Changeset 1747
- Timestamp:
- Jul 24, 2017, 5:10:39 PM (7 years ago)
- Location:
- trunk
- Files:
-
- 1 deleted
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/LMDZ.GENERIC/DOC/main.aux
r1746 r1747 28 28 \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Physical/dynamical interface}}{5}} 29 29 \newlabel{fg:fidyn}{{2.1}{5}} 30 \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Dynamical and physical grids for a 6 $\times $ 7 horizontal resolution. In the dynamics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical variables are on the dynamical ``scalar'' grid. The physics uses the same ``scalar'' grid for all the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-1)$\times $IM points when counting from the north pole. N.B.: In the Fortran program, the following variables are used: {\tt iim=IM , iip1=IM+1, jjm=JM , jjp1=JM+1}.}}{5}}31 \newlabel{fg:grid}{{2.2}{5}}32 30 \@writefile{toc}{\contentsline {section}{\numberline {2.3}Grid boxes:}{5}} 33 31 \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Horizontal grids}{5}} 34 \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Vertical grids}{6}} 35 \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces hybrides}}{6}} 36 \newlabel{fg:hybrid}{{2.3}{6}} 37 \@writefile{toc}{\contentsline {section}{\numberline {2.4}Variables used in the model}{6}} 38 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Dynamical variables}{6}} 39 \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Vertical grid description of the {\tt llm (or nlayer)} atmospheric layers in the programming code ({\tt llm} is the variable used in the dynamical part, and {\tt nlayer} is used in the physical part). Variables {\tt ap, bp} and {\tt aps, bps} indicate the hybrid levels at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer is $Plev(l)=ap(l)+bp(l) \times Ps$ and pressure in the middle of the layer is defined by $Play(l)=aps(l)+bps(l) \times Ps$, (where $Ps$ is surface pressure). Sigma coordinates are merely a specific case of hybrid coordinates such that $aps=0$ and $bps=P/Ps$. Note that for the hybrid coordinates, $bps=0$ above $\sim 50$~km, leading to purely pressure levels. The user can choose whether to run the model using hybrid coordinates or not by setting variable {\tt hybrid} in run.def to True or False.}}{7}} 40 \newlabel{fg:sigma}{{2.4}{7}} 41 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Physical variables}{8}} 42 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Tracers}{8}} 32 \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Dynamical and physical grids for a 6 $\times $ 7 horizontal resolution. In the dynamics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical variables are on the dynamical ``scalar'' grid. The physics uses the same ``scalar'' grid for all the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-1)$\times $IM points when counting from the north pole. N.B.: In the Fortran program, the following variables are used: {\tt iim=IM , iip1=IM+1, jjm=JM , jjp1=JM+1}.}}{6}} 33 \newlabel{fg:grid}{{2.2}{6}} 34 \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Vertical grids}{7}} 35 \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces hybrides}}{7}} 36 \newlabel{fg:hybrid}{{2.3}{7}} 37 \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Vertical grid description of the {\tt llm (or nlayer)} atmospheric layers in the programming code ({\tt llm} is the variable used in the dynamical part, and {\tt nlayer} is used in the physical part). Variables {\tt ap, bp} and {\tt aps, bps} indicate the hybrid levels at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer is $Plev(l)=ap(l)+bp(l) \times Ps$ and pressure in the middle of the layer is defined by $Play(l)=aps(l)+bps(l) \times Ps$, (where $Ps$ is surface pressure). Sigma coordinates are merely a specific case of hybrid coordinates such that $aps=0$ and $bps=P/Ps$. Note that for the hybrid coordinates, $bps=0$ above $\sim 50$~km, leading to purely pressure levels. The user can choose whether to run the model using hybrid coordinates or not by setting variable {\tt hybrid} in run.def to True or False.}}{8}} 38 \newlabel{fg:sigma}{{2.4}{8}} 39 \@writefile{toc}{\contentsline {section}{\numberline {2.4}Variables used in the model}{9}} 40 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Dynamical variables}{9}} 41 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Physical variables}{9}} 42 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Tracers}{10}} 43 43 \citation{Holt:79} 44 44 \citation{LeVa:89} 45 45 \citation{Arak:77} 46 \@writefile{toc}{\contentsline {chapter}{\numberline {3}3D Dynamical Code}{ 9}}46 \@writefile{toc}{\contentsline {chapter}{\numberline {3}3D Dynamical Code}{11}} 47 47 \@writefile{lof}{\addvspace {10\p@ }} 48 48 \@writefile{lot}{\addvspace {10\p@ }} 49 \newlabel{sc:dynamic}{{3}{ 9}}50 \@writefile{toc}{\contentsline {section}{\numberline {3.1}Discretisation of the dynamical equations}{ 9}}51 \@writefile{ lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Grille obtenue avec 96 points en longitude et 73 en latitude et un zoom d'un facteur 3 centr\'e sur la m\'edit\'erann\'ee (grille utilis\'ee au laboratoire par Ali Harzallah)}}{9}}52 \ newlabel{fg:zoom}{{3.1}{9}}53 \ @writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Disposition des variables dans la grille du LMD}}{10}}54 \ newlabel{fg:grille}{{3.2}{10}}55 \ @writefile{toc}{\contentsline {paragraph}{la pression extensive:}{10}}56 \@writefile{toc}{\contentsline {paragraph}{les trois composantes du flux de masse:}{1 0}}57 \@writefile{toc}{\contentsline {paragraph}{le facteur de Coriolis multipli\'e par l'aire de la maille:}{1 0}}58 \@writefile{toc}{\contentsline {paragraph}{la vorticit\'e potentielle absolue:}{1 0}}59 \@writefile{toc}{\contentsline {paragraph}{l'\'energie cin\'etique}{1 0}}60 \@writefile{toc}{\contentsline {paragraph}{\'equations du mouvement:}{1 0}}61 \newlabel{eq:u1}{{3.5}{1 0}}62 \newlabel{eq:v1}{{3.6}{1 0}}63 \@writefile{toc}{\contentsline {paragraph}{\'equation thermodynamique:}{1 0}}64 \newlabel{eq:thermo}{{3.7}{1 0}}65 \@writefile{toc}{\contentsline {paragraph}{\'equation hydrostatique:}{1 1}}66 \@writefile{toc}{\contentsline {paragraph}{\'equations de continuit\'e:}{1 1}}67 \newlabel{eq:cont1}{{3.9}{1 1}}68 \newlabel{eq:cont2}{{3.10}{1 1}}69 \@writefile{toc}{\contentsline {section}{\numberline {3.2}High latitude filters}{1 1}}70 \@writefile{toc}{\contentsline {section}{\numberline {3.3}Dissipation}{1 1}}71 \@writefile{toc}{\contentsline {section}{\numberline {3.4}Sponge layer}{1 2}}49 \newlabel{sc:dynamic}{{3}{11}} 50 \@writefile{toc}{\contentsline {section}{\numberline {3.1}Discretisation of the dynamical equations}{11}} 51 \@writefile{toc}{\contentsline {paragraph}{la pression extensive:}{11}} 52 \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Grille obtenue avec 96 points en longitude et 73 en latitude et un zoom d'un facteur 3 centr\'e sur la m\'edit\'erann\'ee (grille utilis\'ee au laboratoire par Ali Harzallah)}}{12}} 53 \newlabel{fg:zoom}{{3.1}{12}} 54 \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Disposition des variables dans la grille du LMD}}{13}} 55 \newlabel{fg:grille}{{3.2}{13}} 56 \@writefile{toc}{\contentsline {paragraph}{les trois composantes du flux de masse:}{13}} 57 \@writefile{toc}{\contentsline {paragraph}{le facteur de Coriolis multipli\'e par l'aire de la maille:}{13}} 58 \@writefile{toc}{\contentsline {paragraph}{la vorticit\'e potentielle absolue:}{13}} 59 \@writefile{toc}{\contentsline {paragraph}{l'\'energie cin\'etique}{13}} 60 \@writefile{toc}{\contentsline {paragraph}{\'equations du mouvement:}{13}} 61 \newlabel{eq:u1}{{3.5}{13}} 62 \newlabel{eq:v1}{{3.6}{13}} 63 \@writefile{toc}{\contentsline {paragraph}{\'equation thermodynamique:}{14}} 64 \newlabel{eq:thermo}{{3.7}{14}} 65 \@writefile{toc}{\contentsline {paragraph}{\'equation hydrostatique:}{14}} 66 \@writefile{toc}{\contentsline {paragraph}{\'equations de continuit\'e:}{14}} 67 \newlabel{eq:cont1}{{3.9}{14}} 68 \newlabel{eq:cont2}{{3.10}{14}} 69 \@writefile{toc}{\contentsline {section}{\numberline {3.2}High latitude filters}{14}} 70 \@writefile{toc}{\contentsline {section}{\numberline {3.3}Dissipation}{14}} 71 \@writefile{toc}{\contentsline {section}{\numberline {3.4}Sponge layer}{15}} 72 72 \citation{Forg:99} 73 73 \citation{Forg:99} 74 74 \citation{Lewi:99} 75 \@writefile{toc}{\contentsline {chapter}{\numberline {4}Physical parameterizations of the generic model: some references}{1 3}}75 \@writefile{toc}{\contentsline {chapter}{\numberline {4}Physical parameterizations of the generic model: some references}{16}} 76 76 \@writefile{lof}{\addvspace {10\p@ }} 77 77 \@writefile{lot}{\addvspace {10\p@ }} 78 \newlabel{sc:phystd}{{4}{1 3}}79 \@writefile{toc}{\contentsline {section}{\numberline {4.1}General}{1 3}}80 \@writefile{toc}{\contentsline {paragraph}{General references:}{1 3}}81 \@writefile{toc}{\contentsline {section}{\numberline {4.2}Radiative transfer}{1 3}}82 \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}\bf Absorption/emission and diffusion by dust:}{1 3}}78 \newlabel{sc:phystd}{{4}{16}} 79 \@writefile{toc}{\contentsline {section}{\numberline {4.1}General}{16}} 80 \@writefile{toc}{\contentsline {paragraph}{General references:}{16}} 81 \@writefile{toc}{\contentsline {section}{\numberline {4.2}Radiative transfer}{16}} 82 \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}\bf Absorption/emission and diffusion by dust:}{16}} 83 83 \citation{Toon:89} 84 84 \citation{Forg:98grl} … … 90 90 \citation{Hour:99} 91 91 \citation{Mont:04jgr} 92 \@writefile{toc}{\contentsline {section}{\numberline {4.3}Subgrid atmospheric dynamical processes}{1 4}}93 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Turbulent diffusion in the upper layer}{1 4}}94 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Convection}{1 4}}95 \@writefile{toc}{\contentsline {section}{\numberline {4.4}Surface thermal conduction}{1 4}}96 \@writefile{toc}{\contentsline {section}{\numberline {4.5}CO$_2$ Condensation}{1 4}}97 \@writefile{toc}{\contentsline {section}{\numberline {4.6}Tracer transport and sources}{1 4}}98 \@writefile{toc}{\contentsline {chapter}{\numberline {5}Running the model: a practice simulation}{1 6}}92 \@writefile{toc}{\contentsline {section}{\numberline {4.3}Subgrid atmospheric dynamical processes}{17}} 93 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Turbulent diffusion in the upper layer}{17}} 94 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Convection}{17}} 95 \@writefile{toc}{\contentsline {section}{\numberline {4.4}Surface thermal conduction}{17}} 96 \@writefile{toc}{\contentsline {section}{\numberline {4.5}CO$_2$ Condensation}{17}} 97 \@writefile{toc}{\contentsline {section}{\numberline {4.6}Tracer transport and sources}{17}} 98 \@writefile{toc}{\contentsline {chapter}{\numberline {5}Running the model: a practice simulation}{19}} 99 99 \@writefile{lof}{\addvspace {10\p@ }} 100 100 \@writefile{lot}{\addvspace {10\p@ }} 101 \newlabel{loc:contact1}{{5}{16}} 102 \@writefile{toc}{\contentsline {section}{\numberline {5.1}Installing the model from SVN}{16}} 103 \@writefile{toc}{\contentsline {section}{\numberline {5.2}Installing the model without SVN}{18}} 104 \@writefile{toc}{\contentsline {section}{\numberline {5.3}Compiling the LMDZ.GENERIC model (sequential only)}{18}} 105 \newlabel{sc:run1}{{5.3}{18}} 106 \@writefile{toc}{\contentsline {section}{\numberline {5.4}Compiling the LMDZ.COMMON model (sequential or parallel)}{19}} 107 \newlabel{sc:run1_common}{{5.4}{19}} 108 \@writefile{toc}{\contentsline {section}{\numberline {5.5}Input files (initial states and def files)}{20}} 109 \@writefile{toc}{\contentsline {section}{\numberline {5.6}Running the model}{20}} 110 \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Input/output data}}{21}} 111 \newlabel{fig:inout}{{5.1}{21}} 112 \@writefile{toc}{\contentsline {section}{\numberline {5.7}Visualizing the output files}{23}} 113 \@writefile{toc}{\contentsline {subsection}{\numberline {5.7.1}Using GrAds to visualize outputs}{23}} 114 \newlabel{loc:visu}{{5.7.1}{24}} 115 \@writefile{toc}{\contentsline {section}{\numberline {5.8}Resuming a simulation}{24}} 116 \@writefile{toc}{\contentsline {section}{\numberline {5.9}Chain simulations}{24}} 117 \@writefile{toc}{\contentsline {section}{\numberline {5.10}Creating and modifying initial states}{25}} 118 \newlabel{sc:newstart}{{5.10}{25}} 119 \@writefile{toc}{\contentsline {subsection}{\numberline {5.10.1}Using program ``newstart''}{25}} 120 \@writefile{toc}{\contentsline {subsection}{\numberline {5.10.2}Creating the initial start\_archive.nc file }{26}} 121 \@writefile{toc}{\contentsline {subsection}{\numberline {5.10.3}Changing the horizontal or vertical grid resolution}{27}} 101 \newlabel{loc:contact1}{{5}{19}} 102 \@writefile{toc}{\contentsline {section}{\numberline {5.1}Installing the model from SVN}{19}} 103 \@writefile{toc}{\contentsline {section}{\numberline {5.2}Installing the model without SVN}{21}} 104 \@writefile{toc}{\contentsline {section}{\numberline {5.3}Compiling the model}{21}} 105 \newlabel{sc:run1}{{5.3}{21}} 106 \@writefile{toc}{\contentsline {section}{\numberline {5.4}Input files (initial states and def files)}{22}} 107 \@writefile{toc}{\contentsline {section}{\numberline {5.5}Running the model}{22}} 108 \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Input/output data}}{23}} 109 \newlabel{fig:inout}{{5.1}{23}} 110 \@writefile{toc}{\contentsline {section}{\numberline {5.6}Visualizing the output files}{24}} 111 \@writefile{toc}{\contentsline {subsection}{\numberline {5.6.1}Using GrAds to visualize outputs}{24}} 112 \newlabel{loc:visu}{{5.6.1}{24}} 113 \@writefile{toc}{\contentsline {section}{\numberline {5.7}Resuming a simulation}{25}} 114 \@writefile{toc}{\contentsline {section}{\numberline {5.8}Chain simulations}{25}} 115 \@writefile{toc}{\contentsline {section}{\numberline {5.9}Creating and modifying initial states}{25}} 116 \newlabel{sc:newstart}{{5.9}{25}} 117 \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.1}Using program ``newstart''}{25}} 118 \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.2}Creating the initial start\_archive.nc file }{27}} 119 \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.3}Changing the horizontal or vertical grid resolution}{27}} 122 120 \@writefile{toc}{\contentsline {chapter}{\numberline {6}Program organization and compilation script}{28}} 123 121 \@writefile{lof}{\addvspace {10\p@ }} … … 126 124 \newlabel{loc:contenu}{{6}{28}} 127 125 \@writefile{toc}{\contentsline {section}{\numberline {6.1}Organization of the model source files}{28}} 128 \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Organigram of subroutine function physiq.F90}}{29}}129 \newlabel{fg:organi_phys}{{6.1}{29}}130 126 \@writefile{toc}{\contentsline {section}{\numberline {6.2}Programming}{29}} 131 127 \@writefile{toc}{\contentsline {section}{\numberline {6.3}Model organization}{29}} 132 128 \@writefile{toc}{\contentsline {section}{\numberline {6.4}Compiling the model}{29}} 133 129 \newlabel{sc:compil1}{{6.4}{29}} 134 \@writefile{toc}{\contentsline {paragraph}{Help manual for the makegcm script}{30}} 135 \@writefile{toc}{\contentsline {chapter}{\numberline {7}Input/Output}{32}} 130 \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Organigram of subroutine function physiq.F90}}{30}} 131 \newlabel{fg:organi_phys}{{6.1}{30}} 132 \@writefile{toc}{\contentsline {paragraph}{Help manual for the makegcm script}{31}} 133 \@writefile{toc}{\contentsline {chapter}{\numberline {7}Input/Output}{33}} 136 134 \@writefile{lof}{\addvspace {10\p@ }} 137 135 \@writefile{lot}{\addvspace {10\p@ }} 138 \newlabel{sc:io}{{7}{3 2}}139 \@writefile{toc}{\contentsline {section}{\numberline {7.1}NetCDF format}{3 2}}140 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.1}NetCDF file editor: ncdump}{3 2}}141 \@writefile{toc}{\contentsline {paragraph}{Main commands for ncdump}{3 2}}142 \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Example of temperature data (in this case for present-day Mars) at a given time using GrADS visualization}}{3 3}}143 \newlabel{fg:grads}{{7.1}{3 3}}144 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.2}Graphic visualization of the NetCDF files using GrAds}{3 3}}145 \@writefile{toc}{\contentsline {section}{\numberline {7.2}Input and parameter files}{3 3}}146 \newlabel{loc:entrees}{{7.2}{3 3}}147 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.1}run.def}{3 3}}148 \newlabel{vb:run.def}{{7.2.1}{3 3}}149 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.2}callphys.def}{3 6}}150 \newlabel{sc:callphys.def}{{7.2.2}{3 6}}151 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.3}traceur.def}{3 8}}152 \newlabel{sc:traceur.def}{{7.2.3}{3 8}}153 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.4}z2sig.def}{3 8}}154 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.5}Initialization files: start and startfi}{ 39}}155 \@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Organization of NetCDF files }}{ 39}}156 \newlabel{fg:netcdf}{{7.2}{ 39}}157 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical headers}{4 1}}158 \@writefile{toc}{\contentsline {paragraph}{Surface conditions}{4 1}}159 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical state variables}{4 1}}160 \@writefile{toc}{\contentsline {paragraph}{The ``control'' array}{4 2}}161 \@writefile{toc}{\contentsline {section}{\numberline {7.3}Output files}{4 5}}162 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.1}NetCDF restart files - restart.nc and restartfi.nc}{4 5}}163 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.2} NetCDF file - diagfi.nc}{4 5}}164 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.3}Stats files}{4 6}}165 \@writefile{toc}{\contentsline {chapter}{\numberline {8}Water Cycle Simulation}{5 0}}136 \newlabel{sc:io}{{7}{33}} 137 \@writefile{toc}{\contentsline {section}{\numberline {7.1}NetCDF format}{33}} 138 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.1}NetCDF file editor: ncdump}{33}} 139 \@writefile{toc}{\contentsline {paragraph}{Main commands for ncdump}{33}} 140 \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Example of temperature data (in this case for present-day Mars) at a given time using GrADS visualization}}{34}} 141 \newlabel{fg:grads}{{7.1}{34}} 142 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.2}Graphic visualization of the NetCDF files using GrAds}{34}} 143 \@writefile{toc}{\contentsline {section}{\numberline {7.2}Input and parameter files}{34}} 144 \newlabel{loc:entrees}{{7.2}{34}} 145 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.1}run.def}{35}} 146 \newlabel{vb:run.def}{{7.2.1}{35}} 147 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.2}callphys.def}{37}} 148 \newlabel{sc:callphys.def}{{7.2.2}{37}} 149 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.3}traceur.def}{39}} 150 \newlabel{sc:traceur.def}{{7.2.3}{39}} 151 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.4}z2sig.def}{39}} 152 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.5}Initialization files: start and startfi}{40}} 153 \@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Organization of NetCDF files }}{41}} 154 \newlabel{fg:netcdf}{{7.2}{41}} 155 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical headers}{43}} 156 \@writefile{toc}{\contentsline {paragraph}{Surface conditions}{43}} 157 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical state variables}{43}} 158 \@writefile{toc}{\contentsline {paragraph}{The ``control'' array}{44}} 159 \@writefile{toc}{\contentsline {section}{\numberline {7.3}Output files}{46}} 160 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.1}NetCDF restart files - restart.nc and restartfi.nc}{46}} 161 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.2} NetCDF file - diagfi.nc}{46}} 162 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.3}Stats files}{47}} 163 \@writefile{toc}{\contentsline {chapter}{\numberline {8}Water Cycle Simulation}{51}} 166 164 \@writefile{lof}{\addvspace {10\p@ }} 167 165 \@writefile{lot}{\addvspace {10\p@ }} 168 \newlabel{sc:water}{{8}{5 0}}169 \@writefile{toc}{\contentsline {chapter}{\numberline {9}1D version of the generic model}{5 3}}166 \newlabel{sc:water}{{8}{51}} 167 \@writefile{toc}{\contentsline {chapter}{\numberline {9}1D version of the generic model}{54}} 170 168 \@writefile{lof}{\addvspace {10\p@ }} 171 169 \@writefile{lot}{\addvspace {10\p@ }} 172 \newlabel{sc:rcm1d}{{9}{5 3}}173 \@writefile{toc}{\contentsline {section}{\numberline {9.1}Compilation}{5 3}}174 \@writefile{toc}{\contentsline {section}{\numberline {9.2}1-D runs and input files}{5 3}}175 \@writefile{toc}{\contentsline {section}{\numberline {9.3}Output data}{5 5}}176 \@writefile{toc}{\contentsline {chapter}{\numberline {10}Zoomed simulations}{5 6}}170 \newlabel{sc:rcm1d}{{9}{54}} 171 \@writefile{toc}{\contentsline {section}{\numberline {9.1}Compilation}{54}} 172 \@writefile{toc}{\contentsline {section}{\numberline {9.2}1-D runs and input files}{54}} 173 \@writefile{toc}{\contentsline {section}{\numberline {9.3}Output data}{56}} 174 \@writefile{toc}{\contentsline {chapter}{\numberline {10}Zoomed simulations}{57}} 177 175 \@writefile{lof}{\addvspace {10\p@ }} 178 176 \@writefile{lot}{\addvspace {10\p@ }} 179 \newlabel{sc:zoom}{{10}{5 6}}180 \@writefile{toc}{\contentsline {section}{\numberline {10.1}To define the zoomed area}{5 6}}181 \@writefile{toc}{\contentsline {section}{\numberline {10.2}Making a zoomed initial state}{5 6}}182 \@writefile{toc}{\contentsline {section}{\numberline {10.3}Running a zoomed simulation and stability issue}{5 7}}183 \@writefile{toc}{\contentsline {chapter}{\numberline {11}Changing the radiative transfer properties}{5 8}}177 \newlabel{sc:zoom}{{10}{57}} 178 \@writefile{toc}{\contentsline {section}{\numberline {10.1}To define the zoomed area}{57}} 179 \@writefile{toc}{\contentsline {section}{\numberline {10.2}Making a zoomed initial state}{57}} 180 \@writefile{toc}{\contentsline {section}{\numberline {10.3}Running a zoomed simulation and stability issue}{58}} 181 \@writefile{toc}{\contentsline {chapter}{\numberline {11}Changing the radiative transfer properties}{59}} 184 182 \@writefile{lof}{\addvspace {10\p@ }} 185 183 \@writefile{lot}{\addvspace {10\p@ }} 186 \newlabel{sc:kspectrum}{{11}{5 8}}187 \@writefile{toc}{\contentsline {section}{\numberline {11.1}Producing the high-resolution data}{5 8}}188 \@writefile{toc}{\contentsline {section}{\numberline {11.2}Performing the correlated-k conversion}{ 59}}184 \newlabel{sc:kspectrum}{{11}{59}} 185 \@writefile{toc}{\contentsline {section}{\numberline {11.1}Producing the high-resolution data}{59}} 186 \@writefile{toc}{\contentsline {section}{\numberline {11.2}Performing the correlated-k conversion}{60}} 189 187 \bibdata{newfred.bib} 190 \@writefile{toc}{\contentsline {section}{\numberline {11.3}Implementing the absorption data in the GCM}{6 0}}188 \@writefile{toc}{\contentsline {section}{\numberline {11.3}Implementing the absorption data in the GCM}{61}} 191 189 \bibstyle{plain} -
trunk/LMDZ.MARS/libf/dynphy_lonlat/phymars/callphysiq_mod.F90
r1746 r1747 77 77 zplev_omp, & ! pplev 78 78 zplay_omp, & ! pplay 79 80 79 zphi_omp, & ! pphi 81 82 83 80 zufi_omp, & ! pu 84 81 zvfi_omp, & ! pv -
trunk/MESOSCALE/LMD_MM_MARS/SIMU/RUN/vert_level_python/levspe.py
r1746 r1747 14 14 #psurf=92.e5 # Venus 15 15 psurf=1.212862e6 16 17 hache = 10.18 psurf = 610.19 20 21 16 print hache, psurf 22 17 #read paramlevspe 23 24 25 26 27 18 param=np.loadtxt('paramlevspe') 28 19 nlev=param[0] … … 61 52 #print ptop 62 53 etas=(pressions-ptop)/(psurf-ptop) 63 etas[ int(nlev)-1]=0.54 etas[nlev-1]=0. 64 55 #print etas 65 56 press=etas*(psurf-ptop)+ptop … … 77 68 np.savetxt('levels',etas) 78 69 79 plt.figure(figsize=(1 2, 6))70 plt.figure(figsize=(15, 15)) 80 71 plt.subplot(221) 81 plt.plot(x, etas , 'b.')72 plt.plot(x, etas) 82 73 plt.xlabel('levels') 83 74 plt.ylabel('etas') … … 85 76 #plt.title('a) NINO3 Sea Surface Temperature (seasonal)') 86 77 #plt.hold(False) 87 axes = plt.gca()88 axes.set_ylim([0,1])89 78 90 79 plt.subplot(222) 91 plt.plot(x, pseudo , 'b.')80 plt.plot(x, pseudo) 92 81 plt.xlabel('levels') 93 82 plt.grid() 94 83 plt.ylabel('pseudo-altitude (km)') 95 plt.semilogy()96 axes = plt.gca()97 axes.set_ylim([0,60])98 99 84 100 85 plt3 = plt.subplot(223) 101 plt.semilogy(x, press , 'b.')86 plt.semilogy(x, press) 102 87 plt.xlabel('levels') 103 88 plt.grid() 104 plt.ylabel('press ure(Pa)')89 plt.ylabel('pression (Pa)') 105 90 106 91 plt4 = plt.subplot(224) 107 plt.plot(x, res , 'b.')92 plt.plot(x, res) 108 93 plt.xlabel('levels') 109 94 plt.grid() -
trunk/MESOSCALE/LMD_MM_MARS/SIMU/RUN/vert_level_python/paramlevspe
r1746 r1747 3 3 #epsilon augmentation totale en pourcentage de l'ecart max (modifie inflexion). epsilon = 0 : point d'inflexion parfaitement plat. epsilon = 100 : pas de point d'inflexion 4 4 #elong_cos plus petit rapproche l'inflexion du sol ;; 2/3 parfait pour un nlev divisible par 3 5 616 60.7 1008 1.75 5 201 6 280. 7 0 8 0.000000044 -
trunk/MESOSCALE/LMD_MM_MARS/SIMU/namelist.input_full
r1746 r1747 88 88 h_sca_adv_order = 5, !! (*d) Horizontal scalar advection order 89 89 v_sca_adv_order = 3, !! (*d) Vertical scalar advection order 90 khdif = 10., !! ** direct diffusion for tests (km_opt=1). horizontal diffusion constant (m^2/s)91 kvdif = 10., !! ** direct diffusion for tests (km_opt=1). vertical diffusion constant (m^2/s)92 90 / 93 91 -
trunk/UTIL/SPECTRA/makefile
r1746 r1747 1 netcdfpath=/ home/aymeric/Science/NETCDF/netcdf64-4.0.1_gfortran2 spherepackpath= ./spherepack3.23 FC= gfortran1 netcdfpath=/planeto/milmd/library/netcdf/netcdf-4.0.1_levan_pgf90 2 spherepackpath=/planeto/milmd/library/spherepack/spherepack3.2_levan_pgf90 3 FC=pgf90 4 4 5 5 6 6 FFLAGS=-I${netcdfpath}/include -I${spherepackpath}/lib 7 #LDFLAGS=-L${netcdfpath}/lib -lnetcdf -L${spherepackpath}/lib -lspherepack 8 LDFLAGS=-L${netcdfpath}/lib -lnetcdf -lnetcdff -L${spherepackpath}/lib -lspherepack 7 LDFLAGS=-L${netcdfpath}/lib -lnetcdf -L${spherepackpath}/lib -lspherepack 9 8 10 9 SRCS= $(wildcard *.f90)
Note: See TracChangeset
for help on using the changeset viewer.