[57] | 1 | SUBROUTINE dustopacity(ngrid,nlayer,nq,zday,pplay,pplev,ls,pq, |
---|
| 2 | $ tauref,tau,aerosol) |
---|
| 3 | |
---|
| 4 | IMPLICIT NONE |
---|
| 5 | c======================================================================= |
---|
| 6 | c subject: |
---|
| 7 | c -------- |
---|
| 8 | c Computing aerosol optical depth (dust opacity) |
---|
| 9 | c In each layers |
---|
| 10 | c |
---|
| 11 | c author: F.Forget |
---|
| 12 | c ------ |
---|
| 13 | c update F. Montmessin (water ice scheme) |
---|
| 14 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
---|
| 15 | c |
---|
| 16 | c input: |
---|
| 17 | c ----- |
---|
| 18 | c ngrid Number of gridpoint of horizontal grid |
---|
| 19 | c nlayer Number of layer |
---|
| 20 | c nq Number of tracer |
---|
| 21 | c ls Solar longitude (Ls) , radian |
---|
| 22 | c pplay,pplev pressure (Pa) in the middle and boundary of each layer |
---|
| 23 | c pq Dust mixing ratio (used if tracer =T and active=T). |
---|
| 24 | c |
---|
| 25 | c output: |
---|
| 26 | c ------- |
---|
| 27 | c tauref Prescribed mean column optical depth at 700 Pa |
---|
| 28 | c tau Column total visible dust optical depth at each point |
---|
| 29 | c aerosol aerosol(ig,l,1) is the dust optical |
---|
| 30 | c depth in layer l, grid point ig |
---|
| 31 | |
---|
| 32 | c |
---|
| 33 | c======================================================================= |
---|
| 34 | #include "dimensions.h" |
---|
| 35 | #include "dimphys.h" |
---|
| 36 | #include "callkeys.h" |
---|
| 37 | #include "comcstfi.h" |
---|
| 38 | #include "comgeomfi.h" |
---|
| 39 | #include "dimradmars.h" |
---|
| 40 | #include "yomaer.h" |
---|
| 41 | #include "tracer.h" |
---|
| 42 | #include "planete.h" |
---|
| 43 | |
---|
| 44 | c----------------------------------------------------------------------- |
---|
| 45 | c |
---|
| 46 | c Declarations : |
---|
| 47 | c -------------- |
---|
| 48 | c |
---|
| 49 | c Input/Output |
---|
| 50 | c ------------ |
---|
| 51 | INTEGER ngrid,nlayer,nq |
---|
| 52 | |
---|
| 53 | REAL ls,zday,expfactor |
---|
| 54 | REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
| 55 | REAL pq(ngrid,nlayer,nq) |
---|
| 56 | REAL tauref(ngrid), tau(ngrid,naerkind) |
---|
| 57 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
| 58 | c |
---|
| 59 | c Local variables : |
---|
| 60 | c ----------------- |
---|
| 61 | INTEGER l,ig,iq |
---|
| 62 | real topdust(ngridmx) |
---|
| 63 | real zlsconst, zp |
---|
| 64 | real taueq,tauS,tauN |
---|
| 65 | real r0,reff,coefsize |
---|
| 66 | c |
---|
| 67 | c local saved variables |
---|
| 68 | c --------------------- |
---|
| 69 | |
---|
| 70 | REAL topdust0(ngridmx) |
---|
| 71 | SAVE topdust0 |
---|
| 72 | |
---|
| 73 | LOGICAL firstcall |
---|
| 74 | DATA firstcall/.true./ |
---|
| 75 | SAVE firstcall |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | c---------------------------------------------------------------------- |
---|
| 79 | |
---|
| 80 | c Initialisation |
---|
| 81 | c -------------- |
---|
| 82 | |
---|
| 83 | IF (firstcall) THEN |
---|
| 84 | |
---|
| 85 | c altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
---|
| 86 | c in the Viking year scenario |
---|
| 87 | DO ig=1,ngrid |
---|
| 88 | topdust0(ig)=60. -22.*SIN(lati(ig))**2 |
---|
| 89 | END DO |
---|
| 90 | firstcall=.false. |
---|
| 91 | END IF |
---|
| 92 | |
---|
| 93 | c ------------------------------------------------------------- |
---|
| 94 | c 1) Prescribed dust (if tracer=F or active=F) |
---|
| 95 | c ------------------------------------------------------------- |
---|
| 96 | IF ((.not.tracer) .or. (.not.active)) THEN |
---|
| 97 | |
---|
| 98 | c Vertical column optical depth at 700.Pa |
---|
| 99 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 100 | IF(iaervar.eq.1) THEN |
---|
| 101 | do ig=1, ngridmx |
---|
| 102 | tauref(ig)=max(tauvis,1.e-9) ! tauvis=cste as read in starfi |
---|
| 103 | end do |
---|
| 104 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
---|
| 105 | |
---|
| 106 | tauref(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
---|
| 107 | do ig=2,ngrid |
---|
| 108 | tauref(ig) = tauref(1) |
---|
| 109 | end do |
---|
| 110 | |
---|
| 111 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
---|
| 112 | |
---|
| 113 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
---|
| 114 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
---|
| 115 | tauN = 0.1 |
---|
| 116 | c if (peri_day.eq.150) then |
---|
| 117 | c tauS=0.1 |
---|
| 118 | c tauN=0.1 +(0.5-0.1) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
| 119 | c taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
| 120 | c endif |
---|
| 121 | |
---|
| 122 | do ig=1,ngrid/2 ! Northern hemisphere |
---|
| 123 | tauref(ig)= tauN + |
---|
| 124 | & (taueq-tauN)*0.5*(1+tanh((45-lati(ig)*180./pi)*6/60)) |
---|
| 125 | end do |
---|
| 126 | do ig=ngrid/2+1, ngridmx ! Southern hemisphere |
---|
| 127 | tauref(ig)= tauS + |
---|
| 128 | & (taueq-tauS)*0.5*(1+tanh((45+lati(ig)*180./pi)*6/60)) |
---|
| 129 | end do |
---|
| 130 | |
---|
| 131 | ELSE IF (iaervar.eq.4) THEN ! << "TES scenario >> |
---|
| 132 | call readtesassim(ngrid,nlayer,zday,pplev,tauref) |
---|
| 133 | |
---|
| 134 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
---|
| 135 | c tauref(1) = 0.2 |
---|
| 136 | c if ((ls.ge.210.*pi/180.).and.(ls.le.330.*pi/180.)) |
---|
| 137 | c & tauref(1) = 2.5 |
---|
| 138 | tauref(1) = 2.5 |
---|
| 139 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
---|
| 140 | & tauref(1) = .2 |
---|
| 141 | |
---|
| 142 | do ig=2,ngrid |
---|
| 143 | tauref(ig) = tauref(1) |
---|
| 144 | end do |
---|
| 145 | ELSE |
---|
| 146 | stop 'problem with iaervar in dustopacity.F' |
---|
| 147 | ENDIF |
---|
| 148 | |
---|
| 149 | c Altitude of the top of the dust layer |
---|
| 150 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 151 | zlsconst=SIN(ls-2.76) |
---|
| 152 | if (iddist.eq.1) then |
---|
| 153 | do ig=1,ngrid |
---|
| 154 | topdust(ig)=topdustref ! constant dust layer top |
---|
| 155 | end do |
---|
| 156 | |
---|
| 157 | else if (iddist.eq.2) then ! "Viking" scenario |
---|
| 158 | do ig=1,ngrid |
---|
| 159 | topdust(ig)=topdust0(ig)+18.*zlsconst |
---|
| 160 | end do |
---|
| 161 | |
---|
| 162 | else if(iddist.eq.3) then !"MGS" scenario |
---|
| 163 | do ig=1,ngrid |
---|
| 164 | topdust(ig)=60.+18.*zlsconst |
---|
| 165 | & -(32+18*zlsconst)*sin(lati(ig))**4 |
---|
| 166 | & - 8*zlsconst*(sin(lati(ig)))**5 |
---|
| 167 | end do |
---|
| 168 | endif |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | c Optical depth in each layer : |
---|
| 172 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 173 | if(iddist.ge.1) then |
---|
| 174 | expfactor=0. |
---|
| 175 | DO l=1,nlayer |
---|
| 176 | DO ig=1,ngrid |
---|
| 177 | if(pplay(ig,l).gt.700. |
---|
| 178 | $ /(988.**(topdust(ig)/70.))) then |
---|
| 179 | zp=(700./pplay(ig,l))**(70./topdust(ig)) |
---|
| 180 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
| 181 | else |
---|
| 182 | expfactor=1.e-3 |
---|
| 183 | endif |
---|
| 184 | aerosol(ig,l,1)= tauref(ig)/700. * |
---|
| 185 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
| 186 | & *expfactor |
---|
| 187 | c s *max( exp(.007*(1.-max(zp,1.))) , 1.E-3 ) |
---|
| 188 | ENDDO |
---|
| 189 | ENDDO |
---|
| 190 | c changement dans le calcul de la distribution verticale |
---|
| 191 | c dans le cas des scenarios de poussieres assimiles |
---|
| 192 | c if (iaervar.eq.4) THEN ! TES |
---|
| 193 | c call zerophys(ngrid*naerkind,tau) |
---|
| 194 | c |
---|
| 195 | c do l=1,nlayer |
---|
| 196 | c do ig=1,ngrid |
---|
| 197 | c tau(ig,1)=tau(ig,1)+ aerosol(ig,l,1) |
---|
| 198 | c end do |
---|
| 199 | c end do |
---|
| 200 | c do l=1,nlayer |
---|
| 201 | c do ig=1,ngrid |
---|
| 202 | c aerosol(ig,l,1)=aerosol(ig,l,1)*tauref(ig)/tau(ig,1) |
---|
| 203 | c $ *(pplev(ig,1)/700) |
---|
| 204 | c end do |
---|
| 205 | c end do |
---|
| 206 | c endif |
---|
| 207 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 208 | else if(iddist.eq.0) then |
---|
| 209 | c old dust vertical distribution function (pollack90) |
---|
| 210 | DO l=1,nlayer |
---|
| 211 | DO ig=1,ngrid |
---|
| 212 | zp=700./pplay(ig,l) |
---|
| 213 | aerosol(ig,l,1)= tauref(ig)/700. * |
---|
| 214 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
| 215 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
---|
| 216 | ENDDO |
---|
| 217 | ENDDO |
---|
| 218 | end if |
---|
| 219 | |
---|
| 220 | c --------------------------------------------------------------------- |
---|
| 221 | c 2) Transported radiatively active dust (if tracer=T and active=T) |
---|
| 222 | c ---------------------------------------------------------------------- |
---|
| 223 | ELSE IF ((tracer) .and. (active)) THEN |
---|
| 224 | c The dust opacity is computed from q |
---|
| 225 | |
---|
| 226 | c a) "doubleq" technique (transport of mass and number mixing ratio) |
---|
| 227 | c ~~~~~~~~~~~~~~~~~~~ |
---|
| 228 | if(doubleq) then |
---|
| 229 | |
---|
| 230 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
| 231 | |
---|
| 232 | c Computing effective radius : |
---|
| 233 | do l=1,nlayer |
---|
| 234 | do ig=1, ngrid |
---|
| 235 | r0= |
---|
| 236 | & (r3n_q*pq(ig,l,1)/max(pq(ig,l,2),0.01))**(1./3.) |
---|
| 237 | r0=min(max(r0,1.e-10),500.e-6) |
---|
| 238 | reff= ref_r0 * r0 |
---|
| 239 | cc If reff is small, the transported dust mean Qext |
---|
| 240 | c is reduced from the reference dust Qext by a factor "coefsize" |
---|
| 241 | |
---|
| 242 | coefsize=min(max(2.52e6*reff-0.043 ,0.) ,1.) |
---|
| 243 | |
---|
| 244 | cc It is added 1.e-8 to pq to avoid low |
---|
| 245 | |
---|
| 246 | aerosol(ig,l,1)=aerosol(ig,l,1)+ 1.E-8 + |
---|
| 247 | & ( 0.75*Qext(1)*coefsize/(rho_dust*reff)) |
---|
| 248 | & * (pq(ig,l,1))* |
---|
| 249 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
| 250 | end do |
---|
| 251 | end do |
---|
| 252 | call zerophys(ngrid,tauref) |
---|
| 253 | |
---|
| 254 | c b) Size bin technique (each aerosol can contribute to opacity)) |
---|
| 255 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 256 | else |
---|
| 257 | c The dust opacity is computed from q |
---|
| 258 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
| 259 | do iq=1,dustbin |
---|
| 260 | do l=1,nlayer |
---|
| 261 | do ig=1,ngrid |
---|
| 262 | cc qextrhor(iq) is (3/4)*Qext/(rho*reff) |
---|
| 263 | cc It is added 1.e-8 to pq to avoid low |
---|
| 264 | aerosol(ig,l,1)=aerosol(ig,l,1)+ |
---|
| 265 | & qextrhor(iq)* (pq(ig,l,iq) + 1.e-8)* |
---|
| 266 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
| 267 | end do |
---|
| 268 | end do |
---|
| 269 | end do |
---|
| 270 | call zerophys(ngrid,tauref) |
---|
| 271 | end if ! (doubleq) |
---|
| 272 | END IF ! (dust scenario) |
---|
| 273 | |
---|
| 274 | c -------------------------------------------------------------------------- |
---|
| 275 | c Column integrated visible optical depth in each point (used for diagnostic) |
---|
| 276 | c -------------------------------------------------------------------------- |
---|
| 277 | call zerophys(ngrid*naerkind,tau) |
---|
| 278 | do l=1,nlayer |
---|
| 279 | do ig=1,ngrid |
---|
| 280 | tau(ig,1)=tau(ig,1)+ aerosol(ig,l,1) |
---|
| 281 | end do |
---|
| 282 | end do |
---|
| 283 | |
---|
| 284 | return |
---|
| 285 | end |
---|
| 286 | |
---|