[57] | 1 | SUBROUTINE vdifc(ngrid,nlay,nq,co2ice,ppopsk, |
---|
| 2 | $ ptimestep,pcapcal,lecrit, |
---|
| 3 | $ pplay,pplev,pzlay,pzlev,pz0, |
---|
| 4 | $ pu,pv,ph,pq,ptsrf,pemis,pqsurf, |
---|
| 5 | $ pdufi,pdvfi,pdhfi,pdqfi,pfluxsrf, |
---|
| 6 | $ pdudif,pdvdif,pdhdif,pdtsrf,pq2, |
---|
| 7 | $ pdqdif,pdqsdif) |
---|
| 8 | IMPLICIT NONE |
---|
| 9 | |
---|
| 10 | c======================================================================= |
---|
| 11 | c |
---|
| 12 | c subject: |
---|
| 13 | c -------- |
---|
| 14 | c Turbulent diffusion (mixing) for potential T, U, V and tracer |
---|
| 15 | c |
---|
| 16 | c Shema implicite |
---|
| 17 | c On commence par rajouter au variables x la tendance physique |
---|
| 18 | c et on resoult en fait: |
---|
| 19 | c x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
| 20 | c |
---|
| 21 | c author: |
---|
| 22 | c ------ |
---|
| 23 | c Hourdin/Forget/Fournier |
---|
| 24 | c======================================================================= |
---|
| 25 | |
---|
| 26 | c----------------------------------------------------------------------- |
---|
| 27 | c declarations: |
---|
| 28 | c ------------- |
---|
| 29 | |
---|
| 30 | #include "dimensions.h" |
---|
| 31 | #include "dimphys.h" |
---|
| 32 | #include "comcstfi.h" |
---|
| 33 | #include "callkeys.h" |
---|
| 34 | #include "surfdat.h" |
---|
| 35 | #include "comgeomfi.h" |
---|
| 36 | #include "tracer.h" |
---|
| 37 | |
---|
| 38 | #include "watercap.h" |
---|
| 39 | c |
---|
| 40 | c arguments: |
---|
| 41 | c ---------- |
---|
| 42 | |
---|
| 43 | INTEGER ngrid,nlay |
---|
| 44 | REAL ptimestep |
---|
| 45 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 46 | REAL pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 47 | REAL pu(ngrid,nlay),pv(ngrid,nlay),ph(ngrid,nlay) |
---|
| 48 | REAL ptsrf(ngrid),pemis(ngrid) |
---|
| 49 | REAL pdufi(ngrid,nlay),pdvfi(ngrid,nlay),pdhfi(ngrid,nlay) |
---|
| 50 | REAL pfluxsrf(ngrid) |
---|
| 51 | REAL pdudif(ngrid,nlay),pdvdif(ngrid,nlay),pdhdif(ngrid,nlay) |
---|
| 52 | REAL pdtsrf(ngrid),pcapcal(ngrid) |
---|
| 53 | REAL pq2(ngrid,nlay+1) |
---|
| 54 | |
---|
| 55 | c Argument added for condensation: |
---|
| 56 | REAL co2ice (ngrid), ppopsk(ngrid,nlay) |
---|
| 57 | logical lecrit |
---|
| 58 | REAL pz0 |
---|
| 59 | |
---|
| 60 | c Traceurs : |
---|
| 61 | integer nq |
---|
| 62 | REAL pqsurf(ngrid,nq) |
---|
| 63 | real pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 64 | real pdqdif(ngrid,nlay,nq) |
---|
| 65 | real pdqsdif(ngrid,nq) |
---|
| 66 | |
---|
| 67 | c local: |
---|
| 68 | c ------ |
---|
| 69 | |
---|
| 70 | INTEGER ilev,ig,ilay,nlev,ierr |
---|
| 71 | |
---|
| 72 | REAL z4st,zdplanck(ngridmx) |
---|
| 73 | REAL zkv(ngridmx,nlayermx+1),zkh(ngridmx,nlayermx+1) |
---|
| 74 | REAL zcdv(ngridmx),zcdh(ngridmx) |
---|
| 75 | REAL zcdv_true(ngridmx),zcdh_true(ngridmx) |
---|
| 76 | REAL zu(ngridmx,nlayermx),zv(ngridmx,nlayermx) |
---|
| 77 | REAL zh(ngridmx,nlayermx) |
---|
| 78 | REAL ztsrf2(ngridmx) |
---|
| 79 | REAL z1(ngridmx),z2(ngridmx) |
---|
| 80 | REAL za(ngridmx,nlayermx),zb(ngridmx,nlayermx) |
---|
| 81 | REAL zb0(ngridmx,nlayermx) |
---|
| 82 | REAL zc(ngridmx,nlayermx),zd(ngridmx,nlayermx) |
---|
| 83 | REAL zcst1 |
---|
| 84 | REAL zu2 |
---|
| 85 | |
---|
| 86 | EXTERNAL SSUM,SCOPY |
---|
| 87 | REAL SSUM |
---|
| 88 | LOGICAL firstcall |
---|
| 89 | SAVE firstcall |
---|
| 90 | |
---|
| 91 | c variable added for CO2 condensation: |
---|
| 92 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 93 | REAL hh , zhcond(ngridmx,nlayermx), tconds |
---|
| 94 | REAL latcond,tcond1mb |
---|
| 95 | REAL acond,bcond |
---|
| 96 | SAVE acond,bcond |
---|
| 97 | DATA latcond,tcond1mb/5.9e5,136.27/ |
---|
| 98 | |
---|
| 99 | c Tracers : |
---|
| 100 | c ~~~~~~~ |
---|
| 101 | INTEGER iq |
---|
| 102 | REAL zq(ngridmx,nlayermx,nqmx) |
---|
| 103 | REAL zq1temp(ngridmx) |
---|
| 104 | REAL rho(ngridmx) ! near surface air density |
---|
| 105 | REAL qsat(ngridmx) |
---|
| 106 | DATA firstcall/.true./ |
---|
| 107 | |
---|
| 108 | c ** un petit test de coherence |
---|
| 109 | c -------------------------- |
---|
| 110 | |
---|
| 111 | IF (firstcall) THEN |
---|
| 112 | IF(ngrid.NE.ngridmx) THEN |
---|
| 113 | PRINT*,'STOP dans coefdifv' |
---|
| 114 | PRINT*,'probleme de dimensions :' |
---|
| 115 | PRINT*,'ngrid =',ngrid |
---|
| 116 | PRINT*,'ngridmx =',ngridmx |
---|
| 117 | STOP |
---|
| 118 | ENDIF |
---|
| 119 | c To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
---|
| 120 | bcond=1./tcond1mb |
---|
| 121 | acond=r/latcond |
---|
| 122 | PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
| 123 | PRINT*,'acond,bcond,ccond',acond,bcond,acond |
---|
| 124 | |
---|
| 125 | firstcall=.false. |
---|
| 126 | ENDIF |
---|
| 127 | |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | c----------------------------------------------------------------------- |
---|
| 133 | c 1. initialisation |
---|
| 134 | c ----------------- |
---|
| 135 | |
---|
| 136 | nlev=nlay+1 |
---|
| 137 | |
---|
| 138 | c ** calcul de rho*dz et dt*rho/dz=dt*rho**2 g/dp |
---|
| 139 | c avec rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 140 | c ---------------------------------------- |
---|
| 141 | |
---|
| 142 | DO ilay=1,nlay |
---|
| 143 | DO ig=1,ngrid |
---|
| 144 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
| 145 | ENDDO |
---|
| 146 | ENDDO |
---|
| 147 | |
---|
| 148 | zcst1=4.*g*ptimestep/(r*r) |
---|
| 149 | DO ilev=2,nlev-1 |
---|
| 150 | DO ig=1,ngrid |
---|
| 151 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
| 152 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
| 153 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
| 154 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
| 155 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
| 156 | ENDDO |
---|
| 157 | ENDDO |
---|
| 158 | DO ig=1,ngrid |
---|
| 159 | zb0(ig,1)=ptimestep*pplev(ig,1)/(r*ptsrf(ig)) |
---|
| 160 | ENDDO |
---|
| 161 | |
---|
| 162 | c ** diagnostique pour l'initialisation |
---|
| 163 | c ---------------------------------- |
---|
| 164 | |
---|
| 165 | IF(lecrit) THEN |
---|
| 166 | ig=ngrid/2+1 |
---|
| 167 | PRINT*,'Pression (mbar) ,altitude (km),u,v,theta, rho dz' |
---|
| 168 | DO ilay=1,nlay |
---|
| 169 | WRITE(*,'(6f11.5)') |
---|
| 170 | s .01*pplay(ig,ilay),.001*pzlay(ig,ilay), |
---|
| 171 | s pu(ig,ilay),pv(ig,ilay),ph(ig,ilay),za(ig,ilay) |
---|
| 172 | ENDDO |
---|
| 173 | PRINT*,'Pression (mbar) ,altitude (km),zb' |
---|
| 174 | DO ilev=1,nlay |
---|
| 175 | WRITE(*,'(3f15.7)') |
---|
| 176 | s .01*pplev(ig,ilev),.001*pzlev(ig,ilev), |
---|
| 177 | s zb0(ig,ilev) |
---|
| 178 | ENDDO |
---|
| 179 | ENDIF |
---|
| 180 | |
---|
| 181 | c Potential Condensation temperature: |
---|
| 182 | c ----------------------------------- |
---|
| 183 | |
---|
| 184 | c if (callcond) then |
---|
| 185 | c DO ilev=1,nlay |
---|
| 186 | c DO ig=1,ngrid |
---|
| 187 | c zhcond(ig,ilev) = |
---|
| 188 | c & (1./(bcond-acond*log(.0095*pplay(ig,ilev))))/ppopsk(ig,ilev) |
---|
| 189 | c END DO |
---|
| 190 | c END DO |
---|
| 191 | c else |
---|
| 192 | call zerophys(ngrid*nlay,zhcond) |
---|
| 193 | c end if |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | c----------------------------------------------------------------------- |
---|
| 197 | c 2. ajout des tendances physiques |
---|
| 198 | c ----------------------------- |
---|
| 199 | |
---|
| 200 | DO ilev=1,nlay |
---|
| 201 | DO ig=1,ngrid |
---|
| 202 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
| 203 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
| 204 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 205 | zh(ig,ilev)=max(zh(ig,ilev),zhcond(ig,ilev)) |
---|
| 206 | ENDDO |
---|
| 207 | ENDDO |
---|
| 208 | if(tracer) then |
---|
| 209 | DO iq =1, nq |
---|
| 210 | DO ilev=1,nlay |
---|
| 211 | DO ig=1,ngrid |
---|
| 212 | zq(ig,ilev,iq)=pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep |
---|
| 213 | ENDDO |
---|
| 214 | ENDDO |
---|
| 215 | ENDDO |
---|
| 216 | end if |
---|
| 217 | |
---|
| 218 | c----------------------------------------------------------------------- |
---|
| 219 | c 3. schema de turbulence |
---|
| 220 | c -------------------- |
---|
| 221 | |
---|
| 222 | c ** source d'energie cinetique turbulente a la surface |
---|
| 223 | c (condition aux limites du schema de diffusion turbulente |
---|
| 224 | c dans la couche limite |
---|
| 225 | c --------------------- |
---|
| 226 | |
---|
| 227 | CALL vdif_cd( ngrid,nlay,pz0,g,pzlay,pu,pv,ptsrf,ph |
---|
| 228 | & ,zcdv_true,zcdh_true) |
---|
| 229 | DO ig=1,ngrid |
---|
| 230 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 231 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 232 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 233 | ENDDO |
---|
| 234 | |
---|
| 235 | c ** schema de diffusion turbulente dans la couche limite |
---|
| 236 | c ---------------------------------------------------- |
---|
| 237 | |
---|
| 238 | CALL vdif_kc(ptimestep,g,pzlev,pzlay |
---|
| 239 | & ,pu,pv,ph,zcdv_true |
---|
| 240 | & ,pq2,zkv,zkh) |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | c ** diagnostique pour le schema de turbulence |
---|
| 245 | c ----------------------------------------- |
---|
| 246 | |
---|
| 247 | IF(lecrit) THEN |
---|
| 248 | PRINT* |
---|
| 249 | PRINT*,'Diagnostic for the vertical turbulent mixing' |
---|
| 250 | PRINT*,'Cd for momentum and potential temperature' |
---|
| 251 | |
---|
| 252 | PRINT*,zcdv(ngrid/2+1),zcdh(ngrid/2+1) |
---|
| 253 | PRINT*,'Mixing coefficient for momentum and pot.temp.' |
---|
| 254 | DO ilev=1,nlay |
---|
| 255 | PRINT*,zkv(ngrid/2+1,ilev),zkh(ngrid/2+1,ilev) |
---|
| 256 | ENDDO |
---|
| 257 | ENDIF |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | c----------------------------------------------------------------------- |
---|
| 263 | c 4. inversion pour l'implicite sur u |
---|
| 264 | c -------------------------------- |
---|
| 265 | |
---|
| 266 | c ** l'equation est |
---|
| 267 | c u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 268 | c avec |
---|
| 269 | c /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 270 | c et |
---|
| 271 | c dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 272 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 273 | c et /zkv/ = Ku |
---|
| 274 | |
---|
| 275 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
| 276 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
| 277 | |
---|
| 278 | DO ig=1,ngrid |
---|
| 279 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 280 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 281 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 282 | ENDDO |
---|
| 283 | |
---|
| 284 | DO ilay=nlay-1,1,-1 |
---|
| 285 | DO ig=1,ngrid |
---|
| 286 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 287 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 288 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
| 289 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 290 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 291 | ENDDO |
---|
| 292 | ENDDO |
---|
| 293 | |
---|
| 294 | DO ig=1,ngrid |
---|
| 295 | zu(ig,1)=zc(ig,1) |
---|
| 296 | ENDDO |
---|
| 297 | DO ilay=2,nlay |
---|
| 298 | DO ig=1,ngrid |
---|
| 299 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
| 300 | ENDDO |
---|
| 301 | ENDDO |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | |
---|
| 307 | c----------------------------------------------------------------------- |
---|
| 308 | c 5. inversion pour l'implicite sur v |
---|
| 309 | c -------------------------------- |
---|
| 310 | |
---|
| 311 | c ** l'equation est |
---|
| 312 | c v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 313 | c avec |
---|
| 314 | c /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 315 | c et |
---|
| 316 | c dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 317 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 318 | c et /zkv/ = Kv |
---|
| 319 | |
---|
| 320 | DO ig=1,ngrid |
---|
| 321 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 322 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 323 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 324 | ENDDO |
---|
| 325 | |
---|
| 326 | DO ilay=nlay-1,1,-1 |
---|
| 327 | DO ig=1,ngrid |
---|
| 328 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 329 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 330 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
| 331 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 332 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 333 | ENDDO |
---|
| 334 | ENDDO |
---|
| 335 | |
---|
| 336 | DO ig=1,ngrid |
---|
| 337 | zv(ig,1)=zc(ig,1) |
---|
| 338 | ENDDO |
---|
| 339 | DO ilay=2,nlay |
---|
| 340 | DO ig=1,ngrid |
---|
| 341 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
| 342 | ENDDO |
---|
| 343 | ENDDO |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | |
---|
| 349 | c----------------------------------------------------------------------- |
---|
| 350 | c 6. inversion pour l'implicite sur h sans oublier le couplage |
---|
| 351 | c avec le sol (conduction) |
---|
| 352 | c ------------------------ |
---|
| 353 | |
---|
| 354 | c ** l'equation est |
---|
| 355 | c h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 356 | c avec |
---|
| 357 | c /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 358 | c et |
---|
| 359 | c dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 360 | c donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 361 | c et /zkh/ = Kh |
---|
| 362 | c ------------- |
---|
| 363 | |
---|
| 364 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 365 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
| 366 | |
---|
| 367 | DO ig=1,ngrid |
---|
| 368 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 369 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay)*z1(ig) |
---|
| 370 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 371 | ENDDO |
---|
| 372 | |
---|
| 373 | DO ilay=nlay-1,1,-1 |
---|
| 374 | DO ig=1,ngrid |
---|
| 375 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 376 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 377 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
| 378 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 379 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | |
---|
| 383 | c ** calcul de (d Planck / dT) a la temperature d'interface |
---|
| 384 | c ------------------------------------------------------ |
---|
| 385 | |
---|
| 386 | z4st=4.*5.67e-8*ptimestep |
---|
| 387 | DO ig=1,ngrid |
---|
| 388 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
| 389 | ENDDO |
---|
| 390 | |
---|
| 391 | c ** calcul de la temperature_d'interface et de sa tendance. |
---|
| 392 | c on ecrit que la somme des flux est nulle a l'interface |
---|
| 393 | c a t + \delta t, |
---|
| 394 | c c'est a dire le flux radiatif a {t + \delta t} |
---|
| 395 | c + le flux turbulent a {t + \delta t} |
---|
| 396 | c qui s'ecrit K (T1-Tsurf) avec T1 = d1 Tsurf + c1 |
---|
| 397 | c (notation K dt = /cpp*b/) |
---|
| 398 | c + le flux dans le sol a t |
---|
| 399 | c + l'evolution du flux dans le sol lorsque la temperature d'interface |
---|
| 400 | c passe de sa valeur a t a sa valeur a {t + \delta t}. |
---|
| 401 | c ---------------------------------------------------- |
---|
| 402 | |
---|
| 403 | DO ig=1,ngrid |
---|
| 404 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zb(ig,1)*zc(ig,1) |
---|
| 405 | s +zdplanck(ig)*ptsrf(ig)+ pfluxsrf(ig)*ptimestep |
---|
| 406 | z2(ig)= pcapcal(ig)+cpp*zb(ig,1)*(1.-zd(ig,1))+zdplanck(ig) |
---|
| 407 | ztsrf2(ig)=z1(ig)/z2(ig) |
---|
| 408 | pdtsrf(ig)=(ztsrf2(ig)-ptsrf(ig))/ptimestep |
---|
| 409 | |
---|
| 410 | c Modif speciale CO2 condensation: |
---|
| 411 | c tconds = 1./(bcond-acond*log(.0095*pplev(ig,1))) |
---|
| 412 | c if ((callcond).and. |
---|
| 413 | c & ((co2ice(ig).ne.0).or.(ztsrf2(ig).lt.tconds)))then |
---|
| 414 | c zh(ig,1)=zc(ig,1)+zd(ig,1)*tconds |
---|
| 415 | c else |
---|
| 416 | zh(ig,1)=zc(ig,1)+zd(ig,1)*ztsrf2(ig) |
---|
| 417 | c end if |
---|
| 418 | ENDDO |
---|
| 419 | |
---|
| 420 | c ** et a partir de la temperature au sol on remonte |
---|
| 421 | c ----------------------------------------------- |
---|
| 422 | |
---|
| 423 | DO ilay=2,nlay |
---|
| 424 | DO ig=1,ngrid |
---|
| 425 | hh = max( zh(ig,ilay-1) , zhcond(ig,ilay-1) ) ! modif co2cond |
---|
| 426 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*hh |
---|
| 427 | ENDDO |
---|
| 428 | ENDDO |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | c----------------------------------------------------------------------- |
---|
| 432 | c TRACERS |
---|
| 433 | c ------- |
---|
| 434 | |
---|
| 435 | if(tracer) then |
---|
| 436 | |
---|
| 437 | c Using the wind modified by friction for lifting and sublimation |
---|
| 438 | c ---------------------------------------------------------------- |
---|
| 439 | DO ig=1,ngrid |
---|
| 440 | zu2=zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 441 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 442 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 443 | ENDDO |
---|
| 444 | |
---|
| 445 | c Calcul du flux vertical au bas de la premiere couche (dust) : |
---|
| 446 | c ----------------------------------------------------------- |
---|
| 447 | do ig=1,ngridmx |
---|
| 448 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 449 | zb(ig,1) = 0. |
---|
| 450 | end do |
---|
| 451 | c Dust lifting: |
---|
| 452 | if (lifting) then |
---|
| 453 | call dustlift(ngrid,nlay,nq,rho,zcdh_true,zcdh,co2ice, |
---|
| 454 | $ pdqsdif) |
---|
| 455 | |
---|
| 456 | else |
---|
| 457 | call zerophys(ngrid*nq,pdqsdif) |
---|
| 458 | end if |
---|
| 459 | |
---|
| 460 | c OU calcul de la valeur de q a la surface (water) : |
---|
| 461 | c ---------------------------------------- |
---|
| 462 | if (water) then |
---|
| 463 | call watersat(ngridmx,ptsrf,pplev(1,1),qsat) |
---|
| 464 | end if |
---|
| 465 | |
---|
| 466 | c Inversion pour l'implicite sur q |
---|
| 467 | c -------------------------------- |
---|
| 468 | do iq=1,nq |
---|
| 469 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 470 | |
---|
| 471 | if ((water).and.(iq.eq.nqmx)) then |
---|
| 472 | c This line is required to account for turbulent transport |
---|
| 473 | c from surface (e.g. ice) to mid-layer of atmosphere: |
---|
| 474 | CALL multipl(ngrid,zcdv,zb0,zb(1,1)) |
---|
| 475 | CALL multipl(ngrid,dryness,zb(1,1),zb(1,1)) |
---|
| 476 | end if |
---|
| 477 | |
---|
| 478 | DO ig=1,ngrid |
---|
| 479 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 480 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 481 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 482 | ENDDO |
---|
| 483 | |
---|
| 484 | DO ilay=nlay-1,2,-1 |
---|
| 485 | DO ig=1,ngrid |
---|
| 486 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 487 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 488 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
| 489 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 490 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 491 | ENDDO |
---|
| 492 | ENDDO |
---|
| 493 | DO ig=1,ngrid |
---|
| 494 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 495 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 496 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 497 | $ zb(ig,2)*zc(ig,2) + |
---|
| 498 | $ (-pdqsdif(ig,iq)) *ptimestep) *z1(ig) !tracer flux from surface |
---|
| 499 | ENDDO |
---|
| 500 | |
---|
| 501 | IF ((water).and.(iq.eq.nqmx)) then |
---|
| 502 | c Calculation for turbulent exchange with the surface (for ice) |
---|
| 503 | DO ig=1,ngrid |
---|
| 504 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
| 505 | zq1temp(ig)=zc(ig,1)+ zd(ig,1)*qsat(ig) |
---|
| 506 | |
---|
| 507 | pdqsdif(ig,nq)=rho(ig)*dryness(ig)*zcdv(ig) |
---|
| 508 | & *(zq1temp(ig)-qsat(ig)) |
---|
| 509 | c write(*,*)'flux vers le sol=',pdqsdif(ig,nq) |
---|
| 510 | END DO |
---|
| 511 | DO ig=1,ngrid |
---|
| 512 | if(.not.watercaptag(ig)) then |
---|
| 513 | if ((-pdqsdif(ig,nq)*ptimestep).gt.pqsurf(ig,nq)) then |
---|
| 514 | c write(*,*)'on sublime plus que qsurf!' |
---|
| 515 | pdqsdif(ig,nq) = -pqsurf(ig,nq)/ptimestep |
---|
| 516 | c write(*,*)'flux vers le sol=',pdqsdif(ig,nq) |
---|
| 517 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 518 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 519 | $ zb(ig,2)*zc(ig,2) + |
---|
| 520 | $ (-pdqsdif(ig,iq)) *ptimestep) *z1(ig) |
---|
| 521 | zq1temp(ig)=zc(ig,1) |
---|
| 522 | endif |
---|
| 523 | endif |
---|
| 524 | c Starting upward calculations for water : |
---|
| 525 | zq(ig,1,iq)=zq1temp(ig) |
---|
| 526 | ENDDO |
---|
| 527 | ELSE |
---|
| 528 | c Starting upward calculations for simple mixing of tracer (dust) |
---|
| 529 | DO ig=1,ngrid |
---|
| 530 | zq(ig,1,iq)=zc(ig,1) |
---|
| 531 | ENDDO |
---|
| 532 | END IF |
---|
| 533 | |
---|
| 534 | DO ilay=2,nlay |
---|
| 535 | DO ig=1,ngrid |
---|
| 536 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | enddo |
---|
| 540 | end if |
---|
| 541 | |
---|
| 542 | c----------------------------------------------------------------------- |
---|
| 543 | c 8. calcul final des tendances de la diffusion verticale |
---|
| 544 | c ---------------------------------------------------- |
---|
| 545 | |
---|
| 546 | DO ilev = 1, nlay |
---|
| 547 | DO ig=1,ngrid |
---|
| 548 | pdudif(ig,ilev)=( zu(ig,ilev)- |
---|
| 549 | $ (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep) )/ptimestep |
---|
| 550 | pdvdif(ig,ilev)=( zv(ig,ilev)- |
---|
| 551 | $ (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep) )/ptimestep |
---|
| 552 | hh = max(ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep , |
---|
| 553 | $ zhcond(ig,ilev)) ! modif co2cond |
---|
| 554 | pdhdif(ig,ilev)=( zh(ig,ilev)- hh )/ptimestep |
---|
| 555 | ENDDO |
---|
| 556 | ENDDO |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | if (tracer) then |
---|
| 560 | DO iq = 1, nq |
---|
| 561 | DO ilev = 1, nlay |
---|
| 562 | DO ig=1,ngrid |
---|
| 563 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- |
---|
| 564 | $ (pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 565 | ENDDO |
---|
| 566 | ENDDO |
---|
| 567 | ENDDO |
---|
| 568 | end if |
---|
| 569 | |
---|
| 570 | c ** diagnostique final |
---|
| 571 | c ------------------ |
---|
| 572 | |
---|
| 573 | IF(lecrit) THEN |
---|
| 574 | PRINT*,'In vdif' |
---|
| 575 | PRINT*,'Ts (t) and Ts (t+st)' |
---|
| 576 | WRITE(*,'(a10,3a15)') |
---|
| 577 | s 'theta(t)','theta(t+dt)','u(t)','u(t+dt)' |
---|
| 578 | PRINT*,ptsrf(ngrid/2+1),ztsrf2(ngrid/2+1) |
---|
| 579 | DO ilev=1,nlay |
---|
| 580 | WRITE(*,'(4f15.7)') |
---|
| 581 | s ph(ngrid/2+1,ilev),zh(ngrid/2+1,ilev), |
---|
| 582 | s pu(ngrid/2+1,ilev),zu(ngrid/2+1,ilev) |
---|
| 583 | |
---|
| 584 | ENDDO |
---|
| 585 | ENDIF |
---|
| 586 | |
---|
| 587 | RETURN |
---|
| 588 | END |
---|