26ERMTY7DcrFmz9AXKa6+9xsiRI/U9TampqXTt2pWaNWty5MgRpkyZwvjx4x+770GDBhEbG8vOnTtZu3Yt3377rf5iXPeaMmUKzz33HKdOnWLo0KH55h88eJBhw4bx+uuvc/z4cVq3bs3HH3/82P3fvXuXwYMHs3fvXg4cOED16tXp0qWLfmzDgAED+PPPP0lNTdWvs2XLFtLT03nuueeA3DGA33//PYsWLeLMmTOMHTuWl156iV27dhns67333uPDDz/kzJkz1K5du0DtXpD26dOnDzdu3GDTpk0cOXKEkJAQ2rZty+3btwH4+eefmTJlCtOnT+fw4cNUqFCBBQsWPLZthPgvjH5oSafTsWzZMgYPHmzQ/enk5MSwYcMYN24crq6uqNVqRo8eTWho6EMH+j5V9/zQWCgKnpqrudNK4TFK8WAZGi01J28xyr4jPuqInVXxfTzr1KnDBx98AOSOK5s5cybu7u4MHz4cyB1bs3DhQk6ePEmTJk34+uuvqVevHtOnT9dvY+nSpXh7e3P+/Hn8/f0LvN86deron0+bNo3169fzxx9/8Prrr+und+nShddeew2Ad955hzlz5rBjxw5q1KjB6tWr0el0fPfdd9jY2BAUFMS1a9cYOXLkQ/d77tw5tm3bxqFDh2jQoAEAS5YsoXr16vmW7d+/P0OGDNE/v3TpksH8efPm0alTJyZMmACAv78/+/fvZ/PmzY/MPe/syzzffvstzs7O7Nq1i65du9KxY0fs7e1Zv349Awfm9vCuXr2a7t274+joSFZWFtOnT2fbtm36P+b8/PzYu3cv33zzDS1bttRve8qUKbRu3Rq1Wo2ZmRmurq6PbPeCtM/evXsJDw/nxo0b+sP3X3zxBb/99hu//vorI0aMYO7cuQwbNoxhw4YB8PHHH7Nt2zbplRHFyug9Mtu2bSMmJuaBf/nMmTOHrl270rt3b1q0aIGnpyfr1q0zQpQPcG8hgwoHMki6cdWIAQlRcLVr19b/39zcHDc3N4OzfTw8PAD0f5GfOHGCHTt26MfcODg4EBAQAOQeLlq1apXBvIedoZKamsr48eMJDAzE2dkZBwcHzp49m69H5t748g6X5cVy9uxZateubTAw8HG9tJGRkVhYWBASEqKfVq1aNVxcXPItm/dD/jBnz56lcePGBtPu3X9MTIxBW+QVfwkJCQwfPpzq1avj5OSEWq0mNTVVn7uFhQUvvPCC/uyytLQ0fv/9dwYMGADAxYsXSU9Pp3379gbb//7774mKinpkDo9r94K0z4kTJ0hNTdVfoDTvcfnyZf3+H9c2QhQHo/fIdOjQ4aHd6DY2NsyfP5/58+c/5age796Yk3AHYomPOoGzR2XjBSWKlK2lOREfdTTavovT/YPo8gbb3fsc/n8gYWpqKt26dePTTz/Nt60KFSqg0+kMfsAqVqz4wP2OHz+erVu38sUXX1CtWjVsbW15/vnn853y/qD4ntY1Muzt7f/T+l5eXhw/flz/3NXVFYDBgweTmJjIvHnzqFKlCtbW1oSGhhrkPmDAAFq2bMmNGzfYunUrtra2dOrUCUB/yGnDhg352vf+Exzuz6Gg7f4oqampVKhQgZ07d+abd//ZpUI8TUYvZEor5Z4v1bs2FSE9ltRrEUA34wUlipRKpSrWwzulSUhICGvXrsXHx+ehZ8A4Ojo+djv79u3j5Zdf1o/5SE1NJTo6ulCxBAYGsnLlSjIzM/W9MgcOHHjkOjVq1CAnJ4djx45Rv359ILeH486dO4Xad97+Dx48aDDt3v1bWFhQrVq1fOvt27ePBQsW0KVLFwCuXr2ab7B006ZN8fb25qeffmLTpk306dNHX9TVrFkTa2trYmJiDA4jFcTj2r0g7RMSEkJ8fDwWFhb4+Pg8cD95bTNo0CD9tMe9NkL8V0Y/tFRaabT//5eM1sEPAN0tGfAryqZRo0Zx+/Zt+vXrx6FDh4iKimLLli0MGTIErVZb4O1Ur16ddevWcfz4cU6cOEH//v0L3dPSv39/VCoVw4cPJyIigo0bN/LFF188cp2AgADatWvHiBEjCA8P59ixY4wYMQJbW9tCX3vjjTfeYPPmzXzxxRdcuHCBr7/++rHjYyA395UrV3L27FkOHjzIgAED9DfNuz+/RYsWsXXrVv1hJcgtFMePH8/YsWNZsWIFUVFRHD16lK+++ooVK1Y8dt+PaveCtE+7du0IDQ2lZ8+e/P3330RHR7N//37ef/99Dh8+DMCbb77J0qVLWbZsGefPn9cPOBaiOEkh84Sytf9/GwTr8rljBexSLj1scSFKNS8vL/bt24dWq6VDhw4EBwczZswYnJ2dC3XtitmzZ+Pi4kLTpk3p1q0bHTt2NBiXURAODg78+eefnDp1inr16vH+++8/8JDX/b7//ns8PDxo0aIFzz33HMOHD8fR0bHQF0Bs0qQJixcvZt68edSpU4e///5bP3D6Ub777jvu3LlDSEgIAwcO5I033qB8+fL5lhswYAARERFUrFiRZs2aGcybNm0akyZNYsaMGQQGBtKpUyc2bNiAr6/vI/ddkHZ/XPuoVCo2btxIixYtGDJkCP7+/vTt25crV67ox1S9+OKLTJo0iQkTJlC/fn2uXLnyyEHYQhQFlVLc53kaWUpKCk5OTiQnJz/2yr4bN26kS5cuBboIz42r50ls3wMdwIovCdr0PAm44TGldBUzhc27LHhQzpmZmVy+fBlfX99SdWXfwtDpdKSkpOjPZDEFj8r52rVreHt7s23bNtq2bWukCItHUbzWpa19TPH9DaU/70d99xb091sGADwhTc6/PTIqqFgt97RGDxJJv3sHO8f8Z0IIIYzrn3/+ITU1leDgYOLi4pgwYQI+Pj60aNHC2KGVCNI+orQqfeVbCZH9byGjAM5u5bmFMwDXo04bLyghxENpNBree+89goKCeO655yhXrhw7d+40mZ7Ix5H2EaWV9Mg8oWxd7mBf5d9SMMHKG/fsJJJizkDdZ4wYmRDiQTp27EjHjsY5nb40kPYRpZX0yDwhjSbL4HmqY+6ZSzkJ54wRjhBCCGGSpJB5Qtn/nn6t/HtqouKWeylvq6SLRotJCCGEMDVSyDyhvNOvlX8vQeFQMRAA14wrxgpJCCGEMDlSyDwhTY7m3//lVjLlfXPvU1NRG1uoy34LIYQQ4slJIfOEsu85/RqgXKVqZChWWKlyiI2WcTJCCCHE0yCFzBPS5F3Z998xMiozc+IsKgFwK1pOwRZCCCGeBilknpBGl3toSbnnNi1J9j4AZMZJj4woOV5++WV69uxp7DBKHJVKxW+//fbQ+dHR0ahUKoM7WYtcO3fuRKVSkZSUZOxQhJBC5klpcv4dB3PPDedyXHPPXLK4fcEYIQkTpFKpHvmYMmUK8+bNY/ny5cYONZ/bt28zYMAA1Go1zs7ODBs2jNTU1Ke2/7i4ODp37vzU9ieEKB5yQbwn9KBCxtozAKJBnXbZOEEJkxMXF6f//08//cTkyZOJjIzUT3NwcMDBwQGg0HeZLm4DBgwgLi6OrVu3otFoGDJkCCNGjGD16tXFut/s7GysrKzw9PQs1v0UJ41GI1fcFeJf0iPzhDTa/IWMu08tALw0Mei0JetHQ5RNnp6e+oeTkxMqlcpgmoODQ75DS23atGH06NGMGTMGFxcXPDw8WLx4MWlpaQwZMgRHR0eqVavGpk2bDPZ1+vRpOnfujIODAx4eHgwcOJBbt249Udxnz55l8+bNLFmyhMaNG9O8eXO++uor1qxZQ2xsbIG3k5OTwxtvvIGzszNubm688847DB482CDfrl276vN1d3fXX732/kNL4eHh1KtXDxsbGxo0aMCxY8ceu//ExET69etHxYoVsbOzIzg4mB9//FE//9tvv8XLyytfEdmjRw+GDh2qf/77778TEhKCjY0Nfn5+TJ06lZycHP18lUrFwoUL6d69O/b29nzyySdotVqGDRuGr68vtra21KhRg3nz5hW6fXQ6HTNmzNBvp06dOvz6668G29m4cSP+/v7Y2trSunVroqOjH9s2QjwtUsg8oQcVMh4+QegUFc6qNOLirhkpMlFkFAWy04zzKOab0q9YsQJ3d3fCw8MZPXo0I0eOpE+fPjRt2pSjR4/SoUMHBg4cSHp6OgBJSUm0adOGevXqcfjwYTZv3kxCQgIvvPCCfpvTp0/X9wA97BETEwNAWFgYzs7ONGjQQL9+u3btMDMz4+DBgwXO49NPP2XVqlUsW7aMffv2kZKS8sBxL99//z1WVlbs27ePRYsW5ZufmppK165dqVmzJkeOHGHKlCmMHz/+sfvPzMykfv36bNiwgdOnTzNixAgGDhxIeHg4AH369CExMZEdO3bo17l9+zabN29mwIABAOzZs4dBgwbx5ptvEhERwTfffMPy5cv55JNPDPY1ZcoUnnvuOU6dOsXQoUPR6XRUqlSJX375hYiICCZPnsx7773Hzz//rF/ns88+e2z7zJgxg++//55FixZx5swZxo4dy0svvcSuXbsAuHr1Kr169aJbt24cP36cV155hXffffexbSPE0yKHlp7QgwoZCxt74szKU0FJIOHSKSpWqmyk6ESR0KTDdC/j7Pu9WLCyL7bN16lThw8++ACAiRMnMnPmTNzd3Rk+fDgAkydPZuHChZw8eZImTZrw9ddfU69ePaZPn67fxtKlS/H29ub8+fP4+/vzv//9z6CweRAvr9z2jI+Pp3z58gbzLCwscHV1JT4+vsB5fPXVV0ycOJHnnnsOgK+//pqNGzfmW6569ep89tlnD93O6tWr0el0fPfdd9jY2BAUFMS1a9cYOXLkI/dfsWJFg4Jn9OjRbNmyhZ9//plGjRrh4uJC586dWb16NW3btgXg119/xd3dndatWwMwdepU3n33XQYPHgyAn58f06ZNY8KECXz44Yf6bffv358hQ4YY7H/q1Kn6//v6+hIWFsbPP//M888/r2+PR7VPVlYW06dPZ9u2bYSGhur3v3fvXr755htatmzJwoULqVq1KrNmzQKgRo0anDp1ik8//fSRbSPE0yKFzBPKGyNzTx0DwG1bHyqkJ5B6/Szw7NMPTIgCqF27tv7/5ubmuLm5ERwcrJ/m4eEBwI0bNwA4ceIEO3bs0I+3uVdUVBT+/v64urri6upazJH/v+TkZBISEmjUqJF+mrm5OfXr1893KCckJOSR2zp79iy1a9fGxsZGPy3vhz1PUFAQV67kXrn7mWeeYdOmTWi1WqZPn87PP//M9evXyc7OJisrCzs7O/16AwYMYPjw4SxYsABra2tWrVpF3759MTPL7RA/ceIE+/btM+iB0Wq1ZGZmkp6ert/Wvb1XeebPn8/SpUuJiYkhIyOD7Oxs6tatW+D2uXjxIunp6bRv395gu9nZ2dSrV0/fNo0bNzaYf3/bCGFMUsg8IdW/X3jmqVlkXb6Mta8vAJku/pB+EMfLG1GUt1DdX+mI0sPSLrdnxFj7Ls7N3zdQVKVSGUzLe9/m/eClpqbSrVu3B/4VXqFCBSD30NK9PTYPEhERQeXKlfH09NQXSXlycnK4fft2sQzCtbf/771bGzduRKPJveyCra0tAJ9//jnz5s1j7ty5BAcHY29vz5gxYwyu7t2tWzcURWHDhg00bNiQPXv2MGfOHP381NRUpk6dSq9evfLt897C6v4c1qxZw/jx45k1axahoaE4Ojry+eefF+rQXN5ZYhs2bKBixYoG86ytrQu8HSGMSQqZJ9S5+RDC/dZR+5KWk++9QYPVf6BSqajcYRTZS1dTL/sI4Vt/oVGHR3e1ixJMpSrWwzulSUhICGvXrsXHxwcLiwd/bRTm0FJoaChJSUkcOXKE+vXrA/DPP/+g0+ny/fX/ME5OTnh4eHDo0CFatGgB5PZkHD16VN8rUVCBgYGsXLmSzMxMffFw4MABg2WqVKmSb719+/bRo0cPXnrpJSC38Dt//jw1a9bUL2NjY0OvXr1YtWoVFy9epEaNGgY9RCEhIURGRlKtWrVCxbxv3z6aNm3Ka6+9pp8WFRWl/39B2qdmzZpYW1sTExNDy5YtH7ifwMBA/vjjD4Np97eNEMYkg32fkK+zL7qxw8g2B4djF7n6+08AlKsSyKmKL+b+P+wjMrOyjBmmEEVi1KhR3L59m379+nHo0CGioqLYsmULQ4YMQavVAuDq6kq1atUe+cgrggIDA+nUqRPDhw8nPDycffv28frrr9O3b199sVMQo0ePZsaMGfz+++9ERkby5ptvcufOnUL3hPbv3x+VSsXw4cOJiIhg48aNfPHFF49dr3r16mzdupX9+/dz9uxZXn31VRISEvItN2DAADZs2MDSpUv1g3zzTJ48me+//56pU6dy5swZzp49y5o1a/RjmB6178OHD7NlyxbOnz/PpEmTOHTokMEyr7/++iPbx9HRkfHjxzN27FhWrFhBVFQUR48e5auvvmLFihVAboF64cIF3n77bSIjI1m9enWJvC6RMF1SyPwHL7R9g7C2ud3gCTNmkPNvN21g349JwhFf5Srha+caMUIhioaXlxf79u1Dq9XSoUMHgoODGTNmDM7OzvqxHoW1atUqAgICaNu2LV26dKF58+Z8++23BsuoVKpH/mi+88479OvXj0GDBhEaGoqDgwMdO3Y0OCRTEA4ODvz555+cOnWKevXq8f777xdoMOsHH3xASEgIHTt2pFWrVnh6ej7wKspt2rTB1dWVyMhI+vfvbzCvY8eO/PXXX/z99980bNiQJk2aMGfOnAf2AN3r1VdfpVevXrz44os0btyYxMREg94ZgAkTJjy2faZNm8akSZOYMWOGvsDcsGEDvv8eLq9cuTJr167lt99+o06dOixatOixhxCFeJpUilLM53kaWUpKCk5OTiQnJ6NWqx+6nEajYePGjXTp0qVQF5q6mHCWqz1743lH4c5zz9B0Ru4X8fFfP6Xu6ekkKmp44yhubuX+cy7F4UnzLs0elHNmZiaXL1/G19e30D+CpYVOpyMlJQW1Wv3ExcfTdPnyZfz9/YmIiKB69eoFWken0xEYGMgLL7zAtGnTSl3OReVhed/fPmWJvNalM+9HffcW9Pe79GVdwlTzCOTWyJ4AqH/bQ9zx3GPHtXuM5ap5JdxUKZxZM9mIEQpROm3cuJERI0Y8soi5cuUKixcv5vz585w6dYqRI0dy+fLlfL0epkraR5gCKWSKQM+XpnKmthpzBc69NxadVouZpRXpLacA0PjGz1y+IHfEFqIwRo0axfz58x+5jJmZGcuXL6dhw4Y0a9aMU6dOsW3bNgIDA59SlCWbtI8wBVLIFAFLM0tqfTSbTEvwvJTEvsW5XbY1nnmeCNv6WKtyuLlOroQpRFHz9vZm3759JCcnk5KSwv79+/Vn6AhpH2EapJApIgEBzbj2YnMAbL75mVvxl0GlwqnHZ2gVFY0y9nBsb/4rjgohhBDiyUkhU4Q6jp9HvKc1DhkKez54FYCKAQ04Ub47AHb/TDK4EZwQQggh/hspZIqQlY0dHpMnARCw9yq7Ni8GoNqLM0jFlhq6ixz44xtjhiiEEEKUKVLIFLGabXpzvUUNADJnfsmd1Fuo3StyvnruzfiqnZxFyt1kY4YohBBClBlSyBSDZp8sIt3WjMrxOfz+Re7dc4Ofn0i8qjyeJHJ8Tdm6foMQQghhLFLIFAPbcp5YjxoGQPC60+w+/juW1nbcCp0IQINr33P9yiVjhiiEEEKUCVLIFJOgoWNIqloOu2yI/mQKKdkpBLV7mQtWNbFTZRHz60RjhyhMxMsvv/zAy+aLkis6OhqVSsXx48cLvM7TeJ2nTJlS6BtyllatWrVizJgx+uc+Pj7MnTvXaPGUZiqVit9++63Yti+FTDFRmZlRc8Y8dCpoeCqT71eMR2VmhuWzMwFonLKFM0d2GzlKUdqpVKpHPqZMmcK8efNK5E3+bt++zYABA1Cr1Tg7OzNs2DBS/71fWWlUlD903t7exMXFUatWrSLZnhBlmRQyxcipdj10vToCELBsD3sv78CnTkuOO7fHTKWg2/QeOq3OyFGK0iwuLk7/mDt3Lmq12mDa+PHjcXJywtnZ2dih5jNgwADOnDnD1q1b+euvv9i9ezcjRowwdlhGl52djbm5OZ6envq7hQvxpLKzs40dQrEzeiFz/fp1XnrpJdzc3LC1tSU4OJjDhw/r5yuKwuTJk6lQoQK2tra0a9eOCxcuGDHiwqn57jQynWyoeBv2z3qX1OxUvPt8SqZiSXDOKcK3rDR2iKIU8/T01D+cnJxQqVQG0xwcHPIdcmjTpg2jR49mzJgxuLi44OHhweLFi0lLS2PIkCE4OjpSrVo1Nm3aZLCv06dP07lzZxwcHPDw8GDgwIHcunXrieI+e/YsmzdvZsmSJTRu3JjmzZvz1VdfsWbNGmJjYwu1rSVLlhAYGIiNjQ0BAQEsWLDAYP6RI0eoX78+NjY2NGjQgPXr1xsctlm+fHm+Qu+3335DpVLpn0dFRdGjRw88PDxwcHCgYcOGbNu2TT+/VatWXLlyhbFjx+p7w/KsXbuWoKAgrK2t8fHxYdasWQb78vHxYdq0aQwaNAi1Ws2IESPyHVrSarUMGzYMX19fbG1tqVGjBvPmzStwG6WkpGBra5vvNV2/fj2Ojo6kp6cDuXcT9/f3x87ODj8/PyZNmoRGo3nodu8//ALQs2dPXn75Zf3zrKwsxo8fT8WKFbG3t6dx48bs3Lnzodtcvnz5Q3sXIfcmiR999BGVKlXC2tqaunXrsnnzZv36eW23bt06WrdujZ2dHXXq1CEsLEy/TGJiIv369aNixYrY2dkRHBzMjz/++JhW/H9Dhw6la9euBtM0Gg3ly5fnu+++e+h6j2rf8+fPo1KpOHfunME6c+bMoWrVqvrn938OBw0aRGJion5+q1ateP311xkzZgzu7u507Jj7x/Ts2bMJDg7G3t4eb29vXnvttXw9oIsXL8bb2xs7Ozuee+45Zs+ene+z8fvvvxMSEoKNjQ1+fn5MnTrV4PpoFy5coEWLFtjY2FCzZk22bt1agBb9b4xayNy5c4dmzZphaWnJpk2biIiIYNasWbi4uOiX+eyzz/jyyy9ZtGgRBw8exN7eno4dO5KZmWnEyAvO3NGRShM/AKDjzhQWbZ6KW8WqnK4yCICKh2aQkZFhzBDFQyiKQrom3SiP4r4p/YoVK3B3dyc8PJzRo0czcuRI+vTpQ9OmTTl69CgdOnRg4MCB+h+4pKQk2rRpQ7169Th8+DCbN28mISGBF154Qb/N6dOn4+Dg8MhHTEwMAGFhYTg7O9OgQQP9+u3atcPMzIyDBw8WOI9Vq1YxefJkPvnkE86ePcv06dOZNGkSK1asACA1NZW+ffsSGBjIkSNHmDJlCuPHjy90e6WmptKlSxe2b9/OsWPH6NSpE926ddPns27dOipVqsRHH32k7w2D3CLqhRdeoG/fvpw6dYopU6YwadKkfIf6vvjiC+rUqcOxY8eYNGlSvv3rdDoqVarEL7/8QkREBJMnT+a9997j559/LlD8arWarl27snr1aoPpq1atomfPntjZ2QHg6OjI8uXLiYiIYN68eSxevJg5c+YUtrkMvP7664SFhbFmzRpOnjxJnz596NSp00P/IH3xxRcNehV//PFHLCwsaNasGQDz5s1j1qxZfPHFF5w8eZKOHTvSvXv3fNt7//33GT9+PMePH8ff359+/frpf3AzMzOpX78+GzZs4PTp04wYMYKBAwcSHh5eoJxeeeUVNm/erH+dAf766y/S09N58cUXH7reo9rX39+fBg0asGrVKoN1Vq1apb/J58M+h0OGDDFYZ8WKFVhZWbFv3z4WLVoE5N5368svv+TMmTOsWLGCf/75hwkTJujX2bdvH//73/948803OX78OO3bt+eTTz4x2O6ePXsYNGgQb775JhEREXzzzTcsX75cv5xOp6NXr15YWVlx8OBBFi1axDvvvFOgNv1PFCN65513lObNmz90vk6nUzw9PZXPP/9cPy0pKUmxtrZWfvzxxwLtIzk5WQGU5OTkRy6XnZ2t/Pbbb0p2dnbBgi8EnU6nnOz7nBJRI0BZ+WygEnZ9v5Jx945y88MqivKhWtm14sMi32dBFWfeJdWDcs7IyFAiIiKUjIwM/bS07DSl1vJaRnmkZacVOq9ly5YpTk5O+aYPHjxY6dGjh6LVapU7d+4oLVu2NPjc5eTkKPb29srAgQP10+Li4hRACQsLUxRFUaZNm6Z06NDBYLtXr15VACUyMlJRFEVJTExULly48MiHRqNRFEVRPvnkE8Xf3z9frOXKlVMWLFhQ4JyrVq2qrF692mDatGnTlNDQUEVRFGXhwoWKq6urkpb2/+25cOFCBVCOHTumKMqD2239+vXK474eg4KClK+++kr/vEqVKsqcOXMMlunfv7/Svn17g2lvv/22UrNmTYP1evbsabDM5cuXDWJ8kFGjRim9e/fWP897nRVF0b/WWq3WICcHBwd9WyQnJys2NjbKpk2bHrqPzz//XKlfv77++YcffqjUqVNH/7xly5bKm2++abBOjx49lMGDByuKoihXrlxRzM3NlevXrxss07ZtW2XixIkP3W+eixcvKq6urspnn32mn+bl5aV88sknBss1bNhQGTlypHLnzh0lKipKAZQlS5bo5585c0YBlLNnzz50X88++6zy1ltvPTS3+1/fmjVrKp9++qn+ebdu3ZSXX375sTnd6/72nTNnjlK1alX988jISIO4H/Q5vHLlisEyLVu2VOrVq/fYff/yyy+Km5ub/vmLL76oPPvsswbLDBgwwOCz0bZtW2X69OkGy6xcuVKpUKGCoiiKsmXLFsXCwsLg9d60aZMCKOvXr39gHA/67s1T0N9vox6A/eOPP+jYsSN9+vRh165dVKxYkddee43hw3MvHnf58mXi4+Np166dfh0nJycaN25MWFgYffv2zbfNrKwssrKy9M9TUlKA3G6/R3WR5s171DL/hd+UGUT36kX9izqWfDeBwLf+IqbOGNxPfEidqG+JvTaUch4VimXfj1LceZdED8pZo9GgKAo6nQ6dLnfcUt6/xnBvHIVZ595/8yiKon/kPQ8ODtYvp1KpcHNzo1atWvpp5cqVAyA+Ph6dTsfx48fZsWMHDg4O+fZ74cIFqlWrhrOzc4HG4uh0On0sD8qxoLmnpaURFRXFsGHD9N8ZADk5OTg5OaHT6Th79qz+sE7eNhs3bmywnwe12/3TUlNTmTp1Khs3biQuLo6cnBwyMjK4cuWKwXp576E8Z8+epXv37gbTQkNDmTt3LhqNBnNzcwDq16//0P3n/X/BggUsW7aMmJgYMjIyyM7Opm7duvr5ea/xve17bzydOnXC0tKS3377jb59+/LLL7+gVqtp06aNfpmffvqJr7/+mqioKFJTU8nJyUGtVhvs4/62uj/ne+M4ceIEWq0Wf39/g9cuKysLV1fXR77OycnJdO3alS5duvDWW2+h0+lISUkhNjaW0NBQg3WbNm3KiRMnDGK89/3s4eEB5L6f/f390Wq1zJgxg19++YXr16+TnZ1NVlYWtra2j80t7/mwYcNYvHgx48ePJyEhgU2bNrFt2zZ0Oh0jR4406FnJ+x16XPu+8MILjB8/nv3799OkSRN++OEHQkJC8Pf3f+zn8OLFi/p2DgkJyde227Zt49NPP+XcuXOkpKSQk5NDZmYmqamp2NnZERkZSc+ePQ3Wa9iwIX/99Zd+2okTJ9i3b59BT41Wq9VvJyIiAm9vbzw9PR/6ebtf3vv13s9DnoL+Lhm1kLl06RILFy5k3LhxvPfeexw6dIg33ngDKysrBg8eTHx8PPD/b8I8Hh4e+nn3mzFjBlOnTs03/e+//9Z3nz5KcR7Pc36mGeV37qHHn7d4t/JYOqq7oaYy1VQxhK0YR1atgcW278d5GscxS5p7c7awsMDT05PU1FT94DhFUfj72b+NEpsmXUOKKqVQ62RmZqIoiv5LU78tjYacnBzu3r0L5H7x3L+coihotdp866alpZGSkkJSUhKdOnXSj1O4l4eHBykpKcyaNeuxhyHCwsLw9vbGycmJhIQEg/3l5ORw+/ZtnJyc8sXxIDdu3ABg7ty5BoeoAMzNzUlJSdF/EeblDujHBeTllp2drf+RzJP3/7x/x44dy86dO5k2bZp+nMrgwYNJTU3VL6PT6cjMzDTYjlarJSsry2Ba3qHklJQUzM3N0el0+ngfFuPatWt5++23mTZtGo0aNcLBwYEvv/ySI0eOGPyxlpOTY7Cde/MG6N69OytXrqRLly788MMP9OzZU3/4MDw8nIEDB/Luu+/y8ccfo1arWbduHV9//bV+m1lZWQbvE51O98D87O3tSUlJ4ebNm5ibm7Njx458P1J5yzyIVqvlxRdfxN7ens8//zzf65Genm6wbnZ2NlqtVt9medPylslrz7zXa86cOXz99ddMnz6dmjVrYm9vz8SJEw22m5OTY7CN+1/fnj17MnHiRLZt20Z4eDhVqlShTp06pKSkMH78eF599VV9fCkpKQVqXzs7O1q0aMGKFSuoWbMmq1atYujQofr5Bfkc5uTkYGlpadA+MTExdO/enaFDh/Luu+/i4uLCgQMHGD16NImJieTk5DzwvXr/d0pqairvvvsu3bp1y7f/7OxsMjMzH/pZysjIeODrnZ2dTUZGBrt37853L8K89+bjGLWQ0el0NGjQgOnTpwNQr149Tp8+zaJFixg8ePATbXPixImMGzdO/zwlJQVvb286dOiAWq1+6HoajYatW7fSvn17LC0tn2jfj6Nr3ZoL3bpQLiER750H8Px4BDnlP4atg2iXvZ0LPhOoVrNesez7YZ5G3iXNg3LOzMzk6tWrODg4YGNjo1/WCSdjhVloNjY2qFSqfO9zS0tLLCwscHR05O7du5ibm2NlZWWwnJmZGTY2NvnWtbW1Ra1W06hRI9atW0etWrUeeibNm2++ycCBjy7GfXx8sLCwoHXr1iQnJ3PhwgXq168P5P6xodPpaNWq1SM/q3nUajVeXl7Ex8c/9NomtWvX5qeffsLS0hJbW1sgd7Ak5P6QqtVqvL29SU1NxdzcHHt7eyB34GXePgAOHz7MkCFD9GMVUlNTuXr1qkE72tjYYGlpaRB7UFAQhw8fNph27Ngx/P399WMBH9T2eX9x58V47NgxmjZtavDddu3aNczNzfXr5b3OarUaRVG4e/cujo6OBgOPBw8eTMeOHbl69Sq7d+9m+vTp+vVPnjxJlSpV+Oijj/TLL1iwwOA9ZW1tbbBPT09PEhMT9c+1Wi2RkZFUqFABtVpN06ZN0Wq1pKen88wzzzz8xbzPm2++ydmzZwkPD6d8+fL66Xmv+fHjx+ncubN++uHDh2nYsKG+ze5tO/j/HiQ7OzvUajVHjhyhR48e+p48nU7H5cuXCQwM1K9jYWFh8Pre/zqp1Wp69OjBL7/8woEDBxg6dKjBvPsVpH0BfbEzaNAgoqOjGTx4sH7+gz6H97/W98cNEBkZiU6n48svv8TMLHdobN7Ab0dHR9RqNYGBgZw8edJgvVOnThnEFxISwpUrVx76eatbty7Xr18nLS2NChVyjzDkDbLO+y65X2ZmJra2tvoBwvcqyB80YORCpkKFCtSsWdNgWmBgIGvXrgVyPyQACQkJ+kbJe/6whrS2tsba2jrfdEtLywL9UBd0uSdiaUmVD6dx7bXX6HZQYfYfH7Bg+J+c2t+U4LT9ZGx8H4vafxt88TwtxZp3CXVvzlqtFpVKhZmZmf6DXtrkxX1//Pee+XHv8wctd/+0vPZ4/fXXWbJkCQMGDGDChAm4urpy8eJF1qxZw5IlSzA3N8fd3R13d/cCxRoUFESnTp149dVXWbRoERqNhjfeeIO+fftSqVKlAuc8depU3njjDZydnenUqRNZWVkcPnyYO3fuMG7cOPr3788HH3zAq6++ynvvvUd0dDSzZ882yC00NBQ7Ozs++OAD3njjDQ4ePKgfLJzXHtWrV2f9+vV0794dlUrFpEmT0Ol0Bm3m4+PDnj176NevH9bW1ri7uzN+/HgaNmzIJ598wosvvkhYWBjz589nwYIFBm19f9vf+1qamZnh7+/PypUr2bp1K76+vqxcuZJDhw7h6+urX/be1/Xew4b3brdVq1Z4enoycOBAfH19CQ0N1c/z9/cnJiaGn3/+mYYNG7Jhwwb9Rczu3ce9z9u2bcu4cePYtGkTVatWZfbs2SQlJen3GxAQwIABA3j55ZeZNWsW9erV4+bNm2zfvp3atWvz7LPP5ntNly1bxsKFC1m/fj3m5ub6nre8AeNvv/02H374IdWqVaNu3bosW7aM48ePs3Llynwx3v+ZuLc9f/31Vw4cOICLiwuzZ88mISGBmjVrPvJ1uf/58OHD6dq1K1qtlpdffvmR3x0FaV+A559/nlGjRjFq1Chat25t8Hl40Ofw/Pnz/PDDDyxfvlz/fXZ/nP7+/mg0GubPn0+3bt3Yt28f33zzjUGbvPHGG7Ro0YK5c+fSrVs3/vnnHzZv3mywrcmTJ9O1a1eqVKnC888/j5mZGSdOnOD06dN8/PHHdOjQAX9/f4YMGaLvScsbvP6w71YzMzNUKtUDf4MK+ptk1G/sZs2aERkZaTDt/PnzVKlSBQBfX188PT3Zvn27fn5KSgoHDx40+ACWJo5tWmPTqgUWOmj3ZyxLTy+lXO9P0SjmhGSFc2T7L8YOUYh8vLy82LdvH1qtlg4dOhAcHMyYMWNwdnZ+4sJv1apVBAQE0LZtW7p06ULz5s359ttvDZZRqVSPvJjfK6+8wpIlS1i2bBnBwcG0bNmS5cuX4+vrC+T++P3444+cPn2aevXq8f777/Ppp58abMPV1ZUffviBjRs36k/Dvb/rfvbs2bi4uNC0aVO6detGx44dCQkJMVjmo48+Ijo6mqpVq+rHGIWEhPDzzz+zZs0aatWqxeTJk/noo48MTk8uiFdffZVevXrx4osv0rhxYxITE3nttdcKtQ3Ibc9+/fpx4sQJBgwYYDCve/fujB07ltdff526deuyf//+B55Bda+hQ4cyePBgBg0aRMuWLfHz86N169YGyyxbtoxBgwbx1ltvUaNGDXr27MmhQ4eoXLnyA7e5a9cutFot3bt3p0KFCvrHF198AcAbb7zBuHHjeOuttwgODmbz5s388ccfVK9evcDt8MEHHxASEkLHjh31xd2TXBW5Xbt2VKhQgY4dO+Ll5fXIZQvavo6OjnTr1u2Br9GDPofjxo3DycnpkZ/DOnXqMHv2bD799FNq1arFqlWrmDFjhsEyzZo1Y9GiRcyePZs6deqwefNmxo4da9BL0rFjR/766y/+/vtvGjZsSJMmTZgzZ47+N9vMzIz169eTkZFBo0aNeOWVV/Kd+VQsHjkUuJiFh4crFhYWyieffKJcuHBBWbVqlWJnZ6f88MMP+mVmzpypODs7K7///rty8uRJpUePHoqvr+8DRzg/SEk4a+l+WdHRypnAQCWiRoDS54sGSlJmknJo0auK8qFauTKlhpKeVvgzVp6UnLWU61Ej58uKB53JUpJdunRJsbCwUM6fP//E23hQzgU5I6i0K22vdVEwRs53795V1Gq1snbt2qe2z/sVZ96vvPLKI88sLgpFcdaSUXtkGjZsyPr16/nxxx+pVasW06ZNY+7cuQZV6IQJExg9ejQjRoygYcOGpKamsnnz5nzH0koTqypVUHfpAkDHvWmsOLOCoH4zuIULlZU4DsndsYVg48aNjBgxolB/aQvxNOh0Om7cuMG0adNwdname/fuxg6pSHzxxRecOHGCixcv8tVXX7FixYonHq/6NBn9+tddu3bNd4XEe6lUKj766CODAVJlgfvwEdz9awNNzipM3Ps9g2oO4nrDibgfmkDDK0uIufwylX1rGDtMIYxm1KhRxg5BiAeKiYnB19eXSpUqsXz58jJzK4nw8HA+++wz7t69i5+fH19++SWvvPKKscN6rLLR+qWQTQ1/HNq0JvWfHXTcm87yZst5s/MbnDu5koCsUyT88hbeb/9plIG/QpRlPj4+xX7lZFG2ldX3UEGvFF3SlM7TM8oI939vkNfitMLmgz9wJzsJh56zyVHMaJi+hyM71hk5QiGEEKJkk0LGiGzr1sWucWMsdNB+fzrLzyynUmAjjlfoA0D5PR+QmVGwCwIJIYQQpkgKGSNzfzW3V6btcYUNR1aTmJFIzf4zScSZykosh9Z8bOQIhRBCiJJLChkjswsNxSY4GOscaHMgnWWnl2GnduVqg4kA1I9ewrXo80aOUgghhCiZpJAxMpVKpe+V6XRE4Y8Ta7iVcYs6XUYQaVULO1UWcT+/ZeQohRBCiJJJCpkSwKFNG6yqVsUuC1oczmDp6aWozMywe242WkVFw/TdHJWBv0IIIUQ+UsiUACozM9xH5N68rGu4jt9O/8TN9Jt4BzbmmGfuwF+33R+QmZlhzDBFKfXyyy8/0eXXhfFER0ejUqk4fvx4gdd5Gq/zlClTHnqfu+Ik72HxKFLIlBDqLl2wrFgRp3RoejST705/B0Bg/5ncxokqynUOrXkK96wQpcq9N4R80GPKlCnMmzfvkfcrMpbbt28zYMAA1Go1zs7ODBs2jNTUVGOH9cR8fHyYO3dukWzL29ubuLg4atWqVSTbE09HQd7TixcvpkqVKtSrV4+DBw8aKdKyRQqZEkJlaYnbK8MA6HFQx7qIn0lIS8DeyY2Y+u8CEHL5W65fuWjMMEUJExcXp3/MnTsXtVptMG38+PE4OTnh7Oxs7FDzGTBgAGfOnGHr1q389ddf7N69mxH/XlvJlGVnZ2Nubo6np2eZuWKsqXjcezomJobPPvuMNWvW8P777zNkyBAjRlt2SCFTgjj16oW5uxvuKdDoVJa+V6bOs68SaRWEvSqL2J/HGTlKUZJ4enrqH05OTqhUKoNpDg4O+brl27Rpw+jRoxkzZgwuLi54eHiwePFi0tLSGDJkCI6OjlSrVo1NmzYZ7Ov06dN07twZBwcHPDw8GDhwILdu3XqiuM+ePcvmzZtZsmQJjRs3pnnz5nz11VesWbOG2NjYQm1ryZIlBAYGYmNjQ0BAAAsWLDCYf+TIEerXr4+NjQ0NGjRg/fr1Bodtli9fnq/Q++233wyuqh0VFUWPHj3w8PDAwcGBhg0bsm3bNv38Vq1aceXKFcaOHavvDcuzdu1agoKCsLa2xsfHh1mzZhnsy8fHh2nTpjFo0CDUajUjRozId2hJq9UybNgwfH19sbW1pUaNGsybN6/AbZSSkoKtrW2+13T9+vU4OjqSnp57vap33nkHf39/7Ozs8PPzY9KkSWg0modut1WrVowZM8ZgWs+ePQ3u7p2VlcX48eOpWLEi9vb2NG7cmJ07dxY49gfJysrijTfeoHz58tjY2NC8eXMOHTqkn79z505UKhXbt2+nQYMG2NnZ0bRpUyIjI//Tfh+lIO/plJQUnJ2dqV27NvXr1ycjQ4YLFAUpZEoQM2tr3P6t0HuG6Vh77hfi0+JRmZlj23NO7sDftF0c27neyJGaBkVR0KWnG+VR3Jc/X7FiBe7u7oSHhzN69GhGjhxJnz59aNq0KUePHqVDhw4MHDhQ/wOXlJREmzZtqFevHocPH2bz5s0kJCTwwgsv6Lc5ffp0HBwcHvmIiYkBICwsDGdnZxo0aKBfv127dpiZmRWqu33VqlVMnjyZTz75hLNnzzJ9+nQmTZrEihUrAEhNTaVv374EBgZy5MgRpkyZwvjx4wvdXqmpqXTp0oXt27dz7NgxOnXqRLdu3fT5rFu3jkqVKvHRRx/pe8Mgt4h64YUX6Nu3L6dOnWLKlClMmjQp36G+L774gjp16nDs2DEmTZqUb/86nY5KlSrxyy+/EBERweTJk3nvvfcKfEl5tVpN165dWb16tcH0VatW0bNnT+zs7ABwdHRk+fLlREREMG/ePBYvXsycOXMK21wGXn/9dcLCwlizZg0nT56kT58+dOrUiQsXLjzxNidMmMDatWtZsWIFR48epVq1anTu3Jk7d+4YLPf+++8za9YsDh8+jIWFBUOHDn3kdoOCgh75/u3cufND1y3Ie7pWrVrUrl0bJycngoKC+PhjuU5YUZB+yxLG+cW+3PrmWyreTqHeuWyWnFrCB00+oHLNxhz26E2DG7/isusDMpt0wsbG1tjhlmlKRgaRIfWNsu8aR4+g+vfHpTjUqVOHDz74AICJEycyc+ZM3N3dGT48d9D55MmTWbhwISdPnqRJkyZ8/fXX1KtXj+nTp+u3sXTpUry9vTl//jz+/v7873//MyhsHsTLywuA+Ph4ypcvbzDPwsICV1dX4uPjC5zHhx9+yKxZs+jVqxcAvr6+RERE8M033zB48GBWr16NTqdjyZIl2NnZERQUxLVr1xg5cmSB9wG57VWnTh3982nTprF+/Xr++OMPXn/9dVxdXTE3N8fR0RFPT0/9crNnz6Zt27b64sTf35+IiAg+//xzg16LNm3a8NZb/3+ZhejoaIP9W1paMnXqVP1zX19fwsLC+Pnnnx/b5nkGDBigL07t7OxISUlhw4YNrF///38Y5b0nILenaPz48axZs4YJEyYUaB/3i4mJYdmyZcTExOhf+/Hjx7N582aWLVtm8H4qqLS0NBYuXMjy5cv1hcXixYvZunUrK1euNMjhk08+oWXLlgC8++67PPvss2RmZmJjY/PAbW/cuPGRPVC2tg//zi3oe/q7777js88+w87O7pHbEwUnhUwJY+5gj+tLA7i1YCHPhen4IPBXhtUaRgWHCgQM+Izbc/7GR7nGnp9m8MzgsnVHcPH01K5dW/9/c3Nz3NzcCA4O1k/z8PAA4MaNGwCcOHGCHTt24ODgkG9bUVFR+Pv74+rqiqurazFH/v/S0tKIiopi2LBh+gIMICcnBycnJwDOnTtHUFCQwQ9XaGhoofeVmprKlClT2LBhA3FxceTk5JCRkaHvkXmYs2fP0qNHD4NpzZo1Y+7cuWi1WszNzQEM/op/mPnz57N06VJiYmLIyMggOzu7UGcQdenSBUtLS/744w/69u3L2rVrUavVtGvXTr/MTz/9xJdffklUVBSpqank5OSgVqsLvI/7nTp1Cq1Wi7+/v8H0rKws3NzcnmibUVFRaDQamjVrpp9maWlJw4YNOX/e8OKh977PK1SoAOS+pytXrvzAbVepUuWJYiqsJ81dPJgUMiWQy8CBJC5bjl98BkFRGhafWszk0Mk4OLlxLORdXI++R8ilRcTGDMarclVjh1tmqWxtqXH0iNH2XZwsLS0N96dSGUzLG+Oh0+mA3B/ybt268emnn+bbVt4PxPTp0x/7F3ZERASVK1fG09NTXyTlycnJ4fbt2wY9Go+SdzbI4sWLady4scG8vAKhIMzMzPIdyrv/r/Lx48ezdetWvvjiC6pVq4atrS3PP/882dnZBd7Po9jb2z9y/po1axg/fjyzZs0iNDQUR0dHPv/880IdhrOysuL5559n9erV9O3bl9WrV/Piiy/qBxSHhYUxYMAApk6dSseOHXFycmLNmjX5xvTc63Ftl5qairm5OUeOHMn3mjyoKC5qj3pPP0hQUBBXrlx56Pxnnnkm3zijPEXxnhZPRgqZEsjCxQWXF17g9ooVPLdfx8dV1zMseBgVHSpSt+v/OH9qJf6as5z56S283v7N2OGWWSqVqlgP75QmISEhrF27Fh8fn4eeSVOYQ0uhoaEkJSXpB+IC/PPPP+h0unxFycN4eHjg5eXFpUuXGDBgwAOXCQgIYOXKlWRmZurHgRw4cMBgmXLlynH37l3S0tL0BcX912/Zt28fL7/8Ms899xyQ+wN9/+EfKysrtFqtwbTAwED27duXb1v+/v6FKrb27dtH06ZNee211/TToqKiCrx+ngEDBtC+fXvOnDnDP//8YzBGY//+/VSpUoX3339fP+1RP+qQ23Z544Egd1Dy6dOnad26NQD16tVDq9Vy48YNnnnmmULH+yBVq1bFysqKffv26XtQNBoNhw8f5tVXX/1P2/4vh5aK4j0tnowM9i2hXIcOAUtLal6FqjEaFp9cDIDKzBzrHrkDfxul7eDY7j+MHKkwBaNGjeL27dv069ePQ4cOERUVxZYtWxgyZIj+x9vV1ZVq1ao98pFXBAUGBtKpUyeGDx9OeHg4+/bt4/XXX6dv3776Yqcgpk6dyowZM/jyyy85f/48p06dYtmyZcyePRuA/v37o1KpGDFiBBEREWzcuJEvvvjCYBuNGzfGzs6O9957j6ioKFavXp1vMG716tVZt24dx48f58SJE/Tv3z/fX/Y+Pj7s3r2b69ev68/meuutt9i+fTvTpk3j/PnzrFixgq+//rrQA46rV6/O4cOH2bJlC+fPn2fSpEkGZ+kUVIsWLfD09GTAgAH4+voa/MBWr16dmJgY1qxZQ1RUFF9++aXB+JkHadOmDRs2bGDDhg2cO3eOkSNHkpSUpJ/v7+/PgAEDGDRoEOvWrePy5cuEh4czY8YMNmzYUOj4Ibf3auTIkbz99tts3ryZiIgIhg8fTnp6OgMHDnyibeapUqXKI9+/FStWfOi6RfWeFoUnhUwJZenhgfO/p8w+F6bj94u/c+3uNQCq1ArlaPncwY3OO94jKyvTWGEKE+Hl5cW+ffvQarV06NCB4OBgxowZg7OzM2ZmT/Y1smrVKgICAmjbti1dunShefPmfPvttwbLqFSqR17M75VXXmHJkiUsW7aM4OBgWrZsyfLly/H19QVyD1/8+OOPnD59mnr16vH+++/nOzzm6urKDz/8wMaNGwkODubHH39kypQpBsvMnj0bFxcXmjZtSrdu3ejYsSMhISEGy3z00UdER0dTtWpVypUrB+T2ZP3888+sWbOGWrVqMXnyZD766CODgb4F8eqrr9KrVy9efPFFGjduTGJiokHvTEGpVCr69evHiRMn8vVide/enbFjx/L6669Tt25d9u/f/8AzqO41dOhQBg8ezKBBg2jZsiV+fn763pg8y5YtY9CgQbz11lvUqFGDnj17cujQIYNxKo97ne83c+ZMevfuzcCBAwkJCeHixYts2rTJ6NdLKsh7WhQ9lVLc53kaWUpKCk5OTiQnJz9y0JpGo2Hjxo36AXElQfaVK0R17gI6HW8PNSekWS8+apY7wPdu0k00c0NwJYW9fmNoPmjqY7b2YCUx7+L2oJwzMzO5fPkyvr6+Dz2jobTT6XSkpKSgVqufuPh4mi5fvqw/y6d69epPtI0H5RwdHY2vry/Hjh0zyuX2n4bS9FoXxesMpSvnolTa837Ud29Bf79LX9YmxKpKFdSdOgG5vTJ/RP1BTEruWRKOzuW4Ui/3lMh6UYuIvXrJaHEKURw2btzIiBEj/tOPmyj55HUW/5UUMiWc26u5l7cOPadQ4UYO84/P18+r2+01zlsGYK/K5OpPbxsrRCGKxahRo5g/f/7jFxSlmrzO4r+SQqaEs6lRA8f27VApMGKzjk2XNnAgLvesC5WZOVbd56BTVDRO3cbpg9seszUhhI+PD4qilNnDSkKYGilkSgGPiRNR2dkRcE2hzXGFaWHTyMzJHeDrE9yUo25dALDY+h467cOvkSCEEEKUNVLIlAKWXl6UH/MmAAN3KqTEXeHbk/8/Et7vhZmkK9YE5ERyaMNiY4VZJpTxse9CCFGiFMV3rhQypYTLgAHY1KqFXabCy9t0LDu9jPN3ci/H7epZmdN+rwBQ5ehnpKelGDPUUinv7KW8myQKIYQofnnfuf/lrFm5sm8poTI3p8JHU7nc5wWantWyq1Y2U8OmsrLzSsxUZtR54T3iP/sZT+Um+376hGZD819KXjycubk5zs7O+kuM29nZ6S9pXlbodDqys7PJzMwsladpPglTzBlMM29TzBlKb96KopCens6NGzdwdnYu1JWu7yeFTCliU7MmroMHc3vpUob/rTC28gl+jvyZvgF9sbZ1IK7hu3iGv0XdK8tIuP4/PCr6GjvkUiXvfij33y+lrFAUhYyMDGxtbctckfYwppgzmGbeppgzlP68nZ2d//O9qKSQKWXKvT6Ku1u24H79Oi/s0THPfh6tvVvjYe9B3U5DiTy2hBqas5z5+V08xv5k7HBLFZVKRYUKFShfvvwj77dSWmk0Gnbv3k2LFi1M6uKHppYzmGbeppgzlO68LS0t/1NPTB4pZEoZMzs7PKd8yNXhI3j2kMLemneZGT6TOa3noDIzw6zzTPijBw2StnD+2B786xXNjdpMibm5eZF8uEoac3NzcnJysLGxKXVfeE/KFHMG08zbFHMG0837XqXngJrQc3jmGdTPPouZAv/brOOf6K38E/MPANVDWnFE3R4zlULOxndRHnHLeiGEEKK0k0KmlPKY+C5majW+8QqdDytMPzidNE0aAJVemEmGYkVNzWmO/f29kSMVQgghio8UMqWUhbs7HhNyb0vQd7eCLjaer459BYBHpWqcqDwIAM+D08nMSDNanEIIIURxkkKmFHPq3Ru7Bg2w1igM+1vH6ohVnLp5CoDaL07mBq54KQkc/2WmkSMVQgghiocUMqWYSqXC86OpqCwtCYlSaHJOx5SwKWh0GuwcnIiuOx6AWlGLSUy4auRohRBCiKInhUwpZ+3nh9urrwIwdKvC9dhIVkasBKBBt/9xwbw6DqoMon56z5hhCiGEEMVCCpkywG3EcKz8/HBKU+i/U8fC4wu5evcqZubmaNp/AkD9xD+JPnPQyJEKIYQQRUsKmTLAzMqKClOnAND+uIJPdAYfH/gYRVGo2aQjRxxaYq5SSPvjHZCbIgohhChDpJApI+waNsS5z/MAvLpZR3jMPjZc3gCAZ69PyVIsCco6xskda4wZphBCCFGkjFrITJkyBZVKZfAICAjQz8/MzGTUqFG4ubnh4OBA7969SUhIMGLEJVv58eMxd3en4i2FHgcUPj/0OUmZSVT0C+SIVz8AXPd+hCY708iRCiGEEEXD6D0yQUFBxMXF6R979+7Vzxs7dix//vknv/zyC7t27SI2NpZevXoZMdqSzdzJCY+J7wLQe7+C9fVEZh2ZBUCtvlNJxIlKuliOr/3CmGEKIYQQRcbohYyFhQWenp76h7u7OwDJycl89913zJ49mzZt2lC/fn2WLVvG/v37OXDggJGjLrnUXbpg3+IZLLQKIzbr+O3CesLjwlE7uXI+aAwANSIXkHJberaEEEKUfka/aeSFCxfw8vLCxsaG0NBQZsyYQeXKlTly5AgajYZ27drplw0ICKBy5cqEhYXRpEmTB24vKyuLrKws/fOUlBQg9w6hj7qjcd68snDXY/f33iP90HMExWTS+qTCVPVUfuryE3Wf/R8Xz35PNd1lwn+cSL0R35SpvAvKFHMG08zbFHMG08zbFHOGsp13QXNSKYrxTmPZtGkTqamp1KhRg7i4OKZOncr169c5ffo0f/75J0OGDDEoSgAaNWpE69at+fTTTx+4zSlTpjB16tR801evXo2dnV2x5FESuezeTbkNG0mzUfHmCDNCXFvTzrYd6bER9EuYSY5ixm9+n2DpXNHYoQohhBD5pKen079/f5KTk1Gr1Q9dzqiFzP2SkpKoUqUKs2fPxtbW9okKmQf1yHh7e3Pr1q1HNoRGo2Hr1q20b9++TNwKXcnJ4Vr//mSdPceemioWPmfNj51+pKpzVU7O7kb9jDBO2Tai6ujfy1TeBVHWXuuCMsW8TTFnMM28TTFnKNt5p6Sk4O7u/thCxuiHlu7l7OyMv78/Fy9epH379mRnZ5OUlISzs7N+mYSEBDw9PR+6DWtra6ytrfNNt7S0LNCLXNDlSjxLSyp8NI3oF1/kmQgde4Oy+cTtE5Z3Wo5bz0/JXt2a4IxwzoT/BViXnbwLwRRzBtPM2xRzBtPM2xRzhrKZd0HzMfpg33ulpqYSFRVFhQoVqF+/PpaWlmzfvl0/PzIykpiYGEJDQ40YZelhG1wL14EvATBqg8LVqGOsiFiBT406HCrfBwCn3VNQtGXv2KoQQgjTYNRCZvz48ezatYvo6Gj279/Pc889h7m5Of369cPJyYlhw4Yxbtw4duzYwZEjRxgyZAihoaEPHegr8is3diw2NWuiTlcYt07LwkNfcu72OWr2+4RbOFFJdx3LS1uMHaYQQgjxRIxayFy7do1+/fpRo0YNXnjhBdzc3Dhw4ADlypUDYM6cOXTt2pXevXvTokULPD09WbdunTFDLnXMbGyo+OU8zJzUVI+Dl/7OZuKeidg5OXK+9tsAtL77O3fiLhs5UiGEEKLwjFrIrFmzhtjYWLKysrh27Rpr1qyhatWq+vk2NjbMnz+f27dvk5aWxrp16x45PkY8mFWlSlT8/HNQqehwTMFrz3nmHplL4x6jOGMRiJ0qi9hfJxg7TCGEEKLQStQYGVF8HFq0wH3UKABGbNaxZ+dKwhMOonT8FK2iom7KDi4e/MvIUQohhBCFI4WMCXF/bST2LZ7BKgfeWqflk23v4RkYxFar3IsOWv39LjpN1mO2IoQQQpQcUsiYEJWZGRU/+wyLil54JkHfnxOYcXA6SX7Pkaioqay9yom1D74+jxBCCFESSSFjYsydnan05ZcoVpbUv6jg8NMWIi0ucjpwDAD+5+aTnBBj3CCFEEKIApJCxgTZBgXh9eGHALywW0f06d+o3K4XZ81rYE8m0WvGGTlCIYQQomCkkDFRzr17o+7TGzPgf39kMnfL+2R1mIlOUVHnzlYuHZZrywghhCj5pJAxYRU+mIQqoBrqDGi3+BgnLC+xz7kbAOabJ6DkZBs5QiGEEOLRpJAxYWbW1lSe9zVZtlZUi4e7n8/FvOsIkhQHquREc3L9F8YOUQghhHgkKWRMnKWXFzf6DUBRQdtjWravmMwh/9cBqHrmK1JvXTNyhEIIIcTDSSEjyKhRA7sRQwHovj6ei+a3OWdWDQfSufTjeCNHJ4QQQjycFDICAK/X3iCrcTBWWqg55y+O1XkJnaKiduImYo7/Y+zwhBBCiAeSQkYAuRfLC/5yManlHCifDJbfrWCruj0Aug1voWg1Ro5QCCGEyE8KGaFn7uRE9QXforFQEXQ+i/iraSQp9vhoLnHmj7nGDk8IIYTIRwoZYcA5uB5mE0YC0GDzZX6jKQCVT8wh/U6cMUMTQggh8pFCRuRTa9BoYtvVwgwI+j2CsEwf1KRxcfXbxg5NCCGEMCCFjHigZ75YwXVvOxwyFdIPqsjRQu2bfxJ7erexQxNCCCH0pJARD2RlY0fV+Yu4a6vCKy6LLWeqAZD9xzgUbY6RoxNCCCFySSEjHsrXvyG3Jg5CpwK/iHROXnbFJ/sC5zZ8bezQhBBCCEAKGfEYnfu8Q3jXqrlPDtuQcscSr6Ofk5l807iBCSGEEEghIx5DpVLRdcpSTtSwwlILkfvLYZ+VxoUfZeCvEEII45NCRjxWOfvyVJg5g3hncLgLZw+7UTP2N66fkCv+CiGEMC4pZESBtAzswvEx7dGYg8VVK25esoM/XkeXlW7s0IQQQpgwKWREgQ3vNZ2/OjgDcPOYGvfbCZz58T3jBiWEEMKkSSEjCszByoH2b8/luK8KC62K8wdcCbi4nPiz+40dmhBCCBNlUZCF/vjjj0JvuH379tja2hZ6PVGyNfRqzL6xfUh+92ec7lgQd0oN615DeecgKgtrY4cnhBDCxBSokOnZs2ehNqpSqbhw4QJ+fn5PEpMo4f7XZiKT+uxh6Io40iLt8faI5fRPUwgeMMPYoQkhhDAxBT60FB8fj06nK9DDzs6uOGMWRmZjYcOgV+axuYE5ANHhLlQ7uZibUUeNHJkQQghTU6BCZvDgwYU6TPTSSy+hVqufOChR8gWXC8Zq9DBiyoF5phnXw9WkrHkVRasxdmhCCCFMSIEKmWXLluHo6FjgjS5cuBB3d/cnDkqUDiMavM4fg6qRbQGaOGucT1/nzFo5vCSEEOLpkbOWxBOzNLfkzednsaqtJQDxJ9R475vP7SsRRo5MCCGEqSjQYN97ZWZm8tVXX7Fjxw5u3LiBTqczmH/0qIyTMCX+Lv7UGPYGh6Nm0+AixB9Qo1o5HNf39oCZ1MlCCCGKV6ELmWHDhvH333/z/PPP06hRI1QqVXHEJUqRl2sN4X+DtuH32Qlcky1wPnCVM3/MJqjneGOHJoQQoowrdCHz119/sXHjRpo1a1Yc8YhSyNzMnA86fcqHkc/xzqoMki7aU/6vuSQ3eg4nr6rGDk8IIUQZVui+/4oVKxZq4K8wDVXUVejY523+aJzbQ3cr3J7Yb18BRTFyZEIIIcqyQhcys2bN4p133uHKlSvFEY8oxV6s8SKXXgzlkieQbYbtP1c4u2GBscMSQghRhhW6kGnQoAGZmZn4+fnh6OiIq6urwUOYLjOVGVNbfsKSXo5kWkLGDWvUKz/n7s0YY4cmhBCijCr0GJl+/fpx/fp1pk+fjoeHhwz2FQY87T15ucv7LIt+j5EbdaSctCFp9lCCpm8Fea8IIYQoYoUuZPbv309YWBh16tQp0kBmzpzJxIkTefPNN5k7dy6Qe6r3W2+9xZo1a8jKyqJjx44sWLAADw+PIt23KFrdq3Zn+7PbCLu0ndBzYL3tCmebLSaw6whjhyaEEKKMKfShpYCAADIyMoo0iEOHDvHNN99Qu3Ztg+ljx47lzz//5JdffmHXrl3ExsbSq1evIt23KHoqlYoPm07h5x6u3FKD5q4FtvM/I+1OvLFDE0IIUcYUupCZOXMmb731Fjt37iQxMZGUlBSDR2GlpqYyYMAAFi9ejIuLi356cnIy3333HbNnz6ZNmzbUr1+fZcuWsX//fg4cOFDo/Yiny83WjfFtpvBVN3N0QMZlSy5PHmjssIQQQpQxhT601KlTJwDatm1rMF1RFFQqFVqttlDbGzVqFM8++yzt2rXj448/1k8/cuQIGo2Gdu3a6acFBARQuXJlwsLCaNKkyQO3l5WVRVZWlv55XnGl0WjQaB5+Q8O8eY9apiwqzrxberXk7xZdWH/5L3rvV7DYGcPZXxdSrccrRb6vwpDX2nTyNsWcwTTzNsWcoWznXdCcCl3I7Nixo9DBPMyaNWs4evQohw4dyjcvPj4eKysrnJ2dDaZ7eHgQH//wQxQzZsxg6tSp+ab//fff2NnZPTamrVu3Pj7wMqi48g7RhbDgmb0ER9/BP9YMi3lz2KB1RGVj/GsRyWttOkwxZzDNvE0xZyibeaenpxdouUIXMk2bNsXS0vKB827dulXg7Vy9epU333yTrVu3YmNjU9gwHmrixImMGzdO/zwlJQVvb286dOiAWq1+6HoajYatW7fSvn37h+ZXFj2NvCvEVuCj5FF8tlSL3U1zqm5cRsCSzcWyr4KQ19p08jbFnME08zbFnKFs513Q4SqFLmT69u3Lr7/+mu+064SEBNq2bcvp06cLtJ0jR45w48YNQkJC9NO0Wi27d+/m66+/ZsuWLWRnZ5OUlGTQK5OQkICnp+dDt2ttbY21tXW+6ZaWlgV6kQu6XFlTnHm3rNKSlo1f4LvrPzH6Tx0W4deJ/ukbqr/0erHsr6DktTYdppgzmGbeppgzlM28C5pPoQf7xsTE8MorhmMc4uLiaNWqFQEBAQXeTtu2bTl16hTHjx/XPxo0aMCAAQP0/7e0tGT79u36dSIjI4mJiSE0NLSwYQsjG99gPJebVGZPkAoUFbq5X6NJvmPssIQQQpRyhS5kNm7cyP79+/WHb2JjY2nVqhXBwcH8/PPPBd6Oo6MjtWrVMnjY29vj5uZGrVq1cHJyYtiwYYwbN44dO3Zw5MgRhgwZQmho6EMH+oqSy87Sjo+bf8ySDmbccgRdqopz44076FcIIUTpV+hDS+XKlePvv/+mefPmQO7dsENCQli1ahVmZoWuix5pzpw5mJmZ0bt3b4ML4onSqb5HfbrWfoGlHX5iwlodFnvPkHT0IM4hjY0dmhBCiFKq0IUMgLe3N1u3buWZZ56hffv2rFy5skhuVbBz506D5zY2NsyfP5/58+f/522LkmFs/bF0v7qD8FMJNDoP18a/gdO2MFRFXAQLIYQwDQUqZFxcXB5YqKSnp/Pnn3/i5uamn3b79u2ii06UOY5WjnzQ5AOmJbxJcLQW29gUrn/zNZVGvmHs0IQQQpRCBSpk8u59JERRaFu5LX/WaseaFlsZsk1HysJvyHm+Hxblyhk7NCGEEKVMgQqZwYMHF3ccwsS81/g9usfso8XpVKrG67j0zjj8l640dlhCCCFKmQINTCjsPZTu3r37RMEI01HerjzjQ9/h207m6FSg3X+Y1D17jB2WEEKIUqZAhYyLiws3btwo8EYrVqzIpUuXnjgoYRp6Ve+FfUAtNjXIHX8V8+7b6Ir4zupCCCHKtgIdWlIUhSVLluDg4FCgjZbFm1eJomemMmN66xn0T+hB43Ma3BOTuTn/azzGv23s0IQQQpQSBSpkKleuzOLFiwu8UU9PzzJ3qWRRPHydfOlXdxhLO3zLhLU6Epcuw6l7D2z8/Y0dmhBCiFKgQIVMdHR0MYchTNnIBq/RNXItB/1v0fi8wvX338fvp5/k2jJCCCEeS34phNFZmlsyvf1clrczI8MKsk+dJunnX4wdlhBCiFJAChlRItSvEEI9r8asaZH7loz//DNybt40clRCCCFKOilkRInxcbd5HKpjTpQnkJZOwoyZxg5JCCFECSeFjCgx7K0deMX/Nb7tnHttmZSNG+XaMkIIIR5JChlRogxo+T/KuTix8d9ry8RNnSrXlhFCCPFQT1TI7Nmzh5deeonQ0FCuX78OwMqVK9m7d2+RBidM07jWX7K5GdxSQ86169xasNDYIQkhhCihCl3IrF27lo4dO2Jra8uxY8fIysoCIDk5menTpxd5gML0BFWvT2fzWnzXIfftmbh0KZmR540clRBCiJKo0IXMxx9/zKJFi1i8eLHBRe+aNWvG0aNHizQ4Ybpe6b0QVSUtB/1VoNUS/+GHKDqdscMSQghRwhS6kImMjKRFixb5pjs5OZGUlFQUMQmBs6sbPZxeYHVbyLCCjOPH5doyQggh8il0IePp6cnFixfzTd+7dy9+fn5FEpQQAF16f0BnnUp/bZmEL76Qa8sIIYQwUOhCZvjw4bz55pscPHgQlUpFbGwsq1atYvz48YwcObI4YhQmysrKiqY1JxJTS0OUJyipqXJtGSGEEAYKXci8++679O/fn7Zt25KamkqLFi145ZVXePXVVxk9enRxxChMWKP2/RmQ4s6STmZybRkhhBD5FLqQUalUvP/++9y+fZvTp09z4MABbt68ybRp04ojPmHiVGZmVG/3KS1t7/7/tWU++ghFqzVyZEIIIUqCJ74gnpWVFTVr1qRRo0Y4ODgUZUxCGAgIeYammQFsaA4ac8i5eg1NXLyxwxJCCFECWBRkoV69ehV4g+vWrXviYIR4mBz3Orhpr5Bkb0a5FNDeToRKFY0dlhBCCCMrUI+Mk5OT/qFWq9m+fTuHDx/Wzz9y5Ajbt2/Hycmp2AIVps26QhAeWi3JdrnPc24lGjcgIYQQJUKBemSWLVum//8777zDCy+8wKJFizA3NwdAq9Xy2muvoVariydKYfJc/eriEZVDsr0VoJCTeMvYIQkhhCgBCj1GZunSpYwfP15fxACYm5szbtw4li5dWqTBCZGnkl9N3HIUku1zn2sTpUdGCCHEExQyOTk5nDt3Lt/0c+fOoZNLyItiYmVlhaXOSV/IyKElIYQQUMBDS/caMmQIw4YNIyoqikaNGgFw8OBBZs6cyZAhQ4o8QCHyWFlUIMn+GnJoSQghRJ5CFzJffPEFnp6ezJo1i7i4OAAqVKjA22+/zVtvvVXkAQqRx1FdjWT7awBoE28bORohhBAlQaELGTMzMyZMmMCECRNISUkBkEG+4qnw9Awh+epOADS35J5LQgghnqCQuZcUMOJp8q7WiOxTCgCaW3JoSQghxBMUMr6+vqhUqofOv3Tp0n8KSIiHqegTgKV1biFDyl0UjQaVpaVxgxJCCGFUhS5kxowZY/Bco9Fw7NgxNm/ezNtvv11UcQmRj4WlJZZWFmhVOZgrkHP7NpYeHsYOSwghhBEVupB58803Hzh9/vz5Blf7FaI4OJipSba/jWsq5Ny6JYWMEEKYuCe+aeT9OnfuzNq1a4tqc0I8kJON5/9fFO+2nLkkhBCmrsgKmV9//RVXV9ei2pwQD1TeyY9ku9wxWnJRPCGEEIU+tFSvXj2Dwb6KohAfH8/NmzdZsGBBkQYnxP18K9Xlhv0GADQ3EowcjRBCCGMrdCHTo0cPg0LGzMyMcuXK0apVKwICAoo0OCHuF1ClLhf+PbSUfOk85YwbjhBCCCMrdCEzZcqUItv5woULWbhwIdHR0QAEBQUxefJkOnfuDEBmZiZvvfUWa9asISsri44dO7JgwQI8ZICnyarg6EWyvQpQSL922djhCCGEMLJCj5ExNzfnxo0b+aYnJiYa3BG7ICpVqsTMmTM5cuQIhw8fpk2bNvTo0YMzZ84AMHbsWP78809++eUXdu3aRWxsLL169SpsyKIMcbZ25u6/Y2Q0t+KNHI0QQghjK3SPjKIoD5yelZWFlZVVobbVrVs3g+effPIJCxcu5MCBA1SqVInvvvuO1atX06ZNGwCWLVtGYGAgBw4coEmTJoUNXZQBKpUKrb01kI4qNdXY4QghhDCyAhcyX375JZD7Q7JkyRIcHBz087RaLbt37/5PY2S0Wi2//PILaWlphIaGcuTIETQaDe3atdMvExAQQOXKlQkLC3toIZOVlUVWVpb+ed79oDQaDRqN5qH7z5v3qGXKotKYt5mzC5CORfqjX9OHKY05FwVTzNsUcwbTzNsUc4aynXdBcypwITNnzhwgt0dm0aJFBoeRrKys8PHxYdGiRYUME06dOkVoaCiZmZk4ODiwfv16atasyfHjx7GyssLZ2dlgeQ8PD+LjH35IYcaMGUydOjXf9L///hs7O7vHxrN169ZC51AWlKa8M61zi2iLTIW/fvsNs0L2BOYpTTkXJVPM2xRzBtPM2xRzhrKZd3p6eoGWK3Ahc/ly7sDK1q1bs27dOlxcXJ4ssvvUqFGD48ePk5yczK+//srgwYPZtWvXE29v4sSJjBs3Tv88JSUFb29vOnTo8MibXGo0GrZu3Ur79u2xNKH795TGvCMPnAYiUSkqQqp74xVUv1Drl8aci4Ip5m2KOYNp5m2KOUPZzjvviMrjFHqMzI4dOwodzKNYWVlRrVo1AOrXr8+hQ4eYN28eL774ItnZ2SQlJRn0yiQkJODp6fnQ7VlbW2NtbZ1vuqWlZYFe5IIuV9aUprxt7nnbKhbmTxx3acq5KJli3qaYM5hm3qaYM5TNvAuaT4EKmXHjxjFt2jTs7e0NejseZPbs2QXa8cPodDqysrKoX78+lpaWbN++nd69ewMQGRlJTEwMoaGh/2kfonSz0uQOOFdUClolx8jRCCGEMKYCFTLHjh3TD7o5evSowQXx/ouJEyfSuXNnKleuzN27d1m9ejU7d+5ky5YtODk5MWzYMMaNG4erqytqtZrRo0cTGhoqZyyZOIvs3OJFaw66nGwjRyOEEMKYClTI3Hs4aefOnUW28xs3bjBo0CDi4uJwcnKidu3abNmyhfbt2wO5A4zNzMzo3bu3wQXxhGmz+LdHJscStJqsxywthBCiLCv0GJmhQ4cyb948HB0dDaanpaUxevRoli5dWuBtfffdd4+cb2Njw/z585k/f35hwxRlmGW2FgCtuYJWIz0yQghhygp9Zd8VK1aQkZGRb3pGRgbff/99kQQlxKNYaHRAbo+MTnpkhBDCpBW4RyYlJQVFUVAUhbt372JjY6Ofp9Vq2bhxI+XLly+WIIW4l3lej4yFjJERQghTV+BCxtnZGZVKhUqlwt/fP998lUr1wAvRCVHULLL/7ZGxAF2O9MgIIYQpK3Ahs2PHDhRFoU2bNqxduxZXV1f9PCsrK6pUqYKXl1exBCnEvfLOWsotZMreZbmFEEIUXIELmZYtWwK5V/itXLlykZ2CLURh5R1a0lgo0iMjhBAmrkCFzMmTJw2enzp16qHL1q5d+79FJMRj5BUyORagyBgZIYQwaQUqZOrWrYtKpUJRlEcup1Kp0Gq1RRKYEA+jP7RkCYpWChkhhDBlBSpk8m4YKURJYP5vIaORHhkhhDB5BSpkqlSpUtxxCFFgZvoxMqBoZbCvEEKYskJf2TdPREQEMTExZGcb/kXcvXv3/xyUEI9invVvj4wlIIeWhBDCpBW6kLl06RLPPfccp06dMhg3k3cWk4yREcXNLDu3FybbAilkhBDCxBX6FgVvvvkmvr6+3LhxAzs7O86cOcPu3btp0KBBkd5QUoiHMcv6/zEyUsgIIYRpK3SPTFhYGP/88w/u7u6YmZlhZmZG8+bNmTFjBm+88QbHjh0rjjiF0NP3yFiCSsbICCGESSt0j4xWq9Xf+drd3Z3Y2Fggd0BwZGRk0UYnxAPc2yOj0kkhI4QQpqzQPTK1atXixIkT+Pr60rhxYz777DOsrKz49ttv8fPzK44YhTBgZmYOgOVdM2xTrxo5GiGEEMZU6B6ZDz74AJ0u96Z9H330EZcvX+aZZ55h48aNfPnll0UeoBD38+j9AgChR1U4ph8n4bpc50gIIUxVoXtkOnbsqP9/tWrVOHfuHLdv38bFxUXuvySeCs+efbg89zNcbmVyPlqN49bFeLw83dhhCSGEMIJC98g8iKurqxQx4qlRWViQ3K89AG6nrKgUtQ6dVmfkqIQQQhhDkRQyQjxttQeMJt4Z7DNUmF28y6mwTcYOSQghhBFIISNKpYrO3oR1qAjAnbMOZOxdauSIhBBCGIMUMqLUcu3ekwRnsMg0w+fYIW4n3jJ2SEIIIZ4yKWREqdXKrx3rmua+hZPP2XBmw2IjRySEEOJpk0JGlFo1XGpwoXFFEpxBl2WO2+Y1+nt/CSGEMA1SyIhSS6VS0dK3DetDc9/GFhEZnA7fY+SohBBCPE1SyIhSrY13G3YFq7ilBm2mORnfzjR2SEIIIZ4iKWREqRbiEYK9rRNrm+W+lZ2ORJF0K9HIUQkhhHhapJARpZqFmQUtK7VkZ7CKNAcFXaYZ5z+dZOywhBBCPCVSyIhSr03lNmjNVfzRzAYA+2270GVlGTkqIYQQT4MUMqLUa+rVFCszK/6okwN2WswydER+/bWxwxJCCPEUSCEjSj07SztCvULRmqs41sgOAO3qldIrI4QQJkAKGVEmtPZuDcDaUBcsbLWYp2Vxc81PRo5KCCFEcZNCRpQJLb1bokLFeW5BrWwAbi6Yjy4728iRCSGEKE5SyIgywd3Wnbrl6wKwoVlgbq9McgpJv/5q3MCEEEIUKylkRJmRd3jpB/sEdjXKvVVB/MfTONX3eZI2bZYxM0IIUQZJISPKjK5+XfFR+5Cl07CgkTUnfFSodGBx/AxxY8cS0agh0e+8Q8ahw6DTGTtcIYQQRcDC2AEIUVTK2ZXjj55/EHE7gu1XtrPC4U9UMXE8c0ZH8zMK7nc1ZPz+B9d//4PKantuXbiIS88e2Pj7Gzt0IYQQT0gKGVGmqFQqgtyCCHILYnS90UQlRbH5/B98em4d9lfu8MwZhdBzCnYpaSQtXUrS0qWoqvtRrmdv1F2fxdLDw9gpCCGEKASjHlqaMWMGDRs2xNHRkfLly9OzZ08iIyMNlsnMzGTUqFG4ubnh4OBA7969SUhIMFLEojRRqVRUc6nG643H8dfgvXz2xp+kv9SRmf+zYdZzZoT7q8gxA+XCJW58/jkXWrUicmA/ktatR5uaauzwhRBCFIBRC5ldu3YxatQoDhw4wNatW9FoNHTo0IG0tDT9MmPHjuXPP//kl19+YdeuXcTGxtKrVy8jRi1KqyrOfkzoNofVr4TTvOYQ4rpX48sRCos7qjhbCVQK6A4dJ+699zgb2oRzrw/n7j87UDQaY4cuhBDiIYx6aGnz5s0Gz5cvX0758uU5cuQILVq0IDk5me+++47Vq1fTpk0bAJYtW0ZgYCAHDhygSZMmxghblAEu6uoM6PImiiaDsE1fcc7nJ8Ky0rG/ZEXz0woVb2tRtu3l2ra9ZDtYY9GhFb59Xsa2bh1UKpWxwxdCCPGvEjVGJjk5GQBXV1cAjhw5gkajoV27dvplAgICqFy5MmFhYQ8sZLKyssi65zTblJQUADQaDZpH/GWdN+9Ry5RFppj3vTlbWtrStPsEmipvE31sGzet55NQ7Ti/pNvicNGK0LMKzqlZsG4LV9ZtIbW8I5ad2lD1+SHY+PoZOZPCMfXX2pSYYt6mmDOU7bwLmpNKURSlmGMpEJ1OR/fu3UlKSmLv3r0ArF69miFDhhgUJgCNGjWidevWfPrpp/m2M2XKFKZOnZpv+urVq7Gzsyue4EWZoku/jd21HdRM28EZ2xzOJtrhGGVF/fNgc8/nKraiA3fqBmNZrxU4OhkrXCGEKJPS09Pp378/ycnJqNXqhy5XYnpkRo0axenTp/VFzJOaOHEi48aN0z9PSUnB29ubDh06PLIhNBoNW7dupX379lhaWv6nGEoTU8y7YDm/hDY7E69dq6l6fBnetc9xIMSGw/H2qKOsCbqs4HU9Fa/rYWg3hhEX5IHds50I7vkKtg4ls6iR19o0cgbTzNsUc4aynXfeEZXHKRGFzOuvv85ff/3F7t27qVSpkn66p6cn2dnZJCUl4ezsrJ+ekJCAp6fnA7dlbW2NtbV1vumWlpYFepELulxZY4p5Py5nS0tLand5Fbq8yrUz+3Da/jWDsrdi5qbhUCNbLl5zwi3KHL84hUqnE+D0Ci7OWcH1kEqou3ejQZch2Ns4PsWMCkZea9NhinmbYs5QNvMuaD5GLWQURWH06NGsX7+enTt34uvrazC/fv36WFpasn37dnr37g1AZGQkMTExhIaGGiNkYaIqBTWjUlAzUu8kcH7TfKpeWE3TSvFoK8HRTDsiYz2ofF5DuSQd1Q5cgwMLOTF9ETGNK+PSoydNWvbDybpk9tQIIURpZtRCZtSoUaxevZrff/8dR0dH4uPjAXBycsLW1hYnJyeGDRvGuHHjcHV1Ra1WM3r0aEJDQ+WMJWEUDi4ehPT/CEU7iXO7f4Xwb2nIURr6XUbrC7tTvEhMcMXnbBIuqTpctl+B7fMId/+SmNAqlOvem+YNe+Fq42rsVIQQokwwaiGzcOFCAFq1amUwfdmyZbz88ssAzJkzBzMzM3r37k1WVhYdO3ZkwYIFTzlSIQypzC0JaN0PWvfjxqUTXNvyJTUS/qK1Uyw4xZLiZ8ue9LpYxOVQ4VQslW4pVPozGv6cxU7v2cQ09aVC1160qtkVD3u5mrAQQjwpox9aehwbGxvmz5/P/Pnzn0JEQhReeb86lB/5HZmpdzi+5VvcI76nEtd4Vh0GajjuX5tYbRC2Z6NwirhG4FWFwJ8uofn1CzZVncXVpr5U7vgcbat1opJjpcfvUAghhF6JGOwrRFlg4+BC3d7vQK8JXDy4gYx9C6mZso+6qpNgcZK4YHcuPNMd52xnNNu3Y3flJo3PKzQ+f4nUNbNYHzCbmFBfqrfsTjuf9vg5l67r1AghhDFIISNEUVOpqNakKzTpyp3rF7i0+SuqXl1HBW5RIWkpWYolRzq0wbLycBwvXiblr79wSLxLu+MKHL/EzVVzWRM0j8tNKlO70bO0r9KeGi415IrCQgjxAFLICFGMXCpWp/6wL8nJnMGpbStwOPEdvpqLNL27Bc5sIcK8Bndf7YIrFbE+fY6Mbdspl5LFc2EKhF3hkscC1vgv4k7Vcvg0aUuQT2Nql6uNh52HFDZCCIEUMkI8FRY29gR3fQ2eHcnVk7u4vXM+NW9vp6Y2Ei7l3vE91daWi88Fkn63EjZXUrE4cwG/BC1+CTrYkwDLVxPruprfK6iIr+KIRXAgFeqEEuwVQpBbEHaWcuVqIYTpkUJGiKdJpcK7Tiu867TibuJ1Tv69GOuYvVTJOIOjKp262qNgdxQCId3XkujYymQmO8KtdGwTU/G6DV63FTiTAhsPojE/SHR52Otlxt1qntjVqYtfUCjB5evg5+SHuZm5sTMWQohiJYWMEEbi6FaR+v2mAKBoc4g5d4gbp3dicS0M77sncLNJoqZflH55TaYZ0UneJKWVR5uiw/b6baxSs6geB9XjdHAkFn6KJdVmI0c8VayrZElOoB8u9RpSo1pjAp0DjZSpEEIUHylkhCgBVOYWVA4KpXLQv1esVhTioyOIPbEd3ZUwKiQdpaJNPNU9rwBXchepC9fSPbiZ7osm3Q7zmynYXEnAIVNLnWiFOtHZsPcccI4bTivZXEHF1Yq2RCasp0KD5gRVDCHQLRBbC1tjpS2EEP+ZFDJClEQqFZ6+QXj6BgFvAHAnIYYrx7aTfWkf7olH8Mm5jLd9At72CbnrVIGbIc5czfJHl+0Jd3Mwv3Id62s3KZ8M5ZMVQs+lw/aDaFUHuVoO9nuZkVq9Ana161CldnOCPevgo/bBTGVmvNyFEKIQpJARopRw8aiMS6chwBAAUpNvE33sH9Iu7EF94xBVsyMpZ5ZEOdtwsAWcILWiLZfMA8nS+WGZZc+ds5G4JCRifScNnxvgc0MHx6/DL9fJtNzI0QrwW0VrtAG+ONVvSECNZtQqFyy3VBBClFhSyAhRSjk4uVKr1fPQ6nkAsjLTiDyxhzvndmMXF45f5mkcVBnU1h0FjoI1ZNWx4JKVP8k2zbHDC6vUbDIizmARGY1NpoagGAiKyYKwc7DsHHfsV/KXl4obPk6YBwXgUb8ZQT4NCXQNxMrcyrgNIIQQSCEjRJlhbWNPjcadoHEnALQ5OVyKCOfmmR1YXj9IldQTuKmSCNREgCYCAJ2i4nItH241b4CVfQBuOjVpF86SceoU1tHxuKQpNLygwIUk2HoAOMA1NzjgZf7vIanaeNd7htoVQvB29JZr2wghnjopZIQoo8wtLPCr3RS/2k0ByM7K4uefllPZLh3zawepkHyMSsRTVXuZqomXITF3vet2nqR2qEdGhWcpb1cF8/ib3DoahvZMJLY3UqiUCJUStXDqGqy7Rrb5Ro55wB/eNuQE+OEc0oDqQc9Qq1wwTtZORmwBIYQpkEJGCBOhMjPD2smT+l26YGk5FoCbsVe4cnw7OZf34X77KH45l6lIPBWTNkHSJgAScUZXtQ7alt2xrhSCW5YVN48dIPnYISzOXcYqLRv/WPCPzYSDEbAigrs237PBS8UtH2fMagVQvn5TgqqF4u/ij6WZpTGbQQhRxkghI4QJK+dVhXJeQ4GhACTfSeTyse2kX9yL883DVMuOxE2VhFvqLji3C85BKrZk2gah7dAIhzdepZKrH5kREcQf2kPGyZPYXIrDMVNHvUsKXLoD/4QBYSQ4w8F/D0nZ1q5N5fotqVWpPl72XnJISgjxxKSQEULoObm4UbfNC9DmBQAy0tM4dXw3dyN3Yx8fTtXMMzioMqiVcRguH4bLC8hWLLhmXYO0Kg1waP8qVWo9g1nsLW4fOcCNI/vRnjmLfWwSHkngkaSFiGvw+zW0qo0cLw9/eduSE+iLc90GVK3Tklrla+Ng5WDchhBClBpSyAghHsrWzp7gpp2haWcANBoNkacPkhixE6vrB/FJP4G7Kpka2Wfg+hm4vgLdPyquWPiS6BaCVddn8Js0BQcbZzJOnSLu0G6Sjh3G4uwlbFIy8UsAv4QMOBwBKyNIt/qeTRVU3PJxwaxWDco3aEbNGs2p6lwVCzP5uhJC5CffDEKIArO0tKRGveZQrzkAOq2OyxdPEX9qB6qYMCqlHKeSKh5f7SV8b1yCG79CGMSaVSDeuR4q31Cq9PyIcpUDyYmPJ+X4EWLDd5N+8gS2F2Oxy9ZS64oCV27DrtxDUjcdvyDcy0J/SKpSgxYEV2mMh72HcRtDCFEiSCEjhHhiZuZm+Naog2+NOsAYFEXh+rVorh3fjjZ6H+XvHMNPG42XLg6v23FweyMcm0QizlxzrIO2UhPKPd+ToPc/QaUyIysqipuH93Pj8D60Z85hfzURt7vgFpkDkVfhr6vo2MAJd7hW2ZacGr6oQxpQLaQtwZ51sDa3NnaTCCGeMilkhBBFRqVSUdHbl4rerwCvAJB46waXj/1DZtReXG4doZrmfO4A4ru74OwuOPspmYolMdbVSHGtjVWVhlQZ8xbulQPQZWSQfvo0sYd2cedoOObnLmGfmI73LfC+lQFHI+DH3ENS6yuZkRTghX39+lRt2om6lRphiZwhJURZJ4WMEKJYubmXx619X2jfF4C7qXeJOLabu+f34JhwCL+sszip0vDPPgvxZyH+JzgIyThwzTaQ9PJ1cAhqTFDf/ji4VSTn5k2Sjh3mevhO0k+ewO78NewytdS5pINL12DjNXLMfmdrBRW3qpfjtqcHTr5m1A9ohaOVo5FbQwhR1KSQEUI8VY4OjtR75ll45lkAcnJyuHj+NDfO7UO5dgTX5NP45UThpErFKeMQXDkEV5bATohXlSfeMQitZz2cO7YhcNz7WFrbk3nuHNf3b+fWwT1YnrqIXXIm/tcV/K/fAG7AmgmEuatIqOqCWb1aVGzaljrB7XGxdTFqWwgh/jspZIQQRmVhYUG1mnWpVrOuflpaejoXTh8k6eIBLOKO4ZF6hiq663hyA8+UG5CyA86D9i8VVyyqcNs5GFWl+ni/NZ4K1euRE5fA9X3biN/3DznHTuN+KxPvWwret27Dwd2waDdnHD/kmp8aJbgGHk1bEdzoWco5yABiIUobKWSEECWOvZ0dtRq1hkat9dNu3bpJzOl9pF0Kx/bmcbwzzuKhuo2PNhqfxGhI/BNOQAZWxFhV565bbWw7t+BykxY0bNuNm4f3cn3/NnKOn8Y5+t9BxCdS4MQh+OEQV6w/Z28VOzTBVXFr/Aw1m/eggmtl4zWCEKJApJARQpQK7u7lcG/VE1r1BEBRFK5eiSI2Yh/ZMYdRJ57ELzsSR1VG7nVt4s5A3I/UBZIuTCXZLhAL/7o4dxpDxWr1Sb14kSt7NpN19BhOFxKwz9IRcD4dzp+Ctae4ab6Ao5Wsyajpg1PDxgS07EklrwC5CrEQJYwUMkKIUkmlUuHtUw1vn2rAYACyNTmcjzzBzcj9cP0Ibkmn8dNewll1F+f0cIgOh+hv4R9IVXlgow7Csk9r1FUbYquzIebAdlIPH0Z97hoOd3Pwu5IFVyJhUySpfM8/HhbcDaiEfYMGVG3RFV//RlLYCGFkUsgIIcoMK0sL/GvVx79WfSD3SsS//fY71SqqSb10CMv4Y1RIi6CKcp0KSgIVkhMg+R84BzmKGZmWPlg2Dsasd0csHLy5HX2elMPh2J65jNvNLLwSciAhGnZFkzXrV/Y7mXG7hifW9eri07wTVUNaY24uX6tCPE3yiRNClGlWVpbUatgay6Yd9NNu3Egg5vQ+0i+HY3fzOFUyzlJOlYRvziV8b12CW78DkIE1MVX8uRvSlDSXGmQmp5AWcQbL0xcpfzUN12QdruGxEB6L9puNHLNRcauaG+Z1g6nYrB3VQztjaWNrrNSFMAlSyAghTE758h6Ub9ML6AXk3mohOuYicWf2kRNzGKc7J/HLPo+DKpMaWacg9hTE5q57R63mevua3HVuTkqWBTnX4jA/ewmPS0nYZyrYn74Fp3fADzs4a/4+N3ycUGoH4BnamuotumLj7Ga8xIUog6SQEUKYPDNzM3x8/fHx9QeGAJCVnc3Zc8dJjAxDdf0I7imn8dNG46JKwSXtAKQdyF3ZBmLrVyC2RSAXcSH7VipWl2Ipd/E2TmkKFaOSIeogrD9IFDNJ9LJHU6sa7k2eoXrL7thV9DZe4kKUAVLICCHEA1hbWRFYuxHUbqSflnz3LtGnD5By8QCWCceokBpBFeJy7yV1N+7fFSEnwIxLtaoQaV6ZlBSwvn4Ht6jbeN7WUS42DWJPwN8nuMLXJLlak1nTB6eGTajaqhvq6oGozMyMlLUQpY8UMkIIUUBOjo7UCW0Poe2B3FPA42/EcfXUPjKiD2F/8wRVMs/irkrGX3sZf+1lsAGqQmpVG8JUvsSl22OWkIn7lWS847U4386CvZGwN5LYOSuIsjPnbkAlHBo0xPeZLrjUqY/Kysq4iQtRgkkhI4QQT0ilUuHp4YWnRx+gDwBarY5Ll88TH7GPnKuHcblzEj/NBRxUmbRXzoIt4AOKDxxXuXIqvTw5t1S4XE/D53oOtulabI9egaNXSPj2V65ZqEip5oF1SF2qNO+EW6NmmDs4GDFrIUoWKWSEEKIImZub4VctAL9qAcAwADKzsjlz9ii3I8MwiztCuZQz+Gmjqcdt6tneBm9QvOGqmQUH0sqTlGSHY7wG36sanNIV3M7Fw7nNJK7ezE0V3PV2xbJ+Xaq0ehaX0OaYq9XGTVoII5JCRgghipmNtRVBdZtA3Sb6aXeSkog+c5C7UQewSjhGxbSzVNbFU9k2NrfXpgLE1jfnQLYr8cnO2CVoqBKTjWcSOMXchph/uLn+HxJUkOpbHrvGjfFu1Rl1g0Ygh6KECZFCRgghjMDF2RmXZh2hWUcgd7xNbNx1rp7eS2bUflxvHcY/J5JeFjfB7Sa4wc1gM/bpXIlOccEmTkPVK9lUSgT1pRtw6U/ifvyTa2Yq0v0rYlOhIunu7jg2aICZtbWRsxWi+EghI4QQJYBKpcLLqxJeXn2BvgDcSUrmxLGdpJ/fjcvNcGpoztJTdQscb4EjXK1pzj6dM9duO+EYqyHgipbyyQqO567heO4asTsOkmNpRnZNP9yataL8M22wrVULlaWlcZMVoghJISOEECWUi7MTjVr3gNY9AEhJTeXMsV2kRu5CnRCOf3YEfVWJ4JyIzhnO1bXkgEbNjURHXK9rqHlFwTVVh8WJi2ScuMiVBUvIsbFAG1yD8s+0xaVZC2wCAlCZmxs3USH+AylkhBCilFA7OFD/mWfhmWcBSE3P4NjxvaSc24lD/EH8s05TU5UIrolkuqk43sCKHVmOJN2yo8I1LTWvKKgzcrA4dIbkQ2dInv0lGntrzEKC8XimHerQplhVqyY3whSlilELmd27d/P5559z5MgR4uLiWL9+PT179tTPVxSFDz/8kMWLF5OUlESzZs1YuHAh1atXN17QQghRQjjY2VKvaXtomntdm4zMbE6c2MftiH+wjtlLzcxImqhugTsklzcjPNSa/ekOpN+wofJVHTWvKtilZcGew9zac5hbgMbZHquGIXg0b4d9k8ZYVq4shY0o0YxayKSlpVGnTh2GDh1Kr1698s3/7LPP+PLLL1mxYgW+vr5MmjSJjh07EhERgY2NjREiFkKIksvWxoo6jVujCWnOxo0bsWjfgVNnj3D7zA5s4w5QP/0E7VU3wQOuVzTnQAsbLty1JyfBimoxCgHXFKyT0lC27iF+6x4ANOWcsG/cBLfmrbBv3BjLChWMnKUQhoxayHTu3JnOnTs/cJ6iKMydO5cPPviAHj1yjw9///33eHh48Ntvv9G3b9+nGaoQQpQ61pYWBNdvDvWbA6DJ0RJx5gi3Tv+D9fUwWqQdp7f5DXRecN7HkoOWNkQn22IeZ0VgjA7/62B5M5nsv7YQ99cWAHK8yuHUtDnOTZtj17gxFm5yE0xhXCV2jMzly5eJj4+nXbt2+mlOTk40btyYsLCwhxYyWVlZZGVl6Z+npKQAoNFo0Gg0D91f3rxHLVMWmWLeppgzmGbeppgzPDrv6jXrUb1mPQBycrScOX+KW2d2YHX9AB3TjuNpcYPs/2vvvsOiutP+j79nBpgCggUR6SoWioIFkEiMBVGIJWYTE3V/saRsTGJ0jWvK7pPErGnGuD6bdWOSTd0YN8W1rIVYYkFRQClqBDtNFFCU3jnPH8b5LcGCMjDA3K/r8ro83zlz5v6co3L7PWfOcYeU3lr2WOm4UKDHLkeDb6aC9wWwysmn9Id1lP6wDoBaL1c6ht6LbchQ9EOGoHEwz8355Fi3v9yNzaRSFEVp5loaRaVS1btGJjY2lmHDhpGTk0P3/5rKnDJlCiqVim+//faG23n99ddZvHhxg/FvvvkGg8HQLLULIUR7UFenUFqYj6bgBE6lafStScNNlU+hWsUhnY4EtY7Ll3Q4nVfjn6HglVf//YoKSlycqOrVl3Jvb8q9vFDkHjbiLpWVlTFt2jQKCwuxv8Xdq1vtjMzdevnll1mwYIFxuaioCHd3dyIiIm65I6qrq9m+fTtjxozB2oLusWCJuS0xM1hmbkvMDKbLrSgKJ8+d5OLRXegyY5lalISn7gIX+mg4GKBjDTqK8rV4Zanwy1BwuwwdzufB+TzYG4OiUaPx7YdDaBj6kGB0AQHNdnM+OdbtL/f1Myq302obGWdnZwByc3Przcjk5uYSGBh40/dptVq0N/iLYm1t3aiD3Nj12htLzG2JmcEyc1tiZjBN7j59/enT1x+Yi6IoZGScITt5J07p+5hVmIiXPpuTftYcHKLjx1od1bk29M4C/wyFblfrqDt6nCtHj3Pl449RrK3QBgbgcM8wDCFD0fc3/c355Fi3H43N02obmR49euDs7MzOnTuNjUtRURFxcXHMmTPHvMUJIYQFUqlUeHp54+nlDfzu2mMVzmdxOWkHPc/tY1jxYTzt0kkZqOVgqI7vq3RYX7DCNxP8MhQ6l9RQlXCY/ITDwF9Br8N+dDgub72JSp4PJe6SWRuZkpISTp8+bVw+d+4cycnJdO7cGQ8PD+bPn8+SJUvo3bu38evXLi4u9e41I4QQwjxUKhWubh64us0GZgNw4WIONYk7CDwbQ0TRYZwczpEUomXvcB2nKnR0zNEwIF0h5IQC5RUUbt5E/AN9GDHkITrpOpk3kGiTzNrIHDp0iJEjRxqXr1/bMmPGDL744gsWLVpEaWkpTz31FFevXiUsLIzo6Gi5h4wQQrRS3Z1d6B71GPAYAPn5eegSohl+fBNzyvZR3rmC9NOdAWvqgE8j1Gw/81eszq4k1OUeonpGMcp9FAZr+XKGaByzNjIjRozgVl+aUqlUvPHGG7zxxhstWJUQQghT6drVia5Rj0HUYxRfLiD/qVl0PHMSVAod7ilkgKeG7EpbUrU2xJyPIeZ8DDqNlhHuI4nqEUWYaxjWmvZ17YcwrVZ7jYwQQoj2o7a4mMvznsf655OodDq6vvceZzSl9Dryb/52fg8lNpfYamvLFjsDmUB0ejTR6dHY23RgjGcEUT2iGNxtMBq1POBS1CeNjBBCiGZVc/kymU88SWVqKuoOHXBf9SGGwYPpAjBqEpXV1WQe2I5/yjomZ+/kis1lNtsZiLY1kE8xa0+tZe2ptXTVORLZM4qonlH4dvaVZ0AJQBoZIYQQzaj6/HkyH3+CqvR0NF264PGPT9D5+NRbR2ttzZDhUTA8iqrqWi4m7CIkaS1TsnaSp7vMFjtbthkM5Fdc4qvjX/HV8a/wsHXjfu8JRPaIpIdDDzOlE62BNDJCCCGaReXZs2TOfpyaixexdnHB47NPsfHyuuV7bKw1DLonHO4Jp6amlqtJ+xlx6AemZe7gvCGfLbYGdhv0ZJZm82HKh3yY8iF9HbyJ6jkBqzr5kWaJ5KgLIYQwufKjx8h66ilqr1zBplcvPD79B9a/3Oi0saysNAQGDYeg4dTWKVQeiScq7jsey9pGhv4SW+xsidXrOFF4mhNJf0GlwPatW5nY70EiPCNw0Do0UzrRmkgjI4QQwqRK4+LJnjOHurIydP7+uH/yMVadmnaPGI1aRf/AEAgMoa5OQfNzIg/Hfc+M7B9J1+exxc5Aok5H8pVjJB84xpsHljC062Am9nuIEe4j5Ovc7Zg0MkIIIUym+KefOD//9yhVVRhCQnBbuRKNna1JP0OtVuHbfzC+/QejKG/TMe0YXWO/ZUbmFtLt8thia8sJrQ378xPYn5+AFg33dgvlAb9HCXUJxUYjdxFuT6SREUIIYRLVOTlkPz8PamoAUOt0XPnnV2j79UPn64uVk5PJv2mkUqno69Ofnt792Lw5iHv6edMjbi3lOZs5rb/AVjsD2dawI3cfO3L3ocWKYOcg7vMczTDXYbh1cDNpPaLlSSMjhBDCJNR2dmh796YyNRWAkj17KNmzx/i6plMndD790Pr4oOvng87XBxsvL1Qa09wbRqWCXr360K/fq8CrnEs/i3/Mvyi4sIlTuhy22+rJt4KYiweIuXgAAK8OnoS53UuYaxhDnIeg1TTP07lF85FGRgghhElo7O3pue7f1Fy5QuWJE1QcT6UiLZXK1DQqz56l9soVSmMPUBp7wPgelU6Htk8fdD4+6Hz6ofPxQdunD2q9vsn19PDqSQ+vV4BXOHfuNMG7v6IqZyPndZeJMehI0WpJL84gPTWDr1O/RqfRMcR5CGGuYYS5huFp79nkGkTzk0ZGCCGESVl16oTV0KHYDh1qHKurqKDy1OlfGptUKlLTqDhxAqWsjIojR6g4cuT/b0CtxsbLy9jcaH180Pn4YNW5813X1KOHNz16vIGiLObnlHh6x/6T7plbydCVss+gZ59eRx4V7Du/j33n9wHg3sHd2NQEOQeht2p6cyVMTxoZIYQQzU6t06Hv74++v79xTKmtpSozk8q0tF9mb9KoSE2l9tIlqs6epersWYo2bzaub+XkdG3GxqcfOh9fdD79sHZzQ6VWN7oOlUqF/y/ffqqqrqEoNpoxid+wIH8XuTbV7DPo2K/Xk6jTkVWcxZq0NaxJW4ON2oYhzkMY5jKMMLcwetj3kDsLtxLSyAghhDALlUaDtkcPtD16YB8ZaRyvyc+/1tRcPzV1PJWqzExq8vIoycurd92N2s4Obb++2PTpi31VFZU9eqDp1w+1ze2/mWRjbcWQ+8bDfeMpLinm0u4fGHDsO357NY5qdR0H9Tr26fXsNthzyaqK2JxYYnNiee/Qe7jauV5ralzDCOkeIl/vNiNpZIQQQrQqVl27Yte1K3b33mscqy0ppfLkSSpSjxtncCpPnaKupITyQ4cpP3QYZyDrhx/A2hptr17o+vVD5+tz7VtT/fqhsbe/6Wd2sOvAPeNnwfhZ5OVe4ORP/8T5zDpeKzvOq5cLOGdtxU96O3Z06MYJmyrOl5znu5Pf8d3J77BSWzHYaTBhrmEMcx2Gd0dvma1pQdLICCGEaPU0drYYBg3EMGigcUyprqby3DkqU1Mp+/k4Ofv3Y5efT11REZVpaVSmpVG4fr1xfWs3twbfmrLq1q1B0+HUrTtOUxcBi0g//TNZe77CI/s/PFF0nieKrlKmUvGTrhPbuvTkuG0tuVWXibsYR9zFON4//D7dDN2M19YM7T4UOxu7FtpLlkkaGSGEEG2SytoaXZ8+6Pr0wRAVRbyfL5GRkaguXaLi+gXFv5yaqs7JoTo7m+rsbIq37zBuQ9Oxo/GaG8PgQRiCgurN3Hh5++Hl/S5K3dscT9zL1YNf0/fSNsaXFzA+uwAFiLN2YadLf844ajlSmEpuWa7xid1WKisCnAK41/VeIjwjcLd3N8Oeat+kkRFCCNFuqFQqrF1csHZxocPo0cbx2sJCKtJOXDs1lXrtouLKM2eovXqVsgMHKTtwkILPPgO1Gp2vL7ZDQzCEDMUweBBqgwGVWo3vkBEwZARVVVUkxaynJvlf+BfFMLQ6h6EZOZABidoAUvqEc97ZwMG8eDKKMjice5jDuYdZkbgC3y6+jPUaS4RnhNyMz0SkkRFCCNHuaRwcsA0JxjYk2DhWV1lJ5enTVKamUn7sGGXxCVSdPUvFsWNUHDvG5X98CtbW6AcMwDYkBMPQEPSBgdjY2DBw9BQYPYXiwgLid63BkPod/pXJDKpMYdDRFEqO6DneeTRlg17mgiP8lLWL+IvxHL98nOOXj/OXw3/Bv4v/tabGKwIXOxcz7p22TRoZIYQQFkmt1aL380Pv50fHhx4CoDo3j7L4OEoPXpulqc7JofzwYcoPH4a//x2VVnvtFFTIUGyHhmDn50fwA8/CA8+Sk36CjJ8+xTNrPS7kEnxlE+zcRKbKBS+vybwQ9jlHak6zLX0bCbkJHLt8jGOXj/H+4fcZ4DiACK8IxnqNxdn2zp4SbumkkRFCCCF+Yd3NCYcJE3CYMAGAquxsyg4epPRgHKVxB6nNv2S8O3E+oLa1xRAUhGFoCJ1DQ+k+8x0U5W2Ox/1IafyX+F3ZhQc5eJxbSe3Zv1OlH0wP/6ksnvAq+3IP8GPGjxy6eIgjl45w5NIRlh1aRkDXAMZ6jWWM5xhpahpBGhkhhBDiJmzc3LB56CE6PvQQiqJQdeYMpQfjKIs7SGl8AnWFhZTs3k3J7t3AtedJGUJC6D40BMOkd6ju7EDCT6uxS/0XPlXHGFBxCA4doijBFk/HMfwhdCaOYe+wI2snP6b/SGJuIin5KaTkp7A0YSkDnQYamxong5N5d0YrJY2MEEII0QgqlQqttzdab286/3Y6Sm0tFWlplP0yW1N26DC1V65QHB1NcXQ0AFbduuE6NARDyEKyu3ci++cN9Di/kW5cYujl9bBpPelb3PHwepB3wxej6qhne8Z2tqVvIzEvkaS8JJLykng3/l1jUxPhFYGj3tG8O6MVkUZGCCGEuAsqjcZ4jU2Xx2ejVFdTfvTYtdmag3GUJyZSk5tL4YaNFG7YCICjhwe1QVM5bq+ioiwJH+UgXmThdfZ/qfnoA47qg+kzYCq/GbWKq7WF7MjYwY/pP5Kcn0xiXiKJeYm8E/8OQ5yH8Jvev2GU6ygz7wXzk0ZGCCGEMAGVtbXxpn2Oc+ZQV1FBeVLStVNRBw9SfuwY1ZmZFGZmogL0QGanPlQ522Otz8WjcxYBnQ6ijj9IQfyfONs1kpCwx5keOZ3csly2pW/jx4wfOZJ/hISLCSRcTKC7bXcG1Q1iZM1IrK2tzb0LzEIaGSGEEKIZqHU6bENDsQ0NBaC2pISyhATKDh2iPCmZiqNHqbtyBasrV1CADLqiaNRYd6rGwbGM/l03oM/6gdMbe5Dv/TDjw2fxmN9j5JTksPHMRtakreFC6QU2s5l96/cx1WcqU/tNpbPu7p8S3hZJIyOEEEK0AI2dHR1GjqTDyJEA1FVVUXHsZ8qTEilLTKI8KYnaggJqLmm4fKkDpF17n02HYrwcV1G35W8c9uiPZvRsnrj3cWb6zWTdyXWsOryKgqoCVqWs4vNjn/OA9wPM8JuBewfLuIuwNDJCCCGEGahtbIynoro8DoqiUJ2R8UtTk0hZUhJVp89QVWxFVbEVnANDQgaa//wP6Y5/orBnP4LGPYpe9yzaQR34MvVLfr78M9+e+JbvT35PhGcEM/1n4tfFz9xRm5U0MkIIIUQroFKpsPHywsbLi44PTga49giF5GTKE5MoiNlN3cnT1FZBbQ4Yck5Rve/P9FFDrYsT7w0fRX7f4XxtfYjtxQlEp0cTnR5NSPcQZvvPJrR7aLt8Krc0MkIIIUQrpenYkQ4jRtBhxAicFvwepaqK4pQU0td+jibpINa5JdRWaLDKzqPkm3+hB54EnnrmMb4YWEj0uWjiLsQRdyGOgU4D+Z+h/0PvTr3NHcuk1OYuQAghhBCNo7KxwT4oiAHv/B2/HxOxXf8fzk0ZjHYodPQuRetQDUDdP/7JIwU92ThhPb/1+S16Kz1JeUlM+c8U/pr4VypqKsycxHSkkRFCCCHaKCfXnlQPfhi3j5K5/NLfKHywL1aGGlRVCj3Wvor+f0dy388FfHHPh4x0H0mNUsMnRz9h8obJxObEmrt8k5BGRgghhGjjVGo1/mETGfjiZqynPQFA/kl7HJUChmaswvuLMcxMymKR20ycDE5kl2Tzu+2/48W9L3K5/LKZq28aaWSEEEKIdsTt8adQabXUXNWQ5DifNCsfbFS1DCr+if8X8wb/e+ISY2z8UKvUbDm3hYnrJ/LDyR+oU+rMXfpdkUZGCCGEaEesOnXCPjISANcyW/r96SAnH9hMXMf7KVds8K9JZ/mJrfw9uwgPxZ6iqiIWH1jMzOiZnLpyyszV3zlpZIQQQoh2RuvdC4DaggIA+gSGETL/GyrmHiO253wu4siwqgI2pB9j/uUitIraeDHwisMrKK8pN2f5d0QaGSGEEKKdUTs4AFBbWFhvvJNjN+55bDGdXz5OwuClnNP04vGiq2zKymJkaRk1Sg2fHvuUyRsmE5MdY47S75g0MkIIIUQ7o7lJI3OdjVZL0ITf4f3HQxwbs5qLNkH8Ne8Sf83Nx7mmhvMl53lm5zMs2PV78svyW7L0O9YmGpmVK1fi5eWFTqcjJCSE+Ph4c5ckhBBCtFpqvR6Auspb3y9GpVbjP2w8gS/+SMaju7DVhfNt1iVmFBahURS2Z+7g/u8j+OLwx1TXVbdE6Xes1Tcy3377LQsWLOC1114jMTGRgIAAxo4dS15enrlLE0IIIVollbUNAEpVVaPf49lvEMHPfw3PJDOsw6N8mFOKX2Ul5dTw/rEPuO/LISxaO5vjeceaq+y70uobmeXLl/Pkk08ya9YsfH19WbVqFQaDgc8++8zcpQkhhBDtTmcnV0JnvcugBT8zv+tzzC7Q0KWmlmJ1HVtLEnhk61SiPgvinQ0LyMw7be5yW/ezlqqqqjh8+DAvv/yycUytVhMeHs6BAwdu+J7KykoqKyuNy0VFRQBUV1dTXX3zabHrr91qnfbIEnNbYmawzNyWmBksM7clZoab5665fkpJrbnrfaLWWDN4/BwGM4eIoweIif+An2uPsN/WmixNBauvbmfNlm30rIKpXR5l8sQXm5Tl1xpbt0pRFMWkn2xCOTk5uLq6EhsbS2hoqHF80aJF7Nmzh7i4uAbvef3111m8eHGD8W+++QaDwdCs9QohhBCtge3x47h++RXl7u5kPfesybZbW1tDYW4KWZUxHNXnkaa7dmLn+aJxOHmEmexzAMrKypg2bRqFhYXY29vfdL1WPSNzN15++WUWLFhgXC4qKsLd3Z2IiIhb7ojq6mq2b9/OmDFjsLa2bolSWwVLzG2JmcEyc1tiZrDM3JaYGW6euzYsjOqICFQ2NvTv18/EnzrR+LuTGckcPPkj9495jC5du5v0U66fUbmdVt3IODo6otFoyM3NrTeem5uLs7PzDd+j1WrRarUNxq2trRv1h7ux67U3lpjbEjODZea2xMxgmbktMTM0zG3dpQu6Ll2a/XP9vIPw8w5qlm039ji26ot9bWxsGDx4MDt37jSO1dXVsXPnznqnmoQQQghhmVr1jAzAggULmDFjBkOGDCE4OJgVK1ZQWlrKrFmzzF2aEEIIIcys1TcyjzzyCPn5+bz66qtcvHiRwMBAoqOj6datm7lLE0IIIYSZtfpGBuC5557jueeeM3cZQgghhGhlWvU1MkIIIYQQtyKNjBBCCCHaLGlkhBBCCNFmSSMjhBBCiDZLGhkhhBBCtFnSyAghhBCizZJGRgghhBBtljQyQgghhGizpJERQgghRJvVJu7s2xSKogC3fxx4dXU1ZWVlFBUVWdSTUy0xtyVmBsvMbYmZwTJzW2JmaN+5r//cvv5z/GbafSNTXFwMgLu7u5krEUIIIcSdKi4uxsHB4aavq5TbtTptXF1dHTk5OYwaNYpDhw4BEBQUREJCQr3fFxUV4e7uTlZWFvb29k3+3P/+jKasd7PXbzT+67FbLTdH7sZmbsy6jc19u/0gx1qOtRxrOdZ3Q45109Y1xbFWFIXi4mJcXFxQq29+JUy7n5FRq9W4ublhZWVlPMgajeaGvwewt7c3yV+CX2/3bte72es3Gv/12K2WmyN3YzM3Zt3G5r7dfpBjLcca5Fg3hRzrpq0nx/rW47fbD7eaibnOYi72ffbZZ2/7++b6vKasd7PXbzT+67FbLTdH7jvZpqly324/yLGWY21Kcqybtq4c61uPy7G+8zrAAk4tNVZRUREODg4UFhaapJtvKywxtyVmBsvMbYmZwTJzW2JmsNzc/81iZmRuR6vV8tprr6HVas1dSouyxNyWmBksM7clZgbLzG2JmcFyc/83mZERQgghRJslMzJCCCGEaLOkkRFCCCFEmyWNjBBCCCHaLGlkhBBCCNFmSSMjhBBCiDZLGplGmjx5Mp06deKhhx5q8NqmTZvo27cvvXv35h//+IcZqmsZy5Ytw8/PD39/f77++mtzl9Mi/vKXv+Dn54evry/PP//8bR9e1h6cOHGCwMBA4y+9Xs/69evNXVazO3fuHCNHjsTX15f+/ftTWlpq7pJahJeXFwMGDCAwMJCRI0eau5wWU1ZWhqenJwsXLjR3KS3i6tWrDBkyhMDAQPz9/fnkk0/MXZLpKKJRdu3apWzcuFH5zW9+U2+8urpa6d27t5Kdna0UFxcrffr0US5dumSmKpvPkSNHlIEDByrl5eVKWVmZEhISoly5csXcZTWrvLw8pWfPnkp5eblSU1Oj3HPPPUpsbKy5y2pRxcXFSpcuXZSSkhJzl9Lshg8fruzdu1dRFEW5fPmyUl1dbeaKWoanp6dSXFxs7jJa3CuvvKJMmTJFeeGFF8xdSouoqalRSktLFUVRlJKSEsXLy6vd/KySGZlGGjFiBB06dGgwHh8fj5+fH66urtjZ2REZGcm2bdvMUGHzSk1NJTQ0FJ1Oh16vJyAggOjoaHOX1exqamqoqKigurqa6upqnJyczF1Si9q4cSOjR4/G1tbW3KU0q59//hlra2vuvfdeADp37oyVVbt/FJ3FOnXqFGlpaURGRpq7lBaj0WgwGAwAVFZWoihKu5lhbheNzN69e5kwYQIuLi6oVKobToOvXLkSLy8vdDodISEhxMfHm+Szc3JycHV1NS67urpy/vx5k2z7TjT3PvD392f37t1cvXqVK1eusHv3brPk/G/Nnblr164sXLgQDw8PXFxcCA8Pp1evXiZMcHda8s/7d999xyOPPNLEipuuuTOfOnUKOzs7JkyYwKBBg3jrrbdMWP3da4ljrVKpuO+++wgKCmL16tUmqvzutUTmhQsX8vbbb5uoYtNoidxXr14lICAANzc3/vCHP+Do6Gii6s2rXfyXo7S0lICAAGbPns2DDz7Y4PVvv/2WBQsWsGrVKkJCQlixYgVjx47lxIkTxv9hBwYGUlNT0+C927Ztw8XFpdkzNFVz74Pr14iMGjUKBwcHhg4dikajafZct9LcmfV6PZs2bSI9PR29Xk9kZCR79+5l+PDhzZ7tVlrqz3tRURGxsbH861//at5AjdDcmWtqaoiJiSE5ORknJyfGjRtHUFAQY8aMafZst9ISx3rfvn24urpy4cIFwsPD6d+/PwMGDGj2bDfT3JkTEhLo06cPffr0ITY2ttnzNFZLHOuOHTuSkpJCbm4uDz74IA899BDdunVr9mzNztzntkwNUNatW1dvLDg4WHn22WeNy7W1tYqLi4vy9ttv39G2d+3a1eAamf379ysPPPCAcXnevHnK6tWr77xwE2rOfXDd448/rmzatKkpZZpUc2T+7rvvlGeeeca4vHTpUuXdd981Sb2m0pzH+quvvlKmT59uijJNqjkyx8bGKhEREcblpUuXKkuXLjVJvabSEn+vFy5cqHz++edNqNK0miPzSy+9pLi5uSmenp5Kly5dFHt7e2Xx4sWmLLvJWuJYz5kzR/n++++bUmar0S5OLd1KVVUVhw8fJjw83DimVqsJDw/nwIEDTd5+cHAwx44d4/z585SUlLB161bGjh3b5O2akqn2QV5eHnDtWy3x8fGtLud/M0Vmd3d3YmNjqaiooLa2lt27d9O3b9/mKtkkTPnnvbWcVrodU2QOCgoiLy+PK1euUFdXx969e/Hx8Wmukk3CFLlLS0spLi4GoKSkhJ9++gk/P79mqdcUTJH57bffJisri/T0dJYtW8aTTz7Jq6++2lwlm4Qpcufm5hqPdWFhIXv37m31/541Vrs4tXQrly5dora2tsH0Wbdu3UhLS2v0dsLDw0lJSaG0tBQ3Nze+//57QkNDsbKy4v3332fkyJHU1dWxaNEiunTpYuoYTWKqfTBp0iQKCwuxtbXl888/b9UXQ5oi89ChQ4mKimLgwIGo1WpGjx7NxIkTm6NckzHVsS4sLCQ+Pp61a9eaukSTM0VmKysr3nrrLYYPH46iKERERDB+/PjmKNdkTJE7NzeXyZMnA1BbW8uTTz5JUFCQyWs1FVP9+W5rTJE7IyODp556yniR79y5c+nfv39zlNviWu9PolZmx44dN31t4sSJrf4HnCmYYgarrXnzzTd58803zV1Gi3NwcCA3N9fcZbSoyMhIi/oWC0DPnj1JSUkxdxlmM3PmTHOX0GKCg4NJTk42dxnNot2fWnJ0dESj0TT4Rzk3NxdnZ2czVdWyLHEfWGJmsMzclpgZLDO3JWYGy83dWO2+kbGxsWHw4MHs3LnTOFZXV8fOnTsJDQ01Y2UtxxL3gSVmBsvMbYmZwTJzW2JmsNzcjdUuTi2VlJRw+vRp4/K5c+dITk6mc+fOeHh4sGDBAmbMmMGQIUMIDg5mxYoVlJaWMmvWLDNWbVqWuA8sMTNYZm5LzAyWmdsSM4Pl5jYJM39ryiR27dqlAA1+zZgxw7jOBx98oHh4eCg2NjZKcHCwcvDgQfMV3AwscR9YYmZFsczclphZUSwztyVmVhTLzW0KKkVpJ/coFkIIIYTFaffXyAghhBCi/ZJGRgghhBBtljQyQgghhGizpJERQgghRJsljYwQQggh2ixpZIQQQgjRZkkjI4QQQog2SxoZIYQQQrRZ0sgIIYQQos2SRkYICzBixAjmz59v7jLMYubMmahUKlQqFevXrwcgPT0dlUpFcnKyST/r9ddfJzAwsEnb+OKLL4z1WuoxE+JOSCMjhKCgoIC5c+fSt29f9Ho9Hh4ePP/88xQWFpq7NJMYN24cFy5cIDIy0uTbLi8vx9bWtt4D/5rikUce4cKFC/JUYyEaqV08/VoI0TQ5OTnk5OSwbNkyfH19ycjI4OmnnyYnJ4cffvjB3OU1mVarxdnZuVm2vX37djw9PfH29jbJ9vR6PXq9HhsbG5NsT4j2TmZkhLAQdXV1LFq0iM6dO+Ps7Mzrr79ufM3f35+1a9cyYcIEevXqxahRo3jzzTf5z3/+Q01NjXG9PXv2EBwcjFarpXv37rz00kv1Xr+Zjz/+GBcXF+rq6uqNT5o0idmzZwNw5swZJk2aRLdu3bCzsyMoKIgdO3bUW9/Ly4s///nPTJ06FVtbW1xdXVm5cmUT9so1tbW1zJ49m379+pGZmQlAWloaYWFh6HQ6fH192bFjR73TU9dt2LCBiRMn3nC7Z86coWfPnjz33HNcfz7vJ598gru7OwaDgcmTJ7N8+XI6duzY5AxCWCppZISwEF9++SW2trbExcWxdOlS3njjDbZv337T9QsLC7G3t8fK6trE7fnz54mKiiIoKIiUlBQ+/PBDPv30U5YsWXLbz3744Ye5fPkyu3btMo4VFBQQHR3N9OnTASgpKSEqKoqdO3eSlJTEuHHjmDBhgrGxuO69994jICCApKQkXnrpJebNm3fLHLdTWVnJww8/THJyMjExMXh4eFBbW8sDDzyAwWAgLi6Ojz/+mD/+8Y8N3ltXV8emTZuYNGlSg9eOHDlCWFgY06ZN429/+xsqlYr9+/fz9NNPM2/ePJKTkxkzZgxvvvnmXdcuhAAUIUS7d9999ylhYWH1xoKCgpQXX3zxhuvn5+crHh4eyiuvvGIce+WVV5S+ffsqdXV1xrGVK1cqdnZ2Sm1t7W1rmDRpkjJ79mzj8kcffaS4uLjc8r1+fn7KBx98YFz29PRUxo0bV2+dRx55RImMjLzpNmbMmKFMmjSp3ti5c+cUQImJiVFGjx6thIWFKVevXjW+vnXrVsXKykq5cOGCcWz79u0KoKxbt844tn//fsXJycmY4bXXXlMCAgKU/fv3K506dVKWLVvWoNb777+/3tj06dMVBweHBnXfd999yrx5826aSwhxjczICGEhBgwYUG+5e/fu5OXlNVivqKiI+++/H19f33qnn1JTUwkNDUWlUhnHhg0bRklJCdnZ2bf9/OnTp7N27VoqKysBWL16NY8++ihq9bV/hkpKSli4cCE+Pj507NgROzs7UlNTG8zI/Poi2NDQUFJTU2/7+TcydepUSktL2bZtGw4ODsbxEydO4O7uXu+6muDg4Abv37BhA+PHjzdmAMjMzGTMmDG8+uqrvPDCC/XWP3HiRIPt3Gi7QojGk0ZGCAthbW1db1mlUjW4ZqW4uJhx48bRoUMH1q1b1+A9TTFhwgQURWHz5s1kZWURExNjPK0EsHDhQtatW8dbb71FTEwMycnJ9O/fn6qqKpPV8GtRUVEcOXKEAwcO3NX7N27c2OD6mK5duxIcHMyaNWsoKioyRZlCiFuQRkYIAVybiYmIiMDGxoaNGzei0+nqve7j48OBAweMF60C7N+/nw4dOuDm5nbb7et0Oh588EFWr17NmjVr6Nu3L4MGDaq3rZkzZzJ58mT69++Ps7Mz6enpDbZz8ODBBss+Pj53mPaaOXPm8M477zBx4kT27NljHO/bty9ZWVnk5uYaxxISEuq999SpU2RkZDBmzJh643q9nk2bNqHT6Rg7dizFxcX1tvvr7fx6WQhxZ6SREUIYm5jS0lI+/fRTioqKuHjxIhcvXqS2thaAZ555hqysLObOnUtaWhobNmzgtddeY8GCBfVOrdzK9OnT2bx5M5999lm92RiA3r178+9//5vk5GRSUlKYNm1agxkjuNbwLF26lJMnT7Jy5Uq+//575s2bd9fZ586dy5IlSxg/fjz79u0DYMyYMfTq1YsZM2Zw5MgR9u/fz5/+9CcA46m1DRs2EB4ejsFgaLBNW1tbNm/ejJWVFZGRkZSUlBg/a8uWLSxfvpxTp07x0UcfsXXr1nqn64QQd0YaGSEEiYmJxMXFcfToUby9venevbvxV1ZWFgCurq5s2bKF+Ph4AgICePrpp3n88ceNP+AbY9SoUXTu3JkTJ04wbdq0eq8tX76cTp06cc899zBhwgTGjh1bb8bmuhdeeIFDhw4xcOBAlixZwvLlyxk7dmyT8s+fP5/FixcTFRVFbGwsGo2G9evXU1JSQlBQEE888YTxW0vXZ6pu9bVrADs7O7Zu3YqiKNx///2UlpYybNgwVq1axfLlywkICCA6Oprf//73DWa/hBCNp1L+e55YCCFaMS8vL+bPn39Ht+6fOXMmV69ebXD/lzu1f/9+wsLCOH36NA4ODnTv3p3s7Gy6devWpO0++eSTpKWlERMTU298xIgRBAYGsmLFiiZtX4j2TmZkhBDt3qZNm7Czs2PTpk2Nfs+6devYvn076enp7Nixg6eeeophw4bRq1cvCgoKWL58+V01McuWLSMlJYXTp0/zwQcf8OWXXzJjxgzj66tXr8bOzq5BYyOEuDGZkRFCNFlmZia+vr43ff348eN4eHg0+XPuZkYmLy/P+O2h7t27Y2tr26j3ffXVVyxZsoTMzEwcHR0JDw/n/fffp0uXLndTutGUKVPYvXs3xcXF9OzZk7lz5/L0008bXy8uLjZeZNyxY0ccHR2b9HlCtHfSyAghmqympuaG3zC6zsvLy3iHYCGEMCVpZIQQQgjRZsk1MkIIIYRos6SREUIIIUSbJY2MEEIIIdosaWSEEEII0WZJIyOEEEKINksaGSGEEEK0WdLICCGEEKLN+j+h5mk4JriZNAAAAABJRU5ErkJggg==",
    256258      "text/plain": [
    257259       "<Figure size 640x480 with 1 Axes>"
     
    291293  {
    292294   "cell_type": "code",
    293    "execution_count": 10,
     295   "execution_count": 8,
    294296   "id": "56b07967-3900-4454-ac0d-29cfae7cc1f9",
    295297   "metadata": {},
     
    302304    "w_lon = widgets.FloatSlider(min=-180, max=180, step=1, description=\"longitude\")\n",
    303305    "w_alt = widgets.FloatSlider(min=0, max=max(my_sim.data[\"altitude\"]), step=1, description=\"altitude\")\n",
    304     "w_time = widgets.FloatSlider(min=0, max=max(my_sim[\"Time\"]), step=1, description=\"time\")\n",
     306    "w_time = widgets.FloatSlider(min=0, max=max(my_sim[\"Time\"]), step=0.1, description=\"time\")\n",
    305307    "\n",
    306308    "# Fields\n",
    307     "w_single_sp   = widgets.Select(options=my_sim.species, value=\"h2o_vap\", description=\"species\")\n",
    308     "w_multiple_sp = widgets.SelectMultiple(options=my_sim.species, value=[\"h2o_vap\"], description=\"species\")\n",
    309     "w_reactions   = widgets.SelectMultiple(options=my_sim.reactions.keys(), value=[\"co2 + hv -> co + o\"], description=\"reactions\")\n",
     309    "w_single_sp   = widgets.Select(options=my_sim.network.species, value=\"h2o_vap\", description=\"species\")\n",
     310    "w_multiple_sp = widgets.SelectMultiple(options=my_sim.network.species, value=[\"h2o_vap\"], description=\"species\")\n",
     311    "w_reactions   = widgets.SelectMultiple(options=my_sim.network.reactions.keys(), value=[\"co2 + hv -> co + o\"], description=\"reactions\")\n",
    310312    "\n",
    311313    "# Miscelaneous\n",
     
    324326  {
    325327   "cell_type": "code",
    326    "execution_count": 11,
     328   "execution_count": 9,
    327329   "id": "56e81d82-fd55-464c-a746-66cf23822957",
    328330   "metadata": {},
     
    331333     "data": {
    332334      "application/vnd.jupyter.widget-view+json": {
    333        "model_id": "6d5cd66506d34879ac2252b9a7c3e026",
     335       "model_id": "09d636f9d1544e818b3d65401146cc63",
    334336       "version_major": 2,
    335337       "version_minor": 0
     
    339341      ]
    340342     },
    341      "execution_count": 11,
     343     "execution_count": 9,
    342344     "metadata": {},
    343345     "output_type": "execute_result"
     
    367369  {
    368370   "cell_type": "code",
    369    "execution_count": 12,
     371   "execution_count": 10,
    370372   "id": "fd7b4103-0436-4bda-bb39-96666c39f332",
    371373   "metadata": {},
     
    374376     "data": {
    375377      "application/vnd.jupyter.widget-view+json": {
    376        "model_id": "36798865efc74c7aba687cf67cb26d54",
     378       "model_id": "c11050a864054709a98c962bcc721bb9",
    377379       "version_major": 2,
    378380       "version_minor": 0
    379381      },
    380382      "text/plain": [
    381        "VBox(children=(FloatSlider(value=0.0, description='time', max=60.54166793823242, step=1.0), FloatSlider(value=…"
    382       ]
    383      },
    384      "execution_count": 12,
     383       "VBox(children=(FloatSlider(value=0.0, description='time', max=1.0), FloatSlider(value=0.0, description='altitu…"
     384      ]
     385     },
     386     "execution_count": 10,
    385387     "metadata": {},
    386388     "output_type": "execute_result"
     
    410412  {
    411413   "cell_type": "code",
    412    "execution_count": 13,
     414   "execution_count": 11,
    413415   "id": "e4691cae-637b-4555-ac87-d556521a4c3f",
    414416   "metadata": {},
     
    417419     "data": {
    418420      "application/vnd.jupyter.widget-view+json": {
    419        "model_id": "acdd52eb1fd8445c8b970c414fe2d10e",
     421       "model_id": "8df03ed7eb3d46609f51c8c87fb3ff24",
    420422       "version_major": 2,
    421423       "version_minor": 0
    422424      },
    423425      "text/plain": [
    424        "HBox(children=(VBox(children=(FloatSlider(value=55.0, description='time', max=60.54166793823242, step=1.0), Fl…"
    425       ]
    426      },
    427      "execution_count": 13,
     426       "HBox(children=(VBox(children=(FloatSlider(value=0.0, description='time', max=1.0), FloatSlider(value=0.0, desc…"
     427      ]
     428     },
     429     "execution_count": 11,
    428430     "metadata": {},
    429431     "output_type": "execute_result"
     
    457459  {
    458460   "cell_type": "code",
    459    "execution_count": 15,
     461   "execution_count": 12,
    460462   "id": "e4db2d8b-6183-4fbe-8ca1-940ef15aaa28",
    461463   "metadata": {},
     
    464466     "data": {
    465467      "application/vnd.jupyter.widget-view+json": {
    466        "model_id": "6089ba159a1d4814b8807b78a65fa19e",
     468       "model_id": "5b689b68c4f34343989f2921d6600425",
    467469       "version_major": 2,
    468470       "version_minor": 0
    469471      },
    470472      "text/plain": [
    471        "HBox(children=(VBox(children=(Select(description='species', index=3, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
    472       ]
    473      },
    474      "execution_count": 15,
     473       "HBox(children=(VBox(children=(Select(description='species', index=6, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
     474      ]
     475     },
     476     "execution_count": 12,
    475477     "metadata": {},
    476478     "output_type": "execute_result"
     
    510512  {
    511513   "cell_type": "code",
    512    "execution_count": 16,
     514   "execution_count": 13,
    513515   "id": "9dd59a1c-58c4-41f0-9730-9e97d2607c6a",
    514516   "metadata": {},
     
    517519     "data": {
    518520      "application/vnd.jupyter.widget-view+json": {
    519        "model_id": "e3d87cbaec0147bca8596046cdaad974",
     521       "model_id": "b3c1d194f8d1489180e781b65a599d19",
    520522       "version_major": 2,
    521523       "version_minor": 0
     
    525527      ]
    526528     },
    527      "execution_count": 16,
     529     "execution_count": 13,
    528530     "metadata": {},
    529531     "output_type": "execute_result"
     
    560562  {
    561563   "cell_type": "code",
    562    "execution_count": 17,
     564   "execution_count": 14,
    563565   "id": "ff21a3dc-d44a-4f0e-9aa4-211741bb592d",
    564566   "metadata": {},
     
    567569     "data": {
    568570      "application/vnd.jupyter.widget-view+json": {
    569        "model_id": "525673a453824ea4bcdc5591d796dcb5",
     571       "model_id": "70c2af3118d84892a85767a0ee9eb9ac",
    570572       "version_major": 2,
    571573       "version_minor": 0
    572574      },
    573575      "text/plain": [
    574        "HBox(children=(VBox(children=(Select(description='species', index=2, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
    575       ]
    576      },
    577      "execution_count": 17,
     576       "HBox(children=(VBox(children=(Select(description='species', index=6, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
     577      ]
     578     },
     579     "execution_count": 14,
    578580     "metadata": {},
    579581     "output_type": "execute_result"
     
    583585    "def make_reaction_rate_viz(sp,t):\n",
    584586    "\n",
    585     "    for r in my_sim.reactions:\n",
    586     "        if sp in my_sim.reactions[r].products:\n",
    587     "            my_sim.plot_profile('rate ('+r+')',t=t,logx=True,label=r)\n",
    588     "        elif sp in my_sim.reactions[r].reactants:\n",
    589     "            my_sim.plot_profile('rate ('+r+')',t=t,logx=True,ls='--',label=r)\n",
     587    "    for r in my_sim.network.get_subnetwork({'species':[sp]}):\n",
     588    "        if sp in r.products:\n",
     589    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,logx=True,label=r.formula)\n",
     590    "        elif sp in r.reactants:\n",
     591    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,logx=True,ls='--',label=r.formula)\n",
    590592    "\n",
    591593    "    plt.legend()\n",
     
    608610  {
    609611   "cell_type": "code",
    610    "execution_count": 18,
     612   "execution_count": 15,
    611613   "id": "b5b73171-0101-4656-b2ce-7e398070ebbb",
    612614   "metadata": {},
     
    615617     "data": {
    616618      "application/vnd.jupyter.widget-view+json": {
    617        "model_id": "4ac76b3211434eb5b46298f1de86d554",
     619       "model_id": "e7ddfcdad6234de69570d4d3e44cec4a",
    618620       "version_major": 2,
    619621       "version_minor": 0
    620622      },
    621623      "text/plain": [
    622        "HBox(children=(VBox(children=(Select(description='species', index=2, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
    623       ]
    624      },
    625      "execution_count": 18,
     624       "HBox(children=(VBox(children=(SelectMultiple(description='species', index=(6,), options=('o2', 'o', 'o1d', 'o3…"
     625      ]
     626     },
     627     "execution_count": 15,
    626628     "metadata": {},
    627629     "output_type": "execute_result"
     
    629631   ],
    630632   "source": [
    631     "def make_sp_prof_atlas(sp,t,lon,lat,avg):\n",
     633    "def make_sp_prof_atlas(sps,t,lon,lat,avg):\n",
    632634    "\n",
    633635    "    plt.subplot(121) # Vertical profile\n",
    634     "    for r in my_sim.reactions:\n",
    635     "        if sp in my_sim.reactions[r].products:\n",
    636     "            my_sim.plot_profile('rate ('+r+')',t=t,logx=True,label=r)\n",
    637     "        elif sp in my_sim.reactions[r].reactants:\n",
    638     "            my_sim.plot_profile('rate ('+r+')',t=t,logx=True,ls='--',label=r)\n",
     636    "    for i,sp in enumerate(sps):\n",
     637    "        my_sim.plot_profile(sp,t=t,lon=lon,lat=lat,logx=True,label=sp,c=cmap(i))\n",
     638    "        if avg:\n",
     639    "            my_sim.plot_profile(sp,t=t,logx=True,c=cmap(i),ls='--')\n",
     640    "    if avg: # just for the legend\n",
     641    "        plt.plot([],[],c='k',label='lon='+str(int(lon))+'°, lat='+str(int(lat))+'°')\n",
     642    "        plt.plot([],[],ls='--',c='k',label='average')\n",
    639643    "\n",
    640644    "    plt.legend()\n",
     
    647651    "    plt.subplots_adjust(right=2)\n",
    648652    "\n",
    649     "out = widgets.interactive_output(make_sp_prof_atlas,{'sp':w_single_sp,'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
    650     "\n",
    651     "widgets.HBox([widgets.VBox([w_single_sp,w_time,w_lon,w_lat,w_average]),out])"
     653    "out = widgets.interactive_output(make_sp_prof_atlas,{'sps':w_multiple_sp,'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
     654    "\n",
     655    "widgets.HBox([widgets.VBox([w_multiple_sp,w_time,w_lon,w_lat,w_average]),out])"
    652656   ]
    653657  },
     
    662666  {
    663667   "cell_type": "code",
    664    "execution_count": 19,
     668   "execution_count": 16,
    665669   "id": "c849fda1-3969-4709-bb17-fdcaff5cbf86",
    666670   "metadata": {},
     
    669673     "data": {
    670674      "application/vnd.jupyter.widget-view+json": {
    671        "model_id": "7e6bc22e2111489c88cbae0c2b6eea97",
     675       "model_id": "69b988d5c7954448b2cd33e27d568329",
    672676       "version_major": 2,
    673677       "version_minor": 0
    674678      },
    675679      "text/plain": [
    676        "HBox(children=(VBox(children=(Select(description='species', options=('o2', 'o', 'o1d', 'o3', 'h2o2', 'oh', 'h2…"
    677       ]
    678      },
    679      "execution_count": 19,
     680       "HBox(children=(VBox(children=(Select(description='species', index=6, options=('o2', 'o', 'o1d', 'o3', 'h2o2', …"
     681      ]
     682     },
     683     "execution_count": 16,
    680684     "metadata": {},
    681685     "output_type": "execute_result"
     686    },
     687    {
     688     "data": {
     689      "image/png": "iVBORw0KGgoAAAANSUhEUgAAASAAAAGiCAYAAABH+xtTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAYvklEQVR4nO3cb2yV9f3/8VdbOKcYacF1PS3sYAMG/0Nnka4gIS5nNtHUcWOxE0M74p+pnVFONqEiVEQpc4w1kSKxU/GGjjqjxkhTp52NUbuQFJroBAwWbWd2DjSOc1iRFno+3xv7cfzVtspV275beD6S60Y/uz7nend6np5/PSnOOScAMJBqPQCA8xcBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJgxnOA3n33XZWUlGjGjBlKSUnRa6+99p17mpubdc0118jv9+uSSy7Rzp07hzEqgHON5wB1d3dr/vz5qq2tPavzDx8+rJtuuknXX3+92tra9MADD+iOO+7Qm2++6XlYAOeWlO/zx6gpKSl69dVXtWzZsiHPWb16tXbv3q2PPvooufbLX/5Sx44dU2Nj43AvDeAcMGm0L9DS0qJQKNRvrbi4WA888MCQe3p6etTT05P8OZFI6Msvv9QPfvADpaSkjNaoAIbgnNPx48c1Y8YMpaaO3EvHox6gSCSiQCDQby0QCCgej+urr77SlClTBuyprq7Whg0bRns0AB51dnbqRz/60Yjd3qgHaDgqKysVDoeTP8diMc2aNUudnZ3KyMgwnAw4P8XjcQWDQU2dOnVEb3fUA5STk6NoNNpvLRqNKiMjY9BHP5Lk9/vl9/sHrGdkZBAgwNBIvwQy6p8DKioqUlNTU7+1t956S0VFRaN9aQDjnOcA/fe//1VbW5va2tok/e9t9ra2NnV0dEj639OnsrKy5Pl333232tvb9eCDD+rAgQPavn27XnrpJa1atWpkfgMAE5fz6J133nGSBhzl5eXOOefKy8vd0qVLB+zJz893Pp/PzZ492z333HOerhmLxZwkF4vFvI4LYASM1n3we30OaKzE43FlZmYqFovxGhBgYLTug/wtGAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMDCtAtbW1ysvLU3p6ugoLC7Vnz55vPb+mpkaXXnqppkyZomAwqFWrVunkyZPDGhjAucNzgOrr6xUOh1VVVaW9e/dq/vz5Ki4u1pEjRwY9/8UXX9SaNWtUVVWl/fv365lnnlF9fb0eeuih7z08gInNc4C2bt2qO++8UytXrtQVV1yhHTt26IILLtCzzz476PkffPCBFi9erOXLlysvL0833HCDbr311u981ATg3OcpQL29vWptbVUoFPr6BlJTFQqF1NLSMuieRYsWqbW1NRmc9vZ2NTQ06MYbbxzyOj09PYrH4/0OAOeeSV5O7urqUl9fnwKBQL/1QCCgAwcODLpn+fLl6urq0nXXXSfnnE6fPq277777W5+CVVdXa8OGDV5GAzABjfq7YM3Nzdq0aZO2b9+uvXv36pVXXtHu3bu1cePGIfdUVlYqFoslj87OztEeE4ABT4+AsrKylJaWpmg02m89Go0qJydn0D3r1q3TihUrdMcdd0iSrr76anV3d+uuu+7S2rVrlZo6sIF+v19+v9/LaAAmIE+PgHw+nwoKCtTU1JRcSyQSampqUlFR0aB7Tpw4MSAyaWlpkiTnnNd5AZxDPD0CkqRwOKzy8nItWLBACxcuVE1Njbq7u7Vy5UpJUllZmWbOnKnq6mpJUklJibZu3aof//jHKiws1KFDh7Ru3TqVlJQkQwTg/OQ5QKWlpTp69KjWr1+vSCSi/Px8NTY2Jl+Y7ujo6PeI5+GHH1ZKSooefvhhffHFF/rhD3+okpISPf744yP3WwCYkFLcBHgeFI/HlZmZqVgspoyMDOtxgPPOaN0H+VswAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJgZVoBqa2uVl5en9PR0FRYWas+ePd96/rFjx1RRUaHc3Fz5/X7NnTtXDQ0NwxoYwLljktcN9fX1CofD2rFjhwoLC1VTU6Pi4mIdPHhQ2dnZA87v7e3Vz372M2VnZ+vll1/WzJkz9fnnn2vatGkjMT+ACSzFOee8bCgsLNS1116rbdu2SZISiYSCwaDuu+8+rVmzZsD5O3bs0B/+8AcdOHBAkydPHtaQ8XhcmZmZisViysjIGNZtABi+0boPenoK1tvbq9bWVoVCoa9vIDVVoVBILS0tg+55/fXXVVRUpIqKCgUCAV111VXatGmT+vr6hrxOT0+P4vF4vwPAucdTgLq6utTX16dAINBvPRAIKBKJDLqnvb1dL7/8svr6+tTQ0KB169bpj3/8ox577LEhr1NdXa3MzMzkEQwGvYwJYIIY9XfBEomEsrOz9fTTT6ugoEClpaVau3atduzYMeSeyspKxWKx5NHZ2TnaYwIw4OlF6KysLKWlpSkajfZbj0ajysnJGXRPbm6uJk+erLS0tOTa5Zdfrkgkot7eXvl8vgF7/H6//H6/l9EATECeHgH5fD4VFBSoqakpuZZIJNTU1KSioqJB9yxevFiHDh1SIpFIrn3yySfKzc0dND4Azh+en4KFw2HV1dXp+eef1/79+3XPPfeou7tbK1eulCSVlZWpsrIyef4999yjL7/8Uvfff78++eQT7d69W5s2bVJFRcXI/RYAJiTPnwMqLS3V0aNHtX79ekUiEeXn56uxsTH5wnRHR4dSU7/uWjAY1JtvvqlVq1Zp3rx5mjlzpu6//36tXr165H4LABOS588BWeBzQICtcfE5IAAYSQQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzAwrQLW1tcrLy1N6eroKCwu1Z8+es9q3a9cupaSkaNmyZcO5LIBzjOcA1dfXKxwOq6qqSnv37tX8+fNVXFysI0eOfOu+zz77TL/97W+1ZMmSYQ8L4NziOUBbt27VnXfeqZUrV+qKK67Qjh07dMEFF+jZZ58dck9fX59uu+02bdiwQbNnz/7Oa/T09Cgej/c7AJx7PAWot7dXra2tCoVCX99AaqpCoZBaWlqG3Pfoo48qOztbt99++1ldp7q6WpmZmckjGAx6GRPABOEpQF1dXerr61MgEOi3HggEFIlEBt3z3nvv6ZlnnlFdXd1ZX6eyslKxWCx5dHZ2ehkTwAQxaTRv/Pjx41qxYoXq6uqUlZV11vv8fr/8fv8oTgZgPPAUoKysLKWlpSkajfZbj0ajysnJGXD+p59+qs8++0wlJSXJtUQi8b8LT5qkgwcPas6cOcOZG8A5wNNTMJ/Pp4KCAjU1NSXXEomEmpqaVFRUNOD8yy67TB9++KHa2tqSx80336zrr79ebW1tvLYDnOc8PwULh8MqLy/XggULtHDhQtXU1Ki7u1srV66UJJWVlWnmzJmqrq5Wenq6rrrqqn77p02bJkkD1gGcfzwHqLS0VEePHtX69esViUSUn5+vxsbG5AvTHR0dSk3lA9YAvluKc85ZD/Fd4vG4MjMzFYvFlJGRYT0OcN4ZrfsgD1UAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYGZYAaqtrVVeXp7S09NVWFioPXv2DHluXV2dlixZounTp2v69OkKhULfej6A84fnANXX1yscDquqqkp79+7V/PnzVVxcrCNHjgx6fnNzs2699Va98847amlpUTAY1A033KAvvvjiew8PYGJLcc45LxsKCwt17bXXatu2bZKkRCKhYDCo++67T2vWrPnO/X19fZo+fbq2bdumsrKyQc/p6elRT09P8ud4PK5gMKhYLKaMjAwv4wIYAfF4XJmZmSN+H/T0CKi3t1etra0KhUJf30BqqkKhkFpaWs7qNk6cOKFTp07poosuGvKc6upqZWZmJo9gMOhlTAAThKcAdXV1qa+vT4FAoN96IBBQJBI5q9tYvXq1ZsyY0S9i31RZWalYLJY8Ojs7vYwJYIKYNJYX27x5s3bt2qXm5malp6cPeZ7f75ff7x/DyQBY8BSgrKwspaWlKRqN9luPRqPKycn51r1btmzR5s2b9fbbb2vevHneJwVwzvH0FMzn86mgoEBNTU3JtUQioaamJhUVFQ2574knntDGjRvV2NioBQsWDH9aAOcUz0/BwuGwysvLtWDBAi1cuFA1NTXq7u7WypUrJUllZWWaOXOmqqurJUm///3vtX79er344ovKy8tLvlZ04YUX6sILLxzBXwXAROM5QKWlpTp69KjWr1+vSCSi/Px8NTY2Jl+Y7ujoUGrq1w+snnrqKfX29uoXv/hFv9upqqrSI4888v2mBzChef4ckIXR+gwCgLMzLj4HBAAjiQABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAGQIEwAwBAmCGAAEwQ4AAmCFAAMwQIABmCBAAMwQIgBkCBMAMAQJghgABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACYIUAAzBAgAGYIEAAzBAiAmWEFqLa2Vnl5eUpPT1dhYaH27Nnzref/9a9/1WWXXab09HRdffXVamhoGNawAM4tngNUX1+vcDisqqoq7d27V/Pnz1dxcbGOHDky6PkffPCBbr31Vt1+++3at2+fli1bpmXLlumjjz763sMDmNhSnHPOy4bCwkJde+212rZtmyQpkUgoGAzqvvvu05o1awacX1paqu7ubr3xxhvJtZ/85CfKz8/Xjh07Br1GT0+Penp6kj/HYjHNmjVLnZ2dysjI8DIugBEQj8cVDAZ17NgxZWZmjtwNOw96enpcWlqae/XVV/utl5WVuZtvvnnQPcFg0P3pT3/qt7Z+/Xo3b968Ia9TVVXlJHFwcIyz49NPP/WSjO80SR50dXWpr69PgUCg33ogENCBAwcG3ROJRAY9PxKJDHmdyspKhcPh5M/Hjh3TxRdfrI6OjpGt7yg681+MifSojZnHxkSc+cyzkIsuumhEb9dTgMaK3++X3+8fsJ6ZmTlh/oGdkZGRwcxjgJnHRmrqyL5x7unWsrKylJaWpmg02m89Go0qJydn0D05OTmezgdw/vAUIJ/Pp4KCAjU1NSXXEomEmpqaVFRUNOieoqKifudL0ltvvTXk+QDOI15fNNq1a5fz+/1u586d7uOPP3Z33XWXmzZtmotEIs4551asWOHWrFmTPP/99993kyZNclu2bHH79+93VVVVbvLkye7DDz8862uePHnSVVVVuZMnT3od1wwzjw1mHhujNbPnADnn3JNPPulmzZrlfD6fW7hwofvHP/6R/N+WLl3qysvL+53/0ksvublz5zqfz+euvPJKt3v37u81NIBzg+fPAQHASOFvwQCYIUAAzBAgAGYIEAAz4yZAE/ErPrzMXFdXpyVLlmj69OmaPn26QqHQd/6Oo8Hr/89n7Nq1SykpKVq2bNnoDjgIrzMfO3ZMFRUVys3Nld/v19y5c8f83w+vM9fU1OjSSy/VlClTFAwGtWrVKp08eXKMppXeffddlZSUaMaMGUpJSdFrr732nXuam5t1zTXXyO/365JLLtHOnTu9X9j6bTjn/vfZIp/P55599ln3z3/+0915551u2rRpLhqNDnr++++/79LS0twTTzzhPv74Y/fwww97/mzRWM+8fPlyV1tb6/bt2+f279/vfvWrX7nMzEz3r3/9a9zOfMbhw4fdzJkz3ZIlS9zPf/7zsRn2//E6c09Pj1uwYIG78cYb3XvvvecOHz7smpubXVtb27id+YUXXnB+v9+98MIL7vDhw+7NN990ubm5btWqVWM2c0NDg1u7dq175ZVXnKQBf3D+Te3t7e6CCy5w4XDYffzxx+7JJ590aWlprrGx0dN1x0WAFi5c6CoqKpI/9/X1uRkzZrjq6upBz7/lllvcTTfd1G+tsLDQ/frXvx7VOf9/Xmf+ptOnT7upU6e6559/frRGHGA4M58+fdotWrTI/fnPf3bl5eVjHiCvMz/11FNu9uzZrre3d6xGHMDrzBUVFe6nP/1pv7VwOOwWL148qnMO5WwC9OCDD7orr7yy31ppaakrLi72dC3zp2C9vb1qbW1VKBRKrqWmpioUCqmlpWXQPS0tLf3Ol6Ti4uIhzx9pw5n5m06cOKFTp06N+F8XD2W4Mz/66KPKzs7W7bffPhZj9jOcmV9//XUVFRWpoqJCgUBAV111lTZt2qS+vr5xO/OiRYvU2tqafJrW3t6uhoYG3XjjjWMy83CM1H3Q/K/hx+orPkbScGb+ptWrV2vGjBkD/iGOluHM/N577+mZZ55RW1vbGEw40HBmbm9v19///nfddtttamho0KFDh3Tvvffq1KlTqqqqGpczL1++XF1dXbruuuvknNPp06d1991366GHHhr1eYdrqPtgPB7XV199pSlTppzV7Zg/Ajofbd68Wbt27dKrr76q9PR063EGdfz4ca1YsUJ1dXXKysqyHuesJRIJZWdn6+mnn1ZBQYFKS0u1du3aIb99czxobm7Wpk2btH37du3du1evvPKKdu/erY0bN1qPNurMHwFNxK/4GM7MZ2zZskWbN2/W22+/rXnz5o3mmP14nfnTTz/VZ599ppKSkuRaIpGQJE2aNEkHDx7UnDlzxtXMkpSbm6vJkycrLS0tuXb55ZcrEomot7dXPp9v3M28bt06rVixQnfccYck6eqrr1Z3d7fuuusurV27dsS/g2ckDHUfzMjIOOtHP9I4eAQ0Eb/iYzgzS9ITTzyhjRs3qrGxUQsWLBiLUZO8znzZZZfpww8/VFtbW/K4+eabdf3116utrU3BYHDczSxJixcv1qFDh5KxlKRPPvlEubm5ox6f4c584sSJAZE5E1A3Tv9Uc8Tug95eHx8dFl/xMdYzb9682fl8Pvfyyy+7f//738nj+PHj43bmb7J4F8zrzB0dHW7q1KnuN7/5jTt48KB74403XHZ2tnvsscfG7cxVVVVu6tSp7i9/+Ytrb293f/vb39ycOXPcLbfcMmYzHz9+3O3bt8/t27fPSXJbt251+/btc59//rlzzrk1a9a4FStWJM8/8zb87373O7d//35XW1s7cd+Gd25ifsWHl5kvvvjiQb/ku6qqatzO/E0WAXLO+8wffPCBKywsdH6/382ePds9/vjj7vTp0+N25lOnTrlHHnnEzZkzx6Wnp7tgMOjuvfde95///GfM5n3nnXcG/ffzzJzl5eVu6dKlA/bk5+c7n8/nZs+e7Z577jnP1+XrOACYMX8NCMD5iwABMEOAAJghQADMECAAZggQADMECIAZAgTADAECYIYAATBDgACY+T+wEjtFJei6JAAAAABJRU5ErkJggg==",
     690      "text/plain": [
     691       "<Figure size 640x480 with 1 Axes>"
     692      ]
     693     },
     694     "metadata": {},
     695     "output_type": "display_data"
    682696    }
    683697   ],
    684698   "source": [
    685699    "def make_sp_rate_atlas(sp,t,lon,lat,avg):\n",
    686     "\n",
     700    "        \n",
    687701    "    plt.subplot(121) # Vertical profile\n",
    688     "    for r in my_sim.reactions:\n",
    689     "        if sp in my_sim.reactions[r].products:\n",
    690     "            my_sim.plot_profile('rate ('+r+')',t=t,lon=lon,lat=lat,logx=True,label=r)\n",
    691     "        elif sp in my_sim.reactions[r].reactants:\n",
    692     "            my_sim.plot_profile('rate ('+r+')',t=t,lon=lon,lat=lat,logx=True,ls='--',label=r)\n",
     702    "    for r in my_sim.network:\n",
     703    "        if sp in r.products:\n",
     704    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,lon=lon if not avg else 'avg',lat=lat if not avg else 'avg',logx=True,label=r.formula)\n",
     705    "        elif sp in r.reactants:\n",
     706    "            my_sim.plot_profile('rate ('+r.formula+')',t=t,lon=lon if not avg else 'avg',lat=lat if not avg else 'avg',logx=True,ls='--',label=r.formula)\n",
    693707    "        \n",
    694708    "    plt.legend()\n",
     
    699713    "    plt.scatter([lon],[lat],marker='o',s=[100],c=['tab:red'])\n",
    700714    "\n",
    701     "    plt.subplots_adjust(right=2)\n",
    702     "\n",
    703     "out = widgets.interactive_output(make_sp_prof_atlas,{'sp':w_single_sp,'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
     715    "    plt.subplots_adjust(right=1.5)\n",
     716    "\n",
     717    "out = widgets.interactive_output(make_sp_rate_atlas,{'sp':w_single_sp,'t':w_time,'lon':w_lon,'lat':w_lat,'avg':w_average})\n",
    704718    "\n",
    705719    "widgets.HBox([widgets.VBox([w_single_sp,w_time,w_lon,w_lat,w_average]),out])"
     720   ]
     721  },
     722  {
     723   "cell_type": "markdown",
     724   "id": "ff6ad79c-d07b-4d81-83d8-fc02e24ba6d4",
     725   "metadata": {},
     726   "source": [
     727    "## Chemical network processing"
     728   ]
     729  },
     730  {
     731   "cell_type": "markdown",
     732   "id": "da719183-d81b-4dfd-948a-a275e41ae32a",
     733   "metadata": {},
     734   "source": [
     735    "### Working with other formats"
     736   ]
     737  },
     738  {
     739   "cell_type": "markdown",
     740   "id": "fd6c578a-7a59-4f1f-b180-bc514d4482a4",
     741   "metadata": {},
     742   "source": [
     743    "We can import and export chemical network from and into various formats, not only Generic-PCM style."
     744   ]
     745  },
     746  {
     747   "cell_type": "code",
     748   "execution_count": 17,
     749   "id": "e25768d8-914b-4409-947d-b3aa3f3d9c87",
     750   "metadata": {},
     751   "outputs": [
     752    {
     753     "name": "stdout",
     754     "output_type": "stream",
     755     "text": [
     756      "co + oh -> co2 + h has a custom reaction constant: add it manually\n",
     757      "o2 + hv -> o + o is a photolysis: you need to add the branching ratio manually\n",
     758      "o2 + hv -> o + o1d is a photolysis: you need to add the branching ratio manually\n",
     759      "o3 + hv -> o2 + o1d is a photolysis: you need to add the branching ratio manually\n",
     760      "o3 + hv -> o2 + o is a photolysis: you need to add the branching ratio manually\n",
     761      "h2o2 + hv -> oh + oh is a photolysis: you need to add the branching ratio manually\n",
     762      "h2o_vap + hv -> h + oh is a photolysis: you need to add the branching ratio manually\n",
     763      "co2 + hv -> co + o is a photolysis: you need to add the branching ratio manually\n",
     764      "co2 + hv -> co + o1d is a photolysis: you need to add the branching ratio manually\n",
     765      "ho2 + hv -> oh + o is a photolysis: you need to add the branching ratio manually\n"
     766     ]
     767    }
     768   ],
     769   "source": [
     770    "# Let's export our simulation's network into a file readable by the VULCAN model\n",
     771    "my_sim.network.to_file('photochem_example/VULCAN_network.txt',format='vulcan')"
     772   ]
     773  },
     774  {
     775   "cell_type": "markdown",
     776   "id": "e12f6270-65ba-44d3-8ec7-28292fb50cce",
     777   "metadata": {},
     778   "source": [
     779    "Some notifications have been issued because one has to manually add some extra informations for some reactions. But you the file ***photochem_example/VULCAN_network.txt*** should have been correctly written, and you can use it to run a VULCAN simulation once you have added the required informations."
     780   ]
     781  },
     782  {
     783   "cell_type": "markdown",
     784   "id": "0b258f20-f574-4382-b394-afcf171d1993",
     785   "metadata": {},
     786   "source": [
     787    "### Making subnetwork"
     788   ]
     789  },
     790  {
     791   "cell_type": "markdown",
     792   "id": "819b6abf-0ec5-4b53-8af5-31da362f6b86",
     793   "metadata": {},
     794   "source": [
     795    "We can also use these tools to design and export subnetworks:"
     796   ]
     797  },
     798  {
     799   "cell_type": "code",
     800   "execution_count": 18,
     801   "id": "1e1585ff-dc78-44ae-9e38-3025fde45a59",
     802   "metadata": {},
     803   "outputs": [
     804    {
     805     "name": "stdout",
     806     "output_type": "stream",
     807     "text": [
     808      "Photolysis sub-network:\n",
     809      "=======================\n",
     810      "o2 + hv -> o + o\n",
     811      "o2 + hv -> o + o1d\n",
     812      "o3 + hv -> o2 + o1d\n",
     813      "o3 + hv -> o2 + o\n",
     814      "h2o2 + hv -> oh + oh\n",
     815      "h2o_vap + hv -> h + oh\n",
     816      "co2 + hv -> co + o\n",
     817      "co2 + hv -> co + o1d\n",
     818      "ho2 + hv -> oh + o\n",
     819      "\n",
     820      "HOx sub-network:\n",
     821      "=================\n",
     822      "h2o2 + hv -> oh + oh\n",
     823      "h2o_vap + hv -> h + oh\n",
     824      "ho2 + hv -> oh + o\n",
     825      "o1d + h2o_vap -> oh + oh\n",
     826      "o1d + h2 -> oh + h\n",
     827      "o + h2 -> oh + h\n",
     828      "o + ho2 -> oh + o2\n",
     829      "o + oh -> o2 + h\n",
     830      "h + o3 -> oh + o2\n",
     831      "h + ho2 -> oh + oh\n",
     832      "h + ho2 -> h2 + o2\n",
     833      "h + ho2 -> h2o_vap + o\n",
     834      "oh + ho2 -> h2o_vap + o2\n",
     835      "oh + h2o2 -> h2o_vap + ho2\n",
     836      "oh + h2 -> h2o_vap + h\n",
     837      "o + h2o2 -> oh + ho2\n",
     838      "oh + o3 -> ho2 + o2\n",
     839      "ho2 + o3 -> oh + o2 + o2\n",
     840      "ho2 + ho2 -> h2o2 + o2\n",
     841      "oh + oh -> h2o_vap + o\n",
     842      "h + o2 + M -> ho2 + M\n",
     843      "h + oh + M -> h2o_vap + M\n",
     844      "oh + oh + M -> h2o2 + M\n",
     845      "h + h + M -> h2 + M\n",
     846      "ho2 + ho2 + M -> h2o2 + o2 + M\n",
     847      "co + oh -> co2 + h\n",
     848      "\n",
     849      "C sub-network:\n",
     850      "===============\n",
     851      "co2 + hv -> co + o\n",
     852      "co2 + hv -> co + o1d\n",
     853      "o1d + co -> o + co\n",
     854      "o1d + co2 -> o + co2\n",
     855      "co + o + M -> co2 + M\n",
     856      "co + oh -> co2 + h\n"
     857     ]
     858    }
     859   ],
     860   "source": [
     861    "# Select by type:\n",
     862    "print('Photolysis sub-network:')\n",
     863    "print('=======================')\n",
     864    "for r in my_sim.network.get_subnetwork({'type':[pcpp.photolysis]}):\n",
     865    "    print(r.formula)\n",
     866    "\n",
     867    "# Select by species:\n",
     868    "print('')\n",
     869    "print('HOx sub-network:')\n",
     870    "print('=================')\n",
     871    "for r in my_sim.network.get_subnetwork({'species':['h','oh','ho2']}):\n",
     872    "    print(r.formula)\n",
     873    "\n",
     874    "# Select by element:\n",
     875    "print('')\n",
     876    "print('C sub-network:')\n",
     877    "print('===============')\n",
     878    "for r in my_sim.network.get_subnetwork({'elements':['c']}):\n",
     879    "    print(r.formula)"
     880   ]
     881  },
     882  {
     883   "cell_type": "markdown",
     884   "id": "4ea46279-9234-4a53-800d-891efa4ec9d1",
     885   "metadata": {},
     886   "source": [
     887    "### Exporting custom subnetwork\n",
     888    "You can make your own custom chemical network (ideally selecting reactions from a large database - here we just work with our original simulation's reduced network). You may want to save the associated ***traceur.def*** file (notice that you'll have to add manually parameters, but at least you won't forget tracers.)"
     889   ]
     890  },
     891  {
     892   "cell_type": "code",
     893   "execution_count": 21,
     894   "id": "513f6d4e-a0e2-4095-9a7c-acafc79a465b",
     895   "metadata": {},
     896   "outputs": [
     897    {
     898     "data": {
     899      "application/vnd.jupyter.widget-view+json": {
     900       "model_id": "d69273658f144d8f952fe3dc40004e67",
     901       "version_major": 2,
     902       "version_minor": 0
     903      },
     904      "text/plain": [
     905       "HBox(children=(SelectMultiple(layout=Layout(height='400px'), options=('o2 + hv -> o + o', 'o2 + hv -> o + o1d'…"
     906      ]
     907     },
     908     "execution_count": 21,
     909     "metadata": {},
     910     "output_type": "execute_result"
     911    }
     912   ],
     913   "source": [
     914    "from ipywidgets import Layout\n",
     915    "\n",
     916    "def select_reactions(reactions,net_filename,trac_filename,format):\n",
     917    "    save_network_button = widgets.Button(description='Save reactfile')\n",
     918    "    save_tracers_button = widgets.Button(description='Save tracfile')\n",
     919    "    \n",
     920    "    def on_save_network_button_clicked(b):\n",
     921    "        to_save = pcpp.network()\n",
     922    "        for r in reactions:\n",
     923    "            to_save.append(my_sim.network[r])\n",
     924    "        to_save.to_file(net_filename,format=format)\n",
     925    "        \n",
     926    "    def on_save_tracers_button_clicked(b):\n",
     927    "        to_save = pcpp.network()\n",
     928    "        for r in reactions:\n",
     929    "            to_save.append(my_sim.network[r])\n",
     930    "        to_save.save_traceur_file(trac_filename)\n",
     931    "        \n",
     932    "    save_network_button.on_click(on_save_network_button_clicked)\n",
     933    "    save_tracers_button.on_click(on_save_tracers_button_clicked)\n",
     934    "    display(save_network_button, widgets.Output())\n",
     935    "    display(save_tracers_button, widgets.Output())\n",
     936    "    \n",
     937    "w_reactions         = widgets.SelectMultiple(options=my_sim.network.reactions.keys(),layout=Layout(height='400px'))\n",
     938    "w_network_filename  = widgets.Text(value='photochem_example/my_custom_network.def',description='network filename:',disabled=False)\n",
     939    "w_tracers_filename  = widgets.Text(value='photochem_example/my_custom_traceur.def',description='tracers filename:',disabled=False)\n",
     940    "w_format            = widgets.Select(options=['GPCM','vulcan'],value='GPCM',description='format:')\n",
     941    "\n",
     942    "out = widgets.interactive_output(select_reactions,{'reactions':w_reactions,'net_filename':w_network_filename,\n",
     943    "                                                   'trac_filename':w_tracers_filename,'format':w_format})\n",
     944    "widgets.HBox([w_reactions,widgets.VBox([w_format,w_network_filename,w_tracers_filename,out])])"
    706945   ]
    707946  }
  • trunk/LMDZ.GENERIC/utilities/photochemistry/photochem_postproc.py

    r3511 r3528  
    4545
    4646    """
    47     def __init__(self,path,datafilename='diagfi',verbose=False):
     47    def __init__(self,path,filename='diagfi.c',verbose=False):
    4848        """
    4949        Parameters
     
    5858        self.path = path
    5959        try:
    60             self.data = xr.open_dataset(path+'/'+datafilename+'.nc',decode_times=False)
    61             print(path+'/'+datafilename,'loaded, simulations lasts',self.data['Time'].values[-1],'sols')
     60            self.data = xr.open_dataset(path+'/'+filename,decode_times=False)
     61            print(path+'/'+filename,'loaded, simulations lasts',self.data['Time'].values[-1],'sols')
    6262        except:
    6363            raise Exception('Data not found')
     
    101101            data_subset = self[field]
    102102           
    103         if 't' in kw:
     103        if 't' in kw and 'Time' in data_subset.dims:
    104104            if kw['t'] == 'avg':
    105105                data_subset = data_subset.mean(dim='Time')
    106106            else:
    107107                data_subset = data_subset.sel(Time=kw['t'],method='nearest')
    108         if 'lat' in kw:
     108        if 'lat' in kw and 'latitude' in data_subset.dims:
    109109            if kw['lat'] == 'avg':
    110110                data_subset = self.__area_weight__(data_subset).mean(dim='latitude')
    111111            else:
    112112                data_subset = data_subset.sel(latitude=kw['lat'],method='nearest')
    113         if 'lon' in kw:
     113        if 'lon' in kw and 'longitude' in data_subset.dims:
    114114            if kw['lon'] == 'avg':
    115115                data_subset = data_subset.mean(dim='longitude')
    116116            else:
    117117                data_subset = data_subset.sel(longitude=kw['lon'],method='nearest')
    118         if 'alt' in kw:
     118        if 'alt' in kw and 'altitude' in data_subset.dims:
    119119            if kw['alt'] == 'avg':
    120120                data_subset = data_subset.mean(dim='altitude')
     
    272272        plt.xlabel(field+' ['+self[field].units+']')
    273273        plt.ylabel('altitude [km]')
     274
     275    def read_tracfile(self,filename='traceur.def'):
     276        """ Read the traceurs of a simulation
     277   
     278        Parameters
     279        ----------
     280        filename : string (optional)
     281            Name of the tracer file. Default: 'traceur.def'
     282        """
     283        self.tracers = {}
     284        self.M       = {}
     285        with open(self.path+'/'+filename) as tracfile:
     286           
     287            for iline,line in enumerate(tracfile):
     288               
     289                # First line
     290                if iline == 0:
     291                    if not '#ModernTrac-v1' in line:
     292                        raise Exception('Can only read modern traceur.def')
     293                    continue
     294                   
     295                # Second line (number of tracers)
     296                elif iline == 1:
     297                    continue
     298               
     299                # Empty line
     300                elif len(line.split()) == 0:
     301                    continue
     302                   
     303                # Commented line
     304                elif line[0] == '!':
     305                    continue
     306   
     307                # Regular entry
     308                else:
     309                    line       = line.replace('=',' ').split()
     310                    tracparams = {line[2*i+1]:float(line[2*i+2]) for i in range(int(len(line)/2))}
     311                    self.tracers = self.tracers | {line[0]:tracparams}
     312
     313    def compute_rates(self):
     314        """ Computes reaction rates for a simulation
     315   
     316        Parameters
     317        ----------
     318        s : GPCM_simu
     319            Simulation object
     320        reactions : dict (optional)
     321            Dictionnary of reactions whose rate to compute as returned by read_reactfile
     322            If nothing passed, call read_reactfile to identify reactions
     323   
     324        Returns
     325        -------
     326        GPCM_simu
     327            Simulation object with reactions rates, rates constants, species vmr and densities as new fields
     328        """
     329   
     330        # self.network     = network.from_file(self.path+'/chemnetwork/reactfile')
     331        self.read_tracfile() # we need to read the traceur.def to know the molar mass of species
     332        reactions = self.network.reactions
     333        if not set(self.network.species) <= set(list(self.tracers.keys())):
     334            raise Exception('Chemical network contains species that are not in the traceur.def file')
     335               
     336        densities = {}
     337   
     338        # Background density
     339        self['total density']     = (self['p'] / R / self['temp'] / 1e6 * N_A).assign_attrs({'units':'cm^-3.s^-1'}) # 1e6 converts m³ to cm^3
     340   
     341        for sp in self.network.species:
     342            # volume mixing ratios
     343            self[sp+' vmr'] = (self[sp] * self.tracers[background]['mmol'] / self.tracers[sp]['mmol']).assign_attrs({'units':'m^3/m^3'})
     344            # molecular densities
     345            self[sp+' density'] = (self[sp+' vmr'] * self['p'] / R / self['temp'] / 1e6 * N_A).assign_attrs({'units':'cm^-3.s^-1'}) # 1e6 converts m³ to cm^3
     346            densities[sp] = self[sp+' density']
     347   
     348        for r in reactions:
     349   
     350            # Photolysis
     351            if type(reactions[r]) == photolysis:
     352   
     353                # Cases with branching ratios
     354                if reactions[r].reactants[0] == 'co2':
     355                    if 'o1d' in reactions[r].products:
     356                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jco2_o1d'])
     357                    else:
     358                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jco2_o'])
     359                elif reactions[r].reactants[0] == 'o2':
     360                    if 'o1d' in reactions[r].products:
     361                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jo2_o1d'])
     362                    else:
     363                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jo2_o'])
     364                elif reactions[r].reactants[0] == 'o3':
     365                    if 'o1d' in reactions[r].products:
     366                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jo3_o1d'])
     367                    else:
     368                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jo3_o'])
     369                elif reactions[r].reactants[0] == 'ch2o':
     370                    if 'cho' in reactions[r].products:
     371                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jch2o_cho'])
     372                    else:
     373                        self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jch2o_co'])
     374                elif reactions[r].reactants[0] == 'h2o_vap':
     375                    self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['jh2o'])
     376                else:
     377                    # General case
     378                    self['rate ('+reactions[r].formula+')'] = reactions[r].rate(densities,j=self['j'+reactions[r].reactants[0]])
     379            else:
     380                self['k ('+reactions[r].formula+')'] = reactions[r].constant(self['temp'],densities[background])
     381                self['rate ('+reactions[r].formula+')'] = reactions[r].rate(self['temp'],densities)
     382   
     383                # 3-body reaction
     384                if type(reactions[r]) == termolecular_reaction:
     385                    self['k ('+reactions[r].formula+')'] = self['k ('+reactions[r].formula+')'].assign_attrs({'units':'cm^6.s^-1'})
     386   
     387                # 2-body reaction
     388                else:
     389                    self['k ('+reactions[r].formula+')'] = self['k ('+reactions[r].formula+')'].assign_attrs({'units':'cm^3.s^-1'})
     390                   
     391            self['rate ('+reactions[r].formula+')'] = self['rate ('+reactions[r].formula+')'].assign_attrs({'units':'cm^-3.s^-1'})
    274392
    275393    def to_chempath(self,t,dt,filename_suffix='_chempath',lon='avg',lat='avg',alt='avg'):
     
    296414        # Save pecies list in chempath format
    297415        with open(self.path+'/species'+filename_suffix+'.txt', 'w') as fp:
    298             for sp in self.species:
     416            for sp in self.network.species:
    299417                fp.write("%s\n" % sp)
    300418
    301419        # Save reactions list in chempath format
    302420        with open(self.path+'/reactions'+filename_suffix+'.txt', 'w') as fp:
    303             for r in self.reactions:
    304                 current_formula = self.reactions[r].formula
    305                 current_formula = current_formula.replace(' ','')
    306                 current_formula = current_formula.replace('->','=')
    307                 fp.write("%s\n" % current_formula)
     421            for r in self.network:
     422                fp.write("%s\n" % r.to_string(format='chempath'))
    308423
    309424        # Save rates, concentrations and times in chempath format
     
    339454    products : list
    340455        Produced molecules formulae (e.g. ["C", "D"])
    341     constant : fun
     456    constant : callable
    342457        Reaction rate constant, function of potentially temperature and densities
    343458
     
    346461    rate(T,densities)
    347462        Reaction rate for given temperature and densities
     463    from_string(line,format)
     464        Set up from an ASCII string
     465    to_string(format)
     466        Return an ASCII line readable by a photochemical model
    348467    """
    349    
    350468    def __init__(self,reactants,products,constant):
    351469        """
    352470        Parameters
    353471        ----------
    354         reactants : list
     472        reactants : list(string)
    355473            Reacting molecules formulae (e.g. ["A", "B"])
    356         products : list
     474        products : list(string)
    357475            Produced molecules formulae (e.g. ["C", "D"])
    358476        constant : fun
     
    383501        return self.constant(T,densities[background])*densities[self.reactants[0]]*densities[self.reactants[1]]
    384502
     503    @classmethod
     504    def from_string(cls,line,format='GPCM',high_pressure_term=False):
     505        """ Set up from an ASCII string
     506
     507        Format
     508        ------
     509        GPCM
     510            A               B (... to col. 50) B               C (... to col. 100) + cst string
     511        vulcan
     512            [ A + B -> C + D (... to col. 40) ] + cst string
     513
     514        Parameter
     515        ---------
     516        line : string
     517            ASCII string (usually formula and rate constant parameter)
     518        format : string (optional)
     519            Model format to write in (default: GPCM, options: GPCM, vulcan)
     520        high_pressure_term : bool (optional)
     521            Does the rate constant include a high-pressure term? (default: False)
     522        """
     523        if format == 'GPCM':
     524
     525            reactants          = line[:50].split()
     526            products           = line[50:100].split()
     527            cst_params         = line[101:]
     528
     529            if 'hv' in reactants:
     530                reactants.pop(reactants.index('hv'))
     531                if int(line[100]) == 0:
     532                    # photolysis calculated with cross sections
     533                    return cls(reactants,products)
     534            else:
     535                high_pressure_term = int(line[100]) == 2
     536
     537        elif format == 'vulcan':
     538
     539            reactants  = line[line.index('[')+1:line.index('->')].split()[::2]
     540            products   = line[line.index('->')+2:line.index(']')].split()[::2]
     541            cst_params = line[line.index(']')+1:]
     542
     543            if cst_params.split()[0][0].isalpha():
     544                # photolysis calculated with cross sections
     545                return cls(reactants,products,0.)
     546     
     547        if 'M' in reactants:
     548            reactants.pop(reactants.index('M'))
     549        if 'M' in products:
     550            products.pop(products.index('M'))
     551
     552        if high_pressure_term:
     553            return cls(reactants,products,reaction_constant_dens_dep.from_string(cst_params,format))
     554        else:
     555            return cls(reactants,products,reaction_constant.from_string(cst_params,format))
     556
     557    def to_string(self,format='GPCM'):
     558        """ Return an ASCII line readable by a photochemical model
     559
     560        Format
     561        ------
     562        GPCM
     563            A               B (... to col. 50) B               C (... to col. 100) + cst string
     564        vulcan
     565            [ A + B -> C + D (... to col. 40) ] + cst string
     566        chempath
     567            A+B=C+D
     568
     569        Parameter
     570        ---------
     571        format : string (optional)
     572            Model format to write in (default: GPCM, options: GPCM, vulcan, chempath)
     573
     574        Returns
     575        -------
     576        string
     577            ASCII line readable by a photochemical model
     578        """
     579
     580        if format == 'GPCM':
     581            line = ''
     582            # reactants (characters 1 to 50)
     583            for molecule in self.reactants:
     584                line += molecule.lower().ljust(16,' ')
     585            line = line.ljust(50,' ')
     586           
     587            # products (characters 51 to 100)
     588            for molecule in self.products:
     589                line += molecule.lower().ljust(16,' ')
     590            line = line.ljust(100,' ')
     591           
     592        elif format == 'vulcan':
     593            # formula
     594            line = '[ '
     595            for molecule in self.reactants:
     596                line = line + molecule[:-4].upper() + ' + ' if '_vap' in molecule else line + molecule.upper() + ' + '
     597            line = line[:-2] + '-> '
     598            for molecule in self.products:
     599                line = line + molecule[:-4].upper() + ' + ' if '_vap' in molecule else line + molecule.upper() + ' + '
     600            line = line[:-2]
     601            line = line.ljust(40,' ') + ' ]   '
     602
     603        elif format == 'chempath':
     604            line = r.formula
     605            line = line.replace(' ','')
     606            line = line.replace('->','=')
     607            return line
     608           
     609        # constant
     610        if type(self.constant ) in [reaction_constant,reaction_constant_dens_dep]:
     611            line += self.constant.to_string(format)
     612        else:
     613            print(self.formula,'has a custom reaction constant: add it manually')
     614        return line
     615           
     616
    385617class termolecular_reaction(reaction):
    386 
     618    """ Instantiates a three-body reaction
     619   
     620    Attributes
     621    ----------
     622    formula : str
     623        Reaction formula (e.g. "A + B -> C + D")
     624    reactants : list
     625        Reactanting molecules formulae (e.g. ["A", "B"])
     626    products : list
     627        Produced molecules formulae (e.g. ["C", "D"])
     628    constant : callable
     629        Reaction rate constant, function of potentially temperature and densities
     630
     631    Methods
     632    -------
     633    rate(T,densities)
     634        Reaction rate for given temperature and densities
     635    from_string(line,format)
     636        Set up from an ASCII string
     637    to_string(format)
     638        Return an ASCII line readable by a photochemical model
     639    """
    387640    def __init__(self,reactants,products,constant):
    388641
     
    392645        self.constant  = constant
    393646
     647    @classmethod
     648    def from_string(cls,line,format='GPCM',high_pressure_term=False):
     649        """ Set up from an ASCII string
     650
     651        Format
     652        ------
     653        GPCM
     654            A               B (... to col. 50) B               C (... to col. 100) + cst string
     655        vulcan
     656            [ A + B -> C + D (... to col. 40) ] + cst string
     657
     658        Parameter
     659        ---------
     660        line : string
     661            ASCII string (usually formula and rate constant parameter)
     662        format : string (optional)
     663            Model format to write in (default: GPCM, options: GPCM, vulcan)
     664        high_pressure_term : bool (optional)
     665            Does the rate constant include a high-pressure term? (default: False)
     666        """
     667        new_instance = super().from_string(line,format,high_pressure_term)
     668        if not high_pressure_term:
     669            # In case we have a 3-body reaction without
     670            # a high pressure term, enforce density dependence
     671            new_instance.constant.params['d'] = 1.
     672        return new_instance
     673
     674    def to_string(self,format='GPCM'):
     675        """ Return an ASCII line readable by a photochemical model
     676
     677        Format
     678        ------
     679        GPCM
     680            A         B         M (... to col. 50) B         C (... to col. 100) + cst string
     681        vulcan
     682            [ A + B + M -> C + D + M (... to col. 40) ] + cst string
     683        chempath
     684            A+B=C+D
     685
     686        Parameter
     687        ---------
     688        format : string (optional)
     689            Model format to write in (default: GPCM, options: GPCM, vulcan, chempath)
     690
     691        Returns
     692        -------
     693        string
     694            ASCII line readable by a photochemical model
     695        """
     696        if format == 'GPCM':
     697            line = ''
     698            # reactants (characters 1 to 50)
     699            for molecule in self.reactants:
     700                line += molecule.lower().ljust(16,' ')
     701            line += 'M'
     702            line = line.ljust(50,' ')
     703           
     704            # products (characters 51 to 100)
     705            for molecule in self.products:
     706                line += molecule.lower().ljust(16,' ')
     707            line = line.ljust(100,' ')
     708           
     709            # constant (characters 101 to end of line)
     710            line += self.constant.to_string(format)
     711            return line
     712           
     713        elif format == 'vulcan':
     714            # formula
     715            line = '[ '
     716            for molecule in self.reactants:
     717                line += molecule[:-4].upper() + ' + ' if '_vap' in molecule else molecule.upper() + ' + '
     718            line += 'M -> '
     719            for molecule in self.products:
     720                line += molecule[:-4].upper() + ' + ' if '_vap' in molecule else molecule.upper() + ' + '
     721            line += 'M'
     722            line = line.ljust(40,' ') + ' ]   '
     723           
     724            # constant
     725            line += self.constant.to_string(format)
     726            return line
     727
     728        elif format == 'chempath':
     729            line = r.formula
     730            line = line.replace(' ','')
     731            line = line.replace('->','=')
     732            return line
     733
    394734class photolysis(reaction):
    395735
    396     def __init__(self,reactants,products):
     736    def __init__(self,reactants,products,constant=None):
    397737
    398738        self.formula   = ''.join([r_+' + ' for r_ in reactants[:-1]])+reactants[-1]+' + hv -> '+''.join([r_+' + ' for r_ in products[:-1]])+products[-1]
    399739        self.products  = products
    400740        self.reactants = reactants
    401 
    402     def rate(self,j,densities):
     741        self.constant  = constant
     742
     743    def rate(self,densities,**kw):
    403744        """ Computes reaction rate
    404745
     
    416757        """
    417758
    418         return j*densities[self.reactants[0]]
     759        if 'j' in kw:
     760            return kw['j']*densities[self.reactants[0]]
     761        else:
     762            # if a photolysis is prescribed with an Arrhenius constant, it is a trick to give
     763            # it a constant rate. We can simply call the constant with an arbitrary temperature.
     764            return self.constant(1.,densities[background])*densities[self.reactants[0]]
     765
     766    def to_string(self,format='GPCM'):
     767        """ Return an ASCII line readable by a photochemical model
     768
     769        Format
     770        ------
     771        GPCM
     772            A         hv (... to col. 50) B         C (... to col. 100) + cst string
     773        vulcan
     774            [ A -> C + D (... to col. 40) ]             A    br (to add manually)
     775        chemapth
     776            A=C+D (to check)
     777
     778        Parameter
     779        ---------
     780        format : string (optional)
     781            Model format to write in (default: GPCM, options: GPCM, vulcan)
     782
     783        Returns
     784        -------
     785        string
     786            ASCII line readable by a photochemical model
     787        """
     788
     789        if format == 'GPCM':
     790            line = ''
     791            # reactants (characters 1 to 50)
     792            for molecule in self.reactants:
     793                line = line + molecule.lower().ljust(16,' ')
     794            line += 'hv'
     795            line = line.ljust(50,' ')
     796           
     797            # products (characters 51 to 100)
     798            for molecule in self.products:
     799                line += molecule.lower().ljust(16,' ')
     800            line = line.ljust(100,' ')
     801           
     802            # constant (characters 101 to end of line)
     803            if self.constant == None:
     804                line += '0'
     805                print(self.formula,'is a photolysis: you need to add the cross section files manually')
     806            else:
     807                line += self.constant.to_string(format)
     808            return line
     809           
     810        elif format == 'vulcan':
     811            # formula
     812            line = '[ '
     813            for molecule in self.reactants:
     814                line += molecule[:-4].upper() + ' + ' if '_vap' in molecule else molecule.upper() + ' + '
     815            line = line[:-2] + '->'
     816            for molecule in self.products:
     817                line += molecule[:-4].upper() + ' + ' if '_vap' in molecule else molecule.upper() + ' + '
     818            line = line[:-2]
     819            line = line.ljust(40,' ') + ' ]   '
     820            molecule = self.reactants[0]
     821            line += molecule[:-4].upper() + ' + ' if '_vap' in molecule else molecule.upper()
     822            print(self.formula,'is a photolysis: you need to add the branching ratio manually')
     823            return line
     824
     825        elif format == 'chempath':
     826            line = r.formula
     827            line = line.replace(' ','')
     828            line = line.replace('hv','')
     829            line = line.replace('->','=')
     830            return line
    419831
    420832class reaction_constant:
     
    460872        return self.params['a']*(T/self.params['T0'])**self.params['c']*np.exp(-self.params['b']/T)*density**self.params['d']
    461873
    462 class reaction_constant_type2(reaction_constant):
    463     """ Type 2 reaction rate constant
     874    @classmethod
     875    def from_string(cls,line,format='GPCM'):
     876        """ Creates an instance from an ASCII string in a variety of formats
     877
     878        Currently read formats: Generic PDM, vulcan
     879
     880        Parameters
     881        ----------
     882        line : string
     883            Rate constant parameters
     884        format : string (optional)
     885            Format in which parameters are writtenn (default: Generic PCM)
     886
     887        Returns
     888        -------
     889        reaction_constant
     890            The instance of reaction_constant created
     891
     892        """
     893        if format == 'GPCM':
     894            cst_param = line.split()
     895            return cls({'a':float(cst_param[0]),'b':float(cst_param[1]),
     896                        'c':float(cst_param[2]),'T0':float(cst_param[3]),
     897                        'd':float(cst_param[4])})
     898
     899        elif format == 'vulcan':
     900            cst_param = line.split()
     901            T0 = 300.
     902            return cls({'a':float(cst_param[0])*T0**float(cst_param[1]),'b':float(cst_param[1]),
     903                        'c':float(cst_param[2]),'T0':T0,'d':0.})
     904
     905    def to_string(self,format='GPCM'):
     906        """ Return an ASCII line readable by a photochemical model
     907
     908        Format
     909        ------
     910        GPCM
     911            1    a           b           c           T0          d
     912        vulcan
     913            A            B        C
     914
     915        Parameter
     916        ---------
     917        format : string (optional)
     918            Model format to write in (default: GPCM, options: GPCM, vulcan)
     919
     920        Returns
     921        -------
     922        string
     923            ASCII line readable by a photochemical model
     924        """
     925
     926        if format == 'GPCM':
     927            return '1    '+'{:1.2e}'.format(self.params['a']).ljust(12,' ')+str(self.params['T0']).ljust(12,' ') \
     928                          +str(self.params['c']).ljust(12,' ')+str(self.params['b']).ljust(12,' ')  \
     929                          +str(self.params['d'])
     930        elif format == 'vulcan':
     931           
     932            return '{:1.2e}'.format(self.params['a']/self.params['T0']**self.params['c']).ljust(12,' ')  \
     933                  +str(self.params['c']).ljust(12,' ')+str(self.params['b'])
     934
     935class reaction_constant_dens_dep(reaction_constant):
     936    """ Type 2 reaction rate constant (Arrhenius with high pressure term)
    464937   
    465938    Instantiates type 2 rate constant for a particular reaction
     
    495968        return self.params['g']*np.exp(-self.params['h']/T)+num*density**self.params['dup']/(1+num/den*density**self.params['ddown'])*self.params['fc']**(1/(1+np.log10(num/den*density)**2))
    496969
    497 # TODO: implement type 3 reaction constant
    498 
    499 def read_reactfile(path):
    500     """ Reads the reactfile formatted for simulations with the Generic PCM
    501    
    502     Parameters
    503     ----------
    504     path : str
    505         Path to the reactfile (to become reaction.def)
    506 
    507     Returns
    508     -------
    509     dict
    510         Keys are reactions formulae, items are reactions instances
    511     """
    512 
    513     reactions = {}
    514     with open(path+'/chemnetwork/reactfile') as reactfile:
    515         for line in reactfile:
    516             # Commented line
    517             if line[0] == '!':
    518                 # Hard-coded reaction
    519                 if 'hard' in line and 'coded' in line:
    520                     hard_coded_reaction = reaction(line[1:51].split(),line[51:101].split(),None)
    521                     print('reaction ',hard_coded_reaction.formula,'seems to be hard-coded. Add it manually if needed.')
    522                 continue
    523             else:
    524                 reactants = line[:50].split()
    525                 products  = line[50:100].split()
    526                
    527                 # Photolysis
    528                 if 'hv' in line:
    529                     reactants.pop(reactants.index('hv'))
    530                     new_reaction = photolysis(reactants,products)
    531                    
    532                 # Other reactions
    533                 else:
    534                     cst_params = [float(val) for val in line[101:].split()]
    535                    
    536                     # three-body reaction
    537                     if 'M' in line:
    538                        
    539                         # if third body is not the background gas
    540                         if line[line.index('M')+2] != ' ':
    541                             third_body = reactants[reactants.index('M')+1]
    542                         else:
    543                             third_body = 'background'
    544                         reactants.pop(reactants.index('M'))
    545                         try:
    546                             products.pop(reactants.index('M'))
    547                         except:
    548                             pass
    549                         if int(line[100]) == 1:
    550                             rate_constant = reaction_constant({param_key:cst_params[i] for i,param_key in enumerate(['a','b','c','T0','d'])})
    551                             # if the third body is not the background gas, we treat it as a two-body reaction
    552                             if third_body != 'background':
    553                                 products.append(third_body)
    554                                 rate_constant.params['d'] = 0
    555                         elif int(line[100]) == 2:
    556                             rate_constant = reaction_constant_type2({param_key:cst_params[i] for i,param_key in enumerate(['k0','n','a0','kinf','m','b0','T0','fc','g','h','dup','ddown'])})
    557                             if third_body != 'background':
    558                                 raise Exception('Dont know how to handle three body reaction with type 2 constant when third body is not the background gas.')
    559                         else:
    560                             raise Exception('rate constant parameterization type ',line[100],' not recognized.')
    561                         new_reaction = termolecular_reaction(reactants,products,rate_constant)
    562 
    563                     # two-body reaction
    564                     else:
    565                         rate_constant = reaction_constant({param_key:cst_params[i] for i,param_key in enumerate(['a','b','c','T0','d'])})
    566                         new_reaction = reaction(reactants,products,rate_constant)
    567                
    568                 reactions[new_reaction.formula] = new_reaction
    569 
    570     return reactions
    571                
    572 
    573 def density(P,T,VMR=1):
    574     """ Computes molecular density using the perfect gas law
    575 
    576     Parameters
    577     ----------
    578     P : float
    579         Pressure [Pa]
    580     T : float
    581         Temperature [K]
    582     VMR : float (optional)
    583         Volume mixing ratio [cm^3/cm^3]
    584 
    585     Returns
    586     -------
    587     float
    588         Molecular density [cm^-3]
    589     """
    590    
    591     m3_to_cm3 = 1e6
    592     return VMR * P / R / T / m3_to_cm3 * N_A
    593 
    594 def compute_rates(s,reactions='read'):
    595     """ Computes reaction rates for a simulation
    596 
    597     Parameters
    598     ----------
    599     s : GPCM_simu
    600         Simulation object
    601     reactions : dict or 'read' (optional)
    602         Dictionnary of reactions whose rate to compute as returned by read_reactfile
    603         If nothing passed, call read_reactfile to identify reactions
    604 
    605     Returns
    606     -------
    607     GPCM_simu
    608         Simulation object with reactions rates, rates constants, species vmr and densities as new fields
    609     """
    610 
    611     if reactions == 'read':
    612         reactions      = read_reactfile(s.path)
    613         s.tracers   = read_traceurs(s.path)
    614         s.species   = []
    615         s.reactions = {} # reactions dict will be merged at the end
    616 
    617     # Register new species
    618     for r in reactions:
    619         for sp in reactions[r].reactants:
    620             if not sp in s.tracers or not s.tracers[sp].is_chim:
    621                 raise Warning(sp, 'is not recorded as a chimical tracer')
    622             if not sp in s.species:
    623                 s.species.append(sp)
    624         for sp in reactions[r].products:
    625             if not sp in s.tracers or not s.tracers[sp].is_chim:
    626                 raise Warning(sp, 'is not recorded as a chimical tracer')
    627             if not sp in s.species:
    628                 s.species.append(sp)
    629        
    630     densities = {}
    631 
    632     # Background density
    633     s['total density']     = density(s['p'],s['temp']).assign_attrs({'units':'cm^-3.s^-1'})
    634 
    635     for sp in s.species:
    636         # volume mixing ratios
    637         s[sp+' vmr'] = s[sp] * s.tracers['co2'].M / s.tracers[sp].M
    638         s[sp+' vmr'] = s[sp+' vmr'].assign_attrs({'units':'m^3/m^3'})
    639         # molecular densities
    640         s[sp+' density'] = density(s['p'],s['temp'],VMR=s[sp+' vmr'])
    641         s[sp+' density'] = s[sp+' density'].assign_attrs({'units':'cm^-3'})
    642         densities[sp] = s[sp+' density']
    643 
    644     for r in reactions:
    645 
    646         # Photolysis
    647         if type(reactions[r]) == photolysis:
    648 
    649             # Cases with branching ratios
    650             if reactions[r].reactants[0] == 'co2':
    651                 if 'o1d' in reactions[r].products:
    652                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jco2_o1d'],densities)
    653                 else:
    654                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jco2_o'],densities)
    655             elif reactions[r].reactants[0] == 'o2':
    656                 if 'o1d' in reactions[r].products:
    657                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo2_o1d'],densities)
    658                 else:
    659                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo2_o'],densities)
    660             elif reactions[r].reactants[0] == 'o3':
    661                 if 'o1d' in reactions[r].products:
    662                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo3_o1d'],densities)
    663                 else:
    664                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jo3_o'],densities)
    665             elif reactions[r].reactants[0] == 'ch2o':
    666                 if 'cho' in reactions[r].products:
    667                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jch2o_cho'],densities)
    668                 else:
    669                     s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jch2o_co'],densities)
    670             elif reactions[r].reactants[0] == 'h2o_vap':
    671                 s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['jh2o'],densities)
    672             else:
    673                 # General case
    674                 s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['j'+reactions[r].reactants[0]],densities)
    675         else:
    676             s['k ('+reactions[r].formula+')'] = reactions[r].constant(s['temp'],densities[background])
    677             s['rate ('+reactions[r].formula+')'] = reactions[r].rate(s['temp'],densities)
    678 
    679             # Termolecular reaction
    680             if type(reactions[r]) == termolecular_reaction:
    681                 s['k ('+reactions[r].formula+')'] = s['k ('+reactions[r].formula+')'].assign_attrs({'units':'cm^6.s^-1'})
    682 
    683             # Bimolecular reaction
    684             else:
    685                 s['k ('+reactions[r].formula+')'] = s['k ('+reactions[r].formula+')'].assign_attrs({'units':'cm^3.s^-1'})
    686                
    687         s['rate ('+reactions[r].formula+')'] = s['rate ('+reactions[r].formula+')'].assign_attrs({'units':'cm^-3.s^-1'})
    688                
    689     s.reactions = s.reactions | reactions
    690    
    691     return s
    692 
    693 class trac:
    694     """ Tracer class
    695    
    696     A class to store useful informations about simulations tracers
     970    @classmethod
     971    def from_string(cls,line,format='GPCM'):
     972        """ Creates an instance from an ASCII string in a variety of formats
     973
     974        Currently read formats: Generic PDM, vulcan
     975
     976        Parameters
     977        ----------
     978        line : string
     979            Rate constant parameters
     980        format : string (optional)
     981            Format in which parameters are writtenn (default: Generic PCM)
     982
     983        Returns
     984        -------
     985        reaction_constant
     986            The instance of reaction_constant created
     987
     988        """
     989        if format == 'GPCM':
     990            cst_param = line.split()
     991            return cls({'k0':float(cst_param[0]),  'n':float(cst_param[1]),   'a0':float(cst_param[2]),
     992                        'kinf':float(cst_param[3]),'m':float(cst_param[4]),   'b0':float(cst_param[5]),
     993                        'T0':float(cst_param[6]),  'fc':float(cst_param[7]),  'g':float(cst_param[8]),
     994                        'h':float(cst_param[9]),   'dup':float(cst_param[10]),'ddown':float(cst_param[10])})
     995
     996        elif format == 'vulcan':
     997            cst_param = line.split()
     998            T0 = 300.
     999            return cls({'k0':float(cst_param[0])*T0**float(cst_param[1]),  'n':float(cst_param[1]),'a0':float(cst_param[2]),
     1000                        'kinf':float(cst_param[3])*T0**float(cst_param[4]),'m':float(cst_param[4]),'b0':float(cst_param[5]),
     1001                        'T0':T0,'fc':0.6,'g':0.,'h':0.,'dup':1,'ddown':1})
     1002
     1003    def to_string(self,format='GPCM'):
     1004        """ Return an ASCII line readable by a photochemical model
     1005
     1006        Format
     1007        ------
     1008        GPCM
     1009            1    k0          n           a0          kinf        m           b0          T0          fc          g           h           dup         ddown
     1010        vulcan
     1011            A_0         B_0          C_0      A_inf       B_int        C_inf
     1012
     1013        Parameter
     1014        ---------
     1015        format : string (optional)
     1016            Model format to write in (default: GPCM, options: GPCM, vulcan)
     1017
     1018        Returns
     1019        -------
     1020        string
     1021            ASCII line readable by a photochemical model
     1022        """
     1023        if format == 'GPCM':
     1024            return '2    '+'{:1.2e}'.format(self.params['k0']).ljust(12,' ') +str(self.params['T0']).ljust(12,' ')  +str(self.params['n']).ljust(12,' ')\
     1025                          +str(self.params['a0']).ljust(12,' ') +'{:1.2e}'.format(self.params['kinf']).ljust(12,' ')+str(self.params['m']).ljust(12,' ') \
     1026                          +str(self.params['b0']).ljust(12,' ') +str(self.params['g']).ljust(12,' ')  +str(self.params['h']).ljust(12,' ')   \
     1027                          +str(self.params['dup']).ljust(12,' ')+str(self.params['ddown']).ljust(12,' ')+str(self.params['fc'])
     1028        elif format == 'vulcan':
     1029            return '{:1.2e}'.format(self.params['k0']/self.params['T0']**self.params['n']).ljust(12,' ')+str(self.params['n']).ljust(12,' ')\
     1030                  +str(self.params['a0']).ljust(12,' ')+'{:1.2e}'.format(self.params['kinf']/self.params['T0']**self.params['m']).ljust(12,' ') \
     1031                  +str(self.params['m']).ljust(12,' ')+str(self.params['b0'])
     1032
     1033class network:
     1034    """ Reaction network object
    6971035   
    6981036    Attributes
    6991037    ----------
    700     name : string
    701         Tracer's name
    702     M : float
    703         Tracer's molar mass [g/mol]
    704     is_chim : bool
    705         Is it a photochemical tracer?
     1038    reactions : dict
     1039        Chemical reactions in the network
     1040    species : list(string)
     1041        Chemical species in the network
     1042
     1043    Methods
     1044    -------
     1045    append(to_append)
     1046        Computes the reaction rate for given temperature and density
     1047    update_species()
     1048        Update list of species from list of reactions
     1049    from_file(path,format)
     1050        Instantiates a network from a file
     1051    to_file(path,format)
     1052        Save the network into a file
     1053    get_subnetwork(criteria)
     1054        Generate a subnetwork based on a dictionnary of given criteria
    7061055    """
    707     def __init__(self,name,M,is_chim):
    708         self.name    = name
    709         self.M       = M
    710         self.is_chim = is_chim
    711 
    712 def read_traceurs(path):
    713     """ Read the traceurs of a simulation
    714 
    715     Parameters
    716     ----------
    717     path : string
    718         path to simulation
    719 
    720     Returns
    721     -------
    722     dict
    723         dictionnaries of all tracers
    724     """
    725     tracdict = {}
    726     with open(path+'/traceur.def') as tracfile:
     1056    def __init__(self,reactions={}):
     1057
     1058        self.reactions = reactions
     1059        self.species   = []
     1060        if reactions != {}:
     1061            self.update_species()
     1062
     1063    def __getitem__(self,formula):
     1064
     1065        return self.reactions[formula]
     1066
     1067    def __iter__(self):
     1068
     1069        self.current = list(self.reactions.keys())[0]
     1070        return self
     1071
     1072    def __next__(self):
     1073
     1074        if self.current == 'finished':
     1075            raise StopIteration
     1076        elif self.current == list(self.reactions.keys())[-1]:
     1077            current = self.current
     1078            self.current = 'finished'
     1079        else:
     1080            current = self.current
     1081            self.current = list(self.reactions.keys())[list(self.reactions.keys()).index(self.current)+1]
     1082           
     1083        return self.reactions[current]
     1084   
     1085    def append(self,to_append):
     1086        """ Append a reaction to the network
     1087
     1088        Updates list of species to account for new species
     1089
     1090        Parameter
     1091        ---------
     1092        to_append : reaction or network
     1093            Reaction or network of reactions to append
     1094        """
     1095        if type(to_append) == network:
     1096            for r in to_append:
     1097                self.append(r)
     1098        else:
     1099            self.reactions = self.reactions | {to_append.formula:to_append}
     1100           
     1101        self.update_species()
     1102
     1103    def update_species(self):
     1104        """ Update list of species from list of reactions
    7271105       
    728         for iline,line in enumerate(tracfile):
    729            
    730             # Empty line
    731             if len(line.split()) == 0:
    732                 continue
     1106        """
     1107        if self.reactions == {}:
     1108            raise Exception('Network empty')
     1109           
     1110        for r in self:
     1111            for sp in r.reactants:
     1112                if not sp in self.species:
     1113                    self.species.append(sp)
     1114            for sp in r.products:
     1115                if not sp in self.species:
     1116                    self.species.append(sp)
     1117
     1118    @classmethod
     1119    def from_file(cls,path,format='GPCM'):
     1120        """ Instantiates a network from a file
     1121
     1122        Currently read formats: Generic PCM, VULCAN
     1123       
     1124        Parameters
     1125        ----------
     1126        path : str
     1127            Path to the network file
     1128        format : string (optional)
     1129            Format of the network file to read. Default: GPCM
     1130   
     1131        Returns
     1132        -------
     1133        network
     1134            The network instance created
     1135        """
     1136        reactions = {}
     1137
     1138        if format == 'GPCM':
     1139            with open(path) as reactfile:
     1140                for line in reactfile:
     1141                    # Commented line
     1142                    if line[0] == '!':
     1143                        # Hard-coded reaction
     1144                        if 'hard' in line and 'coded' in line:
     1145                            hard_coded_reaction = reaction(line[1:51].split(),line[51:101].split(),None)
     1146                            print('reaction ',hard_coded_reaction.formula,'seems to be hard-coded. Add it manually if needed.')
     1147                        continue
     1148                    else:
     1149                        # Photolysis
     1150                        if 'hv' in line:
     1151                            new_reaction = photolysis.from_string(line,format)
     1152                        # Other reactions
     1153                        else:
     1154                            # three-body reaction
     1155                            if 'M' in line:
     1156                                if line[line.index('M')+2] != ' ':
     1157                                    # if third body is not the background gas, treat it as a simple reaction
     1158                                    new_reaction = reaction.from_string(line.replace('M',' '),format)
     1159                                else:
     1160                                    new_reaction = termolecular_reaction.from_string(line,format)
     1161                            # two-body reaction
     1162                            else:
     1163                                new_reaction = reaction.from_string(line,format)
     1164                        reactions[new_reaction.formula] = new_reaction
     1165
     1166        elif format == 'vulcan':
     1167           
     1168            with open(path) as reactfile:
     1169                re_tri     = False
     1170                re_tri_k0  = False
     1171                special_re = False
     1172                conden_re  = False
     1173                recomb_re  = False
     1174                photo_re   = False
     1175                ion_re     = False
     1176                for line in reactfile:
     1177                    if line.startswith("# 3-body"):
     1178                        re_tri = True
     1179                       
     1180                    if line.startswith("# 3-body reactions without high-pressure rates"):
     1181                        re_tri_k0 = True
     1182                       
     1183                    elif line.startswith("# special"):
     1184                        re_tri = False
     1185                        re_tri_k0 = False
     1186                        special_re = True # switch to reactions with special forms (hard coded) 
     1187                   
     1188                    elif line.startswith("# condensation"):
     1189                        re_tri = False
     1190                        re_tri_k0 = False
     1191                        special_re = False
     1192                        conden_re = True
     1193                   
     1194                    elif line.startswith("# radiative"):
     1195                        re_tri = False
     1196                        re_tri_k0 = False
     1197                        special_re = False
     1198                        conden_re = False
     1199                        recomb_re = True
     1200                       
     1201                    elif line.startswith("# photo"):
     1202                        re_tri = False
     1203                        re_tri_k0 = False
     1204                        special_re = False # turn off reading in the special form
     1205                        conden_re = False
     1206                        recomb_re = False
     1207                        photo_re = True
     1208                         
     1209                    elif line.startswith("# ionisation"):
     1210                        re_tri = False
     1211                        re_tri_k0 = False
     1212                        special_re = False # turn off reading in the special form
     1213                        conden_re = False
     1214                        recomb_re = False
     1215                        photo_re = False
     1216                        ion_re = True
     1217
     1218                    if line.startswith("#") or line.split() == []:
     1219                        continue
     1220                    else:
     1221                        line = line[line.index('['):]
     1222
     1223                    if re_tri:
     1224                        new_reaction = termolecular_reaction.from_string(line,format,False)
     1225                    elif re_tri_k0:
     1226                        new_reaction = termolecular_reaction.from_string(line,format,True)
     1227                    elif special_re:
     1228                        print('special reaction :',line[line.index('[')+1:line.index(']')])
     1229                    elif conden_re:
     1230                        print('condensation reaction :',line[line.index('[')+1:line.index(']')])
     1231                    elif recomb_re:
     1232                        print('recombination reaction :',line[line.index('[')+1:line.index(']')])
     1233                    elif photo_re:
     1234                        new_reaction = photolysis.from_string(line,format)
     1235                    elif ion_re:
     1236                        print('ionisation reaction :',line[line.index('[')+1:line.index(']')])
     1237                    else:
     1238                        new_reaction = reaction.from_string(line,format)
     1239
     1240                    reactions[new_reaction.formula] = new_reaction
     1241       
     1242        return cls(reactions)
     1243
     1244    def to_file(self,path,format='GPCM'):
     1245        """ Save the network into a file
     1246
     1247        Currently read formats: Generic PCM, VULCAN
     1248       
     1249        Parameters
     1250        ----------
     1251        path : str
     1252            Path to the network file to create
     1253        format : string (optional)
     1254            Format of the network file to read. Default: GPCM
     1255        """
     1256        if format == 'GPCM':
     1257            with open(path, 'w') as reactfile:
     1258                for i,r in enumerate(self):
     1259                    reactfile.write(f'# Reaction {str(i+1)}: {r.formula}\n')
     1260                    reactfile.write(r.to_string(format)+'\n')
     1261                   
     1262        elif format == 'vulcan':
     1263            with open(path, 'w') as reactfile:
    7331264               
    734             # First line
    735             elif iline == 0:
    736                 if not '#ModernTrac-v1' in line:
    737                     raise Exception('Can only read modern traceur.def')
    738                 continue
     1265                # header
     1266                reactfile.write('# VULCAN photochemical network\n')
     1267                reactfile.write('# Generated by the photochemical tools of the Generic PCM\n')
     1268                reactfile.write('#########################################################\n')
     1269                reactfile.write('# in the form of k = A T^B exp(-C/T)\n')
     1270                # 2-body reactions
     1271                reactfile.write('# Two-body Reactions\n')
     1272                reactfile.write('# id   Reactions                                    A           B           C\n')
     1273                reactfile.write('\n')
     1274                n = 1
     1275                for r in self.reactions:
     1276                    if type(self.reactions[r]) == reaction:
     1277                        reactfile.write(' '+str(n).ljust(7,' ')+self.reactions[r].to_string(format)+'\n')
     1278                        n += 1
     1279
     1280                # 3-body reactions with high-pressure term
     1281                reactfile.write('\n')
     1282                reactfile.write('# 3-body and Disscoiation Reactions\n')
     1283                reactfile.write('# id   # Reactions                                  A_0         B_0         C_0         A_inf       B_inf       C_inf\n')
     1284                reactfile.write('\n')
     1285                for r in self.reactions:
     1286                    if type(self.reactions[r]) == termolecular_reaction and type(self.reactions[r].constant) == reaction_constant_dens_dep:
     1287                        reactfile.write(' '+str(n).ljust(7,' ')+self.reactions[r].to_string(format)+'\n')
     1288                        n += 1
     1289
     1290                # 3-body reactions without high-pressure term
     1291                reactfile.write('\n')
     1292                reactfile.write('# 3-body reactions without high-pressure rates\n')
     1293                reactfile.write('# id   # Reactions                                  A_0         B_0         C_0\n')
     1294                reactfile.write('\n')
     1295                for r in self.reactions:
     1296                    if type(self.reactions[r]) == termolecular_reaction and type(self.reactions[r].constant) == reaction_constant:
     1297                        reactfile.write(' '+str(n).ljust(7,' ')+self.reactions[r].to_string(format)+'\n')
     1298                        n += 1
     1299
     1300                # photolysis
     1301                reactfile.write('\n')
     1302                reactfile.write('# reverse stops\n')
     1303                reactfile.write('# photo disscoiation (no reversals)                        # use sp to link br_index to RXXX\n')
     1304                reactfile.write('# id   # Reactions                                  sp     br_index #(starting from 1)\n')
     1305                reactfile.write('\n')
     1306                for r in self.reactions:
     1307                    if type(self.reactions[r]) == photolysis:
     1308                        reactfile.write(' '+str(n).ljust(7,' ')+self.reactions[r].to_string(format)+'\n')
     1309                        n += 1
     1310
     1311    def save_traceur_file(self,path):
     1312
     1313        with open(path, 'w') as tracfile:
     1314            tracfile.write('#ModernTrac-v1\n')
     1315            tracfile.write(str(len(self.species))+'\n')
     1316            for sp in self.species:
     1317                tracfile.write(sp.ljust(24,' ')+'mmol='.ljust(10,' ')+'is_chim=1\n')
     1318
     1319    def get_subnetwork(self,criteria):
     1320        """ Generate a subnetwork based on a dictionnary of given criteria
     1321
     1322        Parameter
     1323        ---------
     1324        criteria : dict
     1325            Selection criteria to include reactions in the subnetwork.
     1326            Criteria are: - 'species' : list of any of the species from the network
     1327                          - 'element' : list of elements to include
     1328                          - 'type'    : reaction, termolecular_reaction, photolysis
     1329
     1330        """
     1331        subnetwork = network()
     1332       
     1333        for r in self.reactions:
     1334           
     1335            keep = False
     1336           
     1337            if 'type' in criteria:
     1338                if type(self.reactions[r]) in criteria['type']:
     1339                    keep = True
     1340                   
     1341            if 'species' in criteria:
     1342                for sp in criteria['species']:
     1343                    if sp in self.reactions[r].reactants + self.reactions[r].products:
     1344                        keep = True
     1345                       
     1346            if 'elements' in criteria:
     1347                for elem in criteria['elements']:
     1348                    for sp in self.reactions[r].reactants + self.reactions[r].products:
     1349                        if elem in sp:
     1350                            keep = True
     1351                           
     1352            if keep:
     1353                subnetwork.append(self.reactions[r])
    7391354               
    740             # Second line (number of tracers)
    741             elif iline == 1:
    742                 ntrac = int(line)
    743                 continue
    744            
    745             # Commented line
    746             elif line[0] == '!':
    747                 continue
    748 
    749             # Regular entry
    750             else:
    751                 line    = line.split()
    752                 name    = line[0]
    753                 is_chim = False
    754                
    755                 for param in line[1:]:
    756                     if param[:4] == 'mmol':
    757                         M = float(param[5:])
    758                     elif param[:7] == 'is_chim':
    759                         is_chim = bool(float(param[8:]))
    760                        
    761                 tracdict[name] = trac(name,M,is_chim)
    762                
    763     if len(tracdict) != ntrac:
    764         raise Exception('Mismatch between announced an read number of tracers')
    765        
    766     return tracdict
     1355        return subnetwork
  • trunk/LMDZ.GENERIC/utilities/photochemistry/reaction_rate_lib.py

    r3431 r3528  
    11import numpy as np
    22
    3 def k_JPL_2015(T,dens):
     3def k_CO_OH_to_CO2_H_JPL_2015(T,dens):
    44    """ Computes rate for CO + OH -> CO2 + H from JPL 2015 """
    55    rate1 = 1.15e-13*T/300.
     
    1010    return rate1 + rate2 * 0.6**xpo2
    1111
    12 def k_Joshi_2006(T,dens):
    13     """ Computes rate for CO + OH -> CO2 + H from Joshi et al 2006 """
     12def k_CO_OH_to_CO2_H_Joshi_2006(T,dens):
     13    """ Computes rate for CO + OH -> CO2 + H from Joshi and Wang 2006 """
    1414    k1a0 = 1.34*2.5*dens                                  \
    1515         * 1/(1/(3.62e-26*T**(-2.739)*np.exp(-20./T))  \
Note: See TracChangeset for help on using the changeset viewer.