Changeset 2833 for trunk/LMDZ.MARS/libf
- Timestamp:
- Nov 28, 2022, 1:02:29 PM (2 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/LMDZ.MARS/libf/aeronomars/photochemistry.F90
r2615 r2833 380 380 381 381 hetero_dust = .false. 382 hetero_ice = . false.382 hetero_ice = .true. 383 383 384 384 call reactionrates(nlayer, ionchem, deutchem, & … … 706 706 real :: ak0, ak1, xpo, rate, rate1, rate2 707 707 real :: k1a0, k1b0, k1ainf, k1a, k1b, fc, fx, x, y, gam 708 real :: k0, kinf, kf, kint, kca 708 709 real, dimension(nlayer) :: deq 709 710 real, dimension(nlayer) :: a001, a002, a003, & … … 752 753 ! from sehested et al., j. geophys. res., 100, 1995. 753 754 754 a001(:) = 2.075*6.0e-34*(t(:)/300.)**(-2.4)*dens(:) 755 ! a001(:) = 2.075*6.0e-34*(t(:)/300.)**(-2.4)*dens(:) 756 757 ! jpl 2019 758 759 a001(:) = 2.075*6.1e-34*(t(:)/298.)**(-2.4)*dens(:) 755 760 756 761 nb_reaction_4 = nb_reaction_4 + 1 … … 1003 1008 do ilev = 1,lswitch-1 1004 1009 ! ak0 = 3.1*2.4*4.4e-32*(t(ilev)/300.)**(-1.3) ! FL li et al 2017 1005 ak0 = 2.4*4.4e-32*(t(ilev)/300.)**(-1.3) 1006 ak1 = 7.5e-11*(t(ilev)/300.)**(0.2) 1010 ! ak0 = 2.4*4.4e-32*(t(ilev)/300.)**(-1.3) 1011 ! ak1 = 7.5e-11*(t(ilev)/300.)**(0.2) 1012 1013 ! jpl 2019 1014 1015 ak0 = 2.4*5.3e-32*(t(ilev)/298.)**(-1.8) 1016 ak1 = 9.5e-11*(t(ilev)/298.)**(0.4) 1007 1017 1008 1018 rate = (ak0*dens(ilev))/(1. + ak0*dens(ilev)/ak1) … … 1093 1103 ! jpl 2006 1094 1104 1095 d001(:) = 5.1e-12*exp(210./t(:)) 1096 1105 ! d001(:) = 5.1e-12*exp(210./t(:)) 1106 1107 ! jpl 2019 1108 1109 ! For the sake of simplicity, it is assumed that the association yield (kf) 1110 ! gives the same product as the chemical activation yield (kca). 1111 ! Thus the only products are no + o2. There is no production of no3. 1112 1113 do ilev = 1,lswitch-1 1114 1115 ! association 1116 1117 k0 = 2.5*3.4e-31*(298./t(ilev))**(1.6) 1118 kinf = 2.3e-11*(298./t(ilev))**(0.2) 1119 1120 kf = (kinf*k0*dens(ilev)/(kinf + k0*dens(ilev))) & 1121 *0.6**(1. + (log10(k0*dens(ilev)/kinf))**2.)**(-1.0) 1122 1123 ! chemical activation 1124 1125 kint = 5.3e-12*exp(200./t(ilev)) 1126 1127 kca = kint*(1. - kf/kinf) 1128 1129 ! total : association + chemical activation 1130 1131 d001(ilev) = kf + kca 1132 1133 end do 1134 1097 1135 nb_reaction_4 = nb_reaction_4 + 1 1098 1136 v_4(:,nb_reaction_4) = d001(:) … … 1111 1149 ! jpl 2011 1112 1150 1113 d003(:) = 3.3e-12*exp(270./t(:)) 1151 ! d003(:) = 3.3e-12*exp(270./t(:)) 1152 1153 ! jpl 2019 1154 1155 d003(:) = 3.44e-12*exp(260./t(:)) 1114 1156 1115 1157 nb_reaction_4 = nb_reaction_4 + 1 … … 1129 1171 ! jpl 2011 1130 1172 1131 d005(:) = 1.5e-11*exp(-3600./t(:)) 1173 ! d005(:) = 1.5e-11*exp(-3600./t(:)) 1174 1175 ! jpl 2019 1176 1177 d005(:) = 3.3e-12*exp(-3150./t(:)) 1132 1178 1133 1179 nb_reaction_4 = nb_reaction_4 + 1 … … 1138 1184 ! jpl 2011 1139 1185 1140 d006(:) = 4.0e-10*exp(-340./t(:)) 1186 ! d006(:) = 4.0e-10*exp(-340./t(:)) 1187 1188 ! jpl 2019 1189 1190 d006(:) = 1.35e-10 1141 1191 1142 1192 nb_reaction_4 = nb_reaction_4 + 1 … … 1202 1252 !--- e001: oh + co -> co2 + h 1203 1253 1204 ! jpl 20031205 1206 ! e001(:) = 1.5e-13*(1 + 0.6*press(:)/1013.)1207 1208 ! mccabe et al., grl, 28, 3135, 20011209 1210 ! e001(:) = 1.57e-13 + 3.54e-33*dens(:)1211 1212 1254 ! jpl 2015 1255 ! 1256 ! do ilev = 1,lswitch-1 1257 ! 1258 ! branch 1 : oh + co -> h + co2 1259 ! 1260 ! rate1 = 1.5e-13*(t(ilev)/300.)**(0.0) 1261 ! 1262 ! branch 2 : oh + co + m -> hoco + m 1263 ! 1264 ! ak0 = 5.9e-33*(t(ilev)/300.)**(-1.0) 1265 ! ak1 = 1.1e-12*(t(ilev)/300.)**(1.3) 1266 ! rate2 = (ak0*dens(ilev))/(1. + ak0*dens(ilev)/ak1) 1267 ! xpo = 1./(1. + alog10((ak0*dens(ilev))/ak1)**2) 1268 ! 1269 ! e001(ilev) = rate1 + rate2*0.6**xpo 1270 ! end do 1271 1272 ! jpl 2019 1273 1274 ! For the sake of simplicity, it is assumed that the association yield (kf) 1275 ! gives the same product as the chemical activation yield (kca). 1276 ! Thus the only products are h + co2. There is no production of hoco. 1213 1277 1214 1278 do ilev = 1,lswitch-1 1215 1279 1216 ! branch 1 : oh + co -> h + co2 1217 1218 rate1 = 1.5e-13*(t(ilev)/300.)**(0.0) 1219 1220 ! branch 2 : oh + co + m -> hoco + m 1221 1222 ak0 = 5.9e-33*(t(ilev)/300.)**(-1.0) 1223 ak1 = 1.1e-12*(t(ilev)/300.)**(1.3) 1224 rate2 = (ak0*dens(ilev))/(1. + ak0*dens(ilev)/ak1) 1225 xpo = 1./(1. + alog10((ak0*dens(ilev))/ak1)**2) 1226 1227 e001(ilev) = rate1 + rate2*0.6**xpo 1280 ! association 1281 1282 k0 = 2.5*6.9e-33*(298./t(ilev))**(2.1) 1283 kinf = 1.1e-12*(298./t(ilev))**(-1.3) 1284 1285 kf = (kinf*k0*dens(ilev)/(kinf + k0*dens(ilev))) & 1286 *0.6**(1. + (log10(k0*dens(ilev)/kinf))**2.)**(-1.0) 1287 1288 ! chemical activation 1289 1290 kint = 1.85e-13*exp(-65./t(ilev)) 1291 1292 kca = kint*(1. - kf/kinf) 1293 1294 ! total : association + chemical activation 1295 1296 e001(ilev) = kf + kca 1297 1228 1298 end do 1229 1230 ! joshi et al., 20061231 1232 ! do ilev = 1,lswitch-11233 ! k1a0 = 1.34*2.5*dens(ilev) &1234 ! *1/(1/(3.62e-26*t(ilev)**(-2.739)*exp(-20./t(ilev))) &1235 ! + 1/(6.48e-33*t(ilev)**(0.14)*exp(-57./t(ilev)))) ! typo in paper corrected1236 ! k1b0 = 1.17e-19*t(ilev)**(2.053)*exp(139./t(ilev)) &1237 ! + 9.56e-12*t(ilev)**(-0.664)*exp(-167./t(ilev))1238 ! k1ainf = 1.52e-17*t(ilev)**(1.858)*exp(28.8/t(ilev)) &1239 ! + 4.78e-8*t(ilev)**(-1.851)*exp(-318./t(ilev))1240 ! x = k1a0/(k1ainf - k1b0)1241 ! y = k1b0/(k1ainf - k1b0)1242 ! fc = 0.628*exp(-1223./t(ilev)) + (1. - 0.628)*exp(-39./t(ilev)) &1243 ! + exp(-t(ilev)/255.)1244 ! fx = fc**(1./(1. + (alog(x))**2)) ! typo in paper corrected1245 ! k1a = k1a0*((1. + y)/(1. + x))*fx1246 ! k1b = k1b0*(1./(1.+x))*fx1247 ! e001(ilev) = k1a + k1b1248 ! end do1249 1299 1250 1300 nb_reaction_4 = nb_reaction_4 + 1
Note: See TracChangeset
for help on using the changeset viewer.