1 | SUBROUTINE dustopacity(ngrid,nlayer,nq,zday,pplay,pplev,ls,pq, |
---|
2 | $ tauref,tau,aerosol) |
---|
3 | |
---|
4 | IMPLICIT NONE |
---|
5 | c======================================================================= |
---|
6 | c subject: |
---|
7 | c -------- |
---|
8 | c Computing aerosol optical depth (dust opacity) |
---|
9 | c In each layers |
---|
10 | c |
---|
11 | c author: F.Forget |
---|
12 | c ------ |
---|
13 | c update F. Montmessin (water ice scheme) |
---|
14 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
---|
15 | c |
---|
16 | c input: |
---|
17 | c ----- |
---|
18 | c ngrid Number of gridpoint of horizontal grid |
---|
19 | c nlayer Number of layer |
---|
20 | c nq Number of tracer |
---|
21 | c ls Solar longitude (Ls) , radian |
---|
22 | c pplay,pplev pressure (Pa) in the middle and boundary of each layer |
---|
23 | c pq Dust mixing ratio (used if tracer =T and active=T). |
---|
24 | c |
---|
25 | c output: |
---|
26 | c ------- |
---|
27 | c tauref Prescribed mean column optical depth at 700 Pa |
---|
28 | c tau Column total visible dust optical depth at each point |
---|
29 | c aerosol aerosol(ig,l,1) is the dust optical |
---|
30 | c depth in layer l, grid point ig |
---|
31 | |
---|
32 | c |
---|
33 | c======================================================================= |
---|
34 | #include "dimensions.h" |
---|
35 | #include "dimphys.h" |
---|
36 | #include "callkeys.h" |
---|
37 | #include "comcstfi.h" |
---|
38 | #include "comgeomfi.h" |
---|
39 | #include "dimradmars.h" |
---|
40 | #include "yomaer.h" |
---|
41 | #include "tracer.h" |
---|
42 | #include "planete.h" |
---|
43 | |
---|
44 | c----------------------------------------------------------------------- |
---|
45 | c |
---|
46 | c Declarations : |
---|
47 | c -------------- |
---|
48 | c |
---|
49 | c Input/Output |
---|
50 | c ------------ |
---|
51 | INTEGER ngrid,nlayer,nq |
---|
52 | |
---|
53 | REAL ls,zday,expfactor |
---|
54 | REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
55 | REAL pq(ngrid,nlayer,nq) |
---|
56 | REAL tauref(ngrid), tau(ngrid,naerkind) |
---|
57 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
58 | c |
---|
59 | c Local variables : |
---|
60 | c ----------------- |
---|
61 | INTEGER l,ig,iq |
---|
62 | real topdust(ngridmx) |
---|
63 | real zlsconst, zp |
---|
64 | real taueq,tauS,tauN |
---|
65 | real r0,reff,coefsize |
---|
66 | c |
---|
67 | c local saved variables |
---|
68 | c --------------------- |
---|
69 | |
---|
70 | REAL topdust0(ngridmx) |
---|
71 | SAVE topdust0 |
---|
72 | |
---|
73 | LOGICAL firstcall |
---|
74 | DATA firstcall/.true./ |
---|
75 | SAVE firstcall |
---|
76 | |
---|
77 | |
---|
78 | c---------------------------------------------------------------------- |
---|
79 | |
---|
80 | c Initialisation |
---|
81 | c -------------- |
---|
82 | |
---|
83 | IF (firstcall) THEN |
---|
84 | |
---|
85 | c altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
---|
86 | c in the Viking year scenario |
---|
87 | DO ig=1,ngrid |
---|
88 | topdust0(ig)=60. -22.*SIN(lati(ig))**2 |
---|
89 | END DO |
---|
90 | firstcall=.false. |
---|
91 | END IF |
---|
92 | |
---|
93 | c ------------------------------------------------------------- |
---|
94 | c 1) Prescribed dust (if tracer=F or active=F) |
---|
95 | c ------------------------------------------------------------- |
---|
96 | IF ((.not.tracer) .or. (.not.active)) THEN |
---|
97 | |
---|
98 | c Vertical column optical depth at 700.Pa |
---|
99 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
100 | IF(iaervar.eq.1) THEN |
---|
101 | do ig=1, ngridmx |
---|
102 | tauref(ig)=max(tauvis,1.e-9) ! tauvis=cste as read in starfi |
---|
103 | end do |
---|
104 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
---|
105 | |
---|
106 | tauref(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
---|
107 | do ig=2,ngrid |
---|
108 | tauref(ig) = tauref(1) |
---|
109 | end do |
---|
110 | |
---|
111 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
---|
112 | |
---|
113 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
---|
114 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
---|
115 | tauN = 0.1 |
---|
116 | c if (peri_day.eq.150) then |
---|
117 | c tauS=0.1 |
---|
118 | c tauN=0.1 +(0.5-0.1) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
119 | c taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
120 | c endif |
---|
121 | |
---|
122 | do ig=1,ngrid/2 ! Northern hemisphere |
---|
123 | tauref(ig)= tauN + |
---|
124 | & (taueq-tauN)*0.5*(1+tanh((45-lati(ig)*180./pi)*6/60)) |
---|
125 | end do |
---|
126 | do ig=ngrid/2+1, ngridmx ! Southern hemisphere |
---|
127 | tauref(ig)= tauS + |
---|
128 | & (taueq-tauS)*0.5*(1+tanh((45+lati(ig)*180./pi)*6/60)) |
---|
129 | end do |
---|
130 | |
---|
131 | ELSE IF (iaervar.eq.4) THEN ! << "TES scenario >> |
---|
132 | call readtesassim(ngrid,nlayer,zday,pplev,tauref) |
---|
133 | |
---|
134 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
---|
135 | c tauref(1) = 0.2 |
---|
136 | c if ((ls.ge.210.*pi/180.).and.(ls.le.330.*pi/180.)) |
---|
137 | c & tauref(1) = 2.5 |
---|
138 | tauref(1) = 2.5 |
---|
139 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
---|
140 | & tauref(1) = .2 |
---|
141 | |
---|
142 | do ig=2,ngrid |
---|
143 | tauref(ig) = tauref(1) |
---|
144 | end do |
---|
145 | ELSE |
---|
146 | stop 'problem with iaervar in dustopacity.F' |
---|
147 | ENDIF |
---|
148 | |
---|
149 | c Altitude of the top of the dust layer |
---|
150 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
151 | zlsconst=SIN(ls-2.76) |
---|
152 | if (iddist.eq.1) then |
---|
153 | do ig=1,ngrid |
---|
154 | topdust(ig)=topdustref ! constant dust layer top |
---|
155 | end do |
---|
156 | |
---|
157 | else if (iddist.eq.2) then ! "Viking" scenario |
---|
158 | do ig=1,ngrid |
---|
159 | topdust(ig)=topdust0(ig)+18.*zlsconst |
---|
160 | end do |
---|
161 | |
---|
162 | else if(iddist.eq.3) then !"MGS" scenario |
---|
163 | do ig=1,ngrid |
---|
164 | topdust(ig)=60.+18.*zlsconst |
---|
165 | & -(32+18*zlsconst)*sin(lati(ig))**4 |
---|
166 | & - 8*zlsconst*(sin(lati(ig)))**5 |
---|
167 | end do |
---|
168 | endif |
---|
169 | |
---|
170 | |
---|
171 | c Optical depth in each layer : |
---|
172 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
173 | if(iddist.ge.1) then |
---|
174 | expfactor=0. |
---|
175 | DO l=1,nlayer |
---|
176 | DO ig=1,ngrid |
---|
177 | if(pplay(ig,l).gt.700. |
---|
178 | $ /(988.**(topdust(ig)/70.))) then |
---|
179 | zp=(700./pplay(ig,l))**(70./topdust(ig)) |
---|
180 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
181 | else |
---|
182 | expfactor=1.e-3 |
---|
183 | endif |
---|
184 | aerosol(ig,l,1)= tauref(ig)/700. * |
---|
185 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
186 | & *expfactor |
---|
187 | c s *max( exp(.007*(1.-max(zp,1.))) , 1.E-3 ) |
---|
188 | ENDDO |
---|
189 | ENDDO |
---|
190 | c changement dans le calcul de la distribution verticale |
---|
191 | c dans le cas des scenarios de poussieres assimiles |
---|
192 | c if (iaervar.eq.4) THEN ! TES |
---|
193 | c call zerophys(ngrid*naerkind,tau) |
---|
194 | c |
---|
195 | c do l=1,nlayer |
---|
196 | c do ig=1,ngrid |
---|
197 | c tau(ig,1)=tau(ig,1)+ aerosol(ig,l,1) |
---|
198 | c end do |
---|
199 | c end do |
---|
200 | c do l=1,nlayer |
---|
201 | c do ig=1,ngrid |
---|
202 | c aerosol(ig,l,1)=aerosol(ig,l,1)*tauref(ig)/tau(ig,1) |
---|
203 | c $ *(pplev(ig,1)/700) |
---|
204 | c end do |
---|
205 | c end do |
---|
206 | c endif |
---|
207 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
208 | else if(iddist.eq.0) then |
---|
209 | c old dust vertical distribution function (pollack90) |
---|
210 | DO l=1,nlayer |
---|
211 | DO ig=1,ngrid |
---|
212 | zp=700./pplay(ig,l) |
---|
213 | aerosol(ig,l,1)= tauref(ig)/700. * |
---|
214 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
215 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | end if |
---|
219 | |
---|
220 | c --------------------------------------------------------------------- |
---|
221 | c 2) Transported radiatively active dust (if tracer=T and active=T) |
---|
222 | c ---------------------------------------------------------------------- |
---|
223 | ELSE IF ((tracer) .and. (active)) THEN |
---|
224 | c The dust opacity is computed from q |
---|
225 | |
---|
226 | c a) "doubleq" technique (transport of mass and number mixing ratio) |
---|
227 | c ~~~~~~~~~~~~~~~~~~~ |
---|
228 | if(doubleq) then |
---|
229 | |
---|
230 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
231 | |
---|
232 | c Computing effective radius : |
---|
233 | do l=1,nlayer |
---|
234 | do ig=1, ngrid |
---|
235 | r0= |
---|
236 | & (r3n_q*pq(ig,l,1)/max(pq(ig,l,2),0.01))**(1./3.) |
---|
237 | r0=min(max(r0,1.e-10),500.e-6) |
---|
238 | reff= ref_r0 * r0 |
---|
239 | cc If reff is small, the transported dust mean Qext |
---|
240 | c is reduced from the reference dust Qext by a factor "coefsize" |
---|
241 | |
---|
242 | coefsize=min(max(2.52e6*reff-0.043 ,0.) ,1.) |
---|
243 | |
---|
244 | cc It is added 1.e-8 to pq to avoid low |
---|
245 | |
---|
246 | aerosol(ig,l,1)=aerosol(ig,l,1)+ 1.E-8 + |
---|
247 | & ( 0.75*Qext(1)*coefsize/(rho_dust*reff)) |
---|
248 | & * (pq(ig,l,1))* |
---|
249 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
250 | end do |
---|
251 | end do |
---|
252 | call zerophys(ngrid,tauref) |
---|
253 | |
---|
254 | c b) Size bin technique (each aerosol can contribute to opacity)) |
---|
255 | c ~~~~~~~~~~~~~~~~~~ |
---|
256 | else |
---|
257 | c The dust opacity is computed from q |
---|
258 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
259 | do iq=1,dustbin |
---|
260 | do l=1,nlayer |
---|
261 | do ig=1,ngrid |
---|
262 | cc qextrhor(iq) is (3/4)*Qext/(rho*reff) |
---|
263 | cc It is added 1.e-8 to pq to avoid low |
---|
264 | aerosol(ig,l,1)=aerosol(ig,l,1)+ |
---|
265 | & qextrhor(iq)* (pq(ig,l,iq) + 1.e-8)* |
---|
266 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
267 | end do |
---|
268 | end do |
---|
269 | end do |
---|
270 | call zerophys(ngrid,tauref) |
---|
271 | end if ! (doubleq) |
---|
272 | END IF ! (dust scenario) |
---|
273 | |
---|
274 | c -------------------------------------------------------------------------- |
---|
275 | c Column integrated visible optical depth in each point (used for diagnostic) |
---|
276 | c -------------------------------------------------------------------------- |
---|
277 | call zerophys(ngrid*naerkind,tau) |
---|
278 | do l=1,nlayer |
---|
279 | do ig=1,ngrid |
---|
280 | tau(ig,1)=tau(ig,1)+ aerosol(ig,l,1) |
---|
281 | end do |
---|
282 | end do |
---|
283 | |
---|
284 | return |
---|
285 | end |
---|
286 | |
---|