1 | subroutine moldiff(pplay,pplev,pt,pdt,pq,pdq,ptimestep, |
---|
2 | & zzlay,pdteuv,pdtconduc,pdqdiff) |
---|
3 | |
---|
4 | |
---|
5 | implicit none |
---|
6 | |
---|
7 | #include "dimensions.h" |
---|
8 | #include "dimphys.h" |
---|
9 | #include "comcstfi.h" |
---|
10 | #include "callkeys.h" |
---|
11 | #include "comdiurn.h" |
---|
12 | #include "chimiedata.h" |
---|
13 | #include "tracer.h" |
---|
14 | #include "conc.h" |
---|
15 | |
---|
16 | |
---|
17 | c |
---|
18 | c Input/Output |
---|
19 | c |
---|
20 | real ptimestep |
---|
21 | real pplay(ngridmx,nlayermx) |
---|
22 | real zzlay(ngridmx,nlayermx) |
---|
23 | real pplev(ngridmx,nlayermx+1) |
---|
24 | real pq(ngridmx,nlayermx,nqmx) |
---|
25 | real pdq(ngridmx,nlayermx,nqmx) |
---|
26 | real pt(ngridmx,nlayermx) |
---|
27 | real pdt(ngridmx,nlayermx) |
---|
28 | real pdteuv(ngridmx,nlayermx) |
---|
29 | real pdtconduc(ngridmx,nlayermx) |
---|
30 | real pdqdiff(ngridmx,nlayermx,nqmx) |
---|
31 | c |
---|
32 | c Local |
---|
33 | c |
---|
34 | real hco2(ncomptot),ho |
---|
35 | |
---|
36 | integer ig,nz,l,n,nn |
---|
37 | real del1,del2, tmean ,dalfinvdz, d |
---|
38 | real hh,dcoef,dcoef1,ptfac, ntot, dens, dens2, dens3 |
---|
39 | real hp(nlayermx) |
---|
40 | real tt(nlayermx) |
---|
41 | real qq(nlayermx,ncomptot) |
---|
42 | real dmmeandz(nlayermx) |
---|
43 | real qnew(nlayermx,ncomptot) |
---|
44 | real zlocal(nlayermx) |
---|
45 | real alf(ncomptot-1,ncomptot-1) |
---|
46 | real alfinv(nlayermx,ncomptot-1,ncomptot-1) |
---|
47 | real indx(ncomptot-1) |
---|
48 | real b(nlayermx,ncomptot-1) |
---|
49 | real y(ncomptot-1,ncomptot-1) |
---|
50 | real aa(nlayermx,ncomptot-1,ncomptot-1) |
---|
51 | real bb(nlayermx,ncomptot-1,ncomptot-1) |
---|
52 | real cc(nlayermx,ncomptot-1,ncomptot-1) |
---|
53 | real atri(nlayermx-2) |
---|
54 | real btri(nlayermx-2) |
---|
55 | real ctri(nlayermx-2) |
---|
56 | real rtri(nlayermx-2) |
---|
57 | real qtri(nlayermx-2) |
---|
58 | real alfdiag(ncomptot-1) |
---|
59 | real wi(ncomptot), flux(ncomptot), pote |
---|
60 | |
---|
61 | integer i_co2, i_co, i_o2, i_h2, i_h2o, i_h2o2, |
---|
62 | $ i_o1d, i_o, i_h, i_oh, i_ho2, i_n2, i_o3, i_ar |
---|
63 | integer g_co2, g_co, g_o2, g_h2, g_h2o, g_h2o2, |
---|
64 | $ g_o1d, g_o, g_h, g_oh, g_ho2, g_o3, g_n2, g_ar |
---|
65 | integer gcmind(ncomptot) |
---|
66 | integer ierr |
---|
67 | |
---|
68 | logical firstcall |
---|
69 | real abfac(ncomptot) |
---|
70 | real dij(ncomptot,ncomptot) |
---|
71 | save firstcall |
---|
72 | save dij |
---|
73 | data firstcall /.true./ |
---|
74 | |
---|
75 | if (firstcall) then |
---|
76 | call moldiffcoeff(dij) |
---|
77 | print*,'MOLDIFF EXO' |
---|
78 | firstcall= .false. |
---|
79 | endif |
---|
80 | |
---|
81 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
82 | c tracer numbering in the gcm |
---|
83 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
84 | c |
---|
85 | g_co2 = nqchem_min |
---|
86 | g_co = nqchem_min + 1 |
---|
87 | g_o = nqchem_min + 2 |
---|
88 | g_o1d = nqchem_min + 3 |
---|
89 | g_o2 = nqchem_min + 4 |
---|
90 | g_o3 = nqchem_min + 5 |
---|
91 | g_h = nqchem_min + 6 |
---|
92 | g_h2 = nqchem_min + 7 |
---|
93 | g_oh = nqchem_min + 8 |
---|
94 | g_ho2 = nqchem_min + 9 |
---|
95 | g_h2o2 = nqchem_min + 10 |
---|
96 | g_n2 = nqchem_min + 11 |
---|
97 | g_ar = nqchem_min + 12 |
---|
98 | g_h2o = nqmx |
---|
99 | |
---|
100 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
101 | c tracer numbering in the molecular diffusion |
---|
102 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
103 | c Atomic oxygen must always be the LAST species of the list as |
---|
104 | c it is the dominant species at high altitudes. |
---|
105 | |
---|
106 | i_co = 1 |
---|
107 | i_n2 = 2 |
---|
108 | i_o2 = 3 |
---|
109 | i_co2 = 4 |
---|
110 | i_h2 = 5 |
---|
111 | i_h = 6 |
---|
112 | i_oh = 7 |
---|
113 | i_ho2 = 8 |
---|
114 | i_h2o = 9 |
---|
115 | i_h2o2 = 10 |
---|
116 | i_o1d = 11 |
---|
117 | i_o3 = 12 |
---|
118 | i_ar = 13 |
---|
119 | i_o = 14 |
---|
120 | |
---|
121 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
122 | c array to relate local indexes to gcm indexes |
---|
123 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
124 | |
---|
125 | gcmind(i_co) = g_co |
---|
126 | gcmind(i_n2) = g_n2 |
---|
127 | gcmind(i_o2) = g_o2 |
---|
128 | gcmind(i_co2) = g_co2 |
---|
129 | gcmind(i_h2) = g_h2 |
---|
130 | gcmind(i_h) = g_h |
---|
131 | gcmind(i_oh) = g_oh |
---|
132 | gcmind(i_ho2) = g_ho2 |
---|
133 | gcmind(i_h2o) = g_h2o |
---|
134 | gcmind(i_h2o2)= g_h2o2 |
---|
135 | gcmind(i_o1d) = g_o1d |
---|
136 | gcmind(i_o3) = g_o3 |
---|
137 | gcmind(i_o) = g_o |
---|
138 | gcmind(i_ar) = g_ar |
---|
139 | c |
---|
140 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
141 | |
---|
142 | nz=nlayermx |
---|
143 | |
---|
144 | do ig=1,ngridmx |
---|
145 | |
---|
146 | do l=2,nz-1 |
---|
147 | tt(l)=pt(ig,l)+pdt(ig,l)*ptimestep |
---|
148 | & +pdteuv(ig,l)*ptimestep |
---|
149 | & +pdtconduc(ig,l)*ptimestep |
---|
150 | |
---|
151 | do nn=1,ncomptot |
---|
152 | qq(l,nn)=pq(ig,l,gcmind(nn))+pdq(ig,l,gcmind(nn))*ptimestep |
---|
153 | qq(l,nn)=max(qq(l,nn),1.e-30) |
---|
154 | enddo |
---|
155 | hp(l)=-log(pplay(ig,l+1)/pplay(ig,l-1)) |
---|
156 | dmmeandz(l)=(mmean(ig,l+1)-mmean(ig,l-1))/hp(l) |
---|
157 | enddo |
---|
158 | |
---|
159 | tt(1)=pt(ig,1) +pdt(ig,1)*ptimestep |
---|
160 | & +pdteuv(ig,1)*ptimestep |
---|
161 | & +pdtconduc(ig,1)*ptimestep |
---|
162 | tt(nz)=pt(ig,nz)+pdt(ig,nz)*ptimestep |
---|
163 | & +pdteuv(ig,nz)*ptimestep |
---|
164 | & +pdtconduc(ig,nz)*ptimestep |
---|
165 | |
---|
166 | do nn=1,ncomptot |
---|
167 | qq(1,nn)=pq(ig,1,gcmind(nn))+pdq(ig,1,gcmind(nn))*ptimestep |
---|
168 | qq(nz,nn)=pq(ig,nz,gcmind(nn))+pdq(ig,nz,gcmind(nn))*ptimestep |
---|
169 | qq(1,nn)=max(qq(1,nn),1.e-30) |
---|
170 | qq(nz,nn)=max(qq(nz,nn),1.e-30) |
---|
171 | enddo |
---|
172 | hp(1)=-log(pplay(ig,2)/pplay(ig,1)) |
---|
173 | dmmeandz(1)=(-3.*mmean(ig,1)+4.*mmean(ig,2) |
---|
174 | & -mmean(ig,3))/(2.*hp(1)) |
---|
175 | hp(nz)=-log(pplay(ig,nz)/pplay(ig,nz-1)) |
---|
176 | dmmeandz(nz)=(3.*mmean(ig,nz)-4.*mmean(ig,nz-1) |
---|
177 | & +mmean(ig,nz-2))/(2.*hp(nz)) |
---|
178 | c |
---|
179 | c Setting-up matrix of alfa coefficients from Dickinson and Ridley 1972 |
---|
180 | c |
---|
181 | do l=1,nz |
---|
182 | if(abs(dmmeandz(l)) .lt. 1.e-5) dmmeandz(l)=0.0 |
---|
183 | hh=rnew(ig,l)*tt(l)/g |
---|
184 | ptfac=(1.e5/pplay(ig,l))*(tt(l)/273)**1.75 |
---|
185 | ntot=pplay(ig,l)/(1.381e-23*tt(l)) ! in #/m3 |
---|
186 | |
---|
187 | do nn=1,ncomptot-1 ! rows |
---|
188 | alfdiag(nn)=0. |
---|
189 | dcoef1=dij(nn,i_o)*ptfac |
---|
190 | do n=1,ncomptot-1 ! columns |
---|
191 | y(nn,n)=0. |
---|
192 | dcoef=dij(nn,n)*ptfac |
---|
193 | alf(nn,n)=qq(l,nn)/ntot/1.66e-27 |
---|
194 | & *(1./(mmol(gcmind(n))*dcoef)-1./(mmol(g_o)*dcoef1)) |
---|
195 | alfdiag(nn)=alfdiag(nn) |
---|
196 | & +(1./(mmol(gcmind(n))*dcoef)-1./(mmol(g_o)*dcoef1)) |
---|
197 | & *qq(l,n) |
---|
198 | enddo |
---|
199 | dcoef=dij(nn,nn)*ptfac |
---|
200 | alfdiag(nn)=alfdiag(nn) |
---|
201 | & -(1./(mmol(gcmind(nn))*dcoef)-1./(mmol(g_o)*dcoef1)) |
---|
202 | & *qq(l,nn) |
---|
203 | alf(nn,nn)=-(alfdiag(nn) |
---|
204 | & +1./(mmol(g_o)*dcoef1))/ntot/1.66e-27 |
---|
205 | y(nn,nn)=1. |
---|
206 | b(l,nn)=-(dmmeandz(l)/mmean(ig,l) |
---|
207 | & +mmol(gcmind(nn))/mmean(ig,l)-1.) |
---|
208 | enddo |
---|
209 | |
---|
210 | c |
---|
211 | c Inverting the alfa matrix |
---|
212 | c |
---|
213 | call ludcmp(alf,ncomptot-1,ncomptot-1,indx,d,ierr) |
---|
214 | |
---|
215 | c TEMPORAIRE ***************************** |
---|
216 | if (ierr.ne.0) then |
---|
217 | write(*,*) 'In moldiff: Problem in LUDCMP with matrix alf' |
---|
218 | write(*,*) 'Singular matrix ?' |
---|
219 | c write(*,*) 'Matrix alf = ', alf |
---|
220 | write(*,*) 'ig, l=',ig, l |
---|
221 | write(*,*) 'No molecular diffusion this time !' |
---|
222 | call zerophys(ngridmx*nlayermx*nqmx,pdqdiff) |
---|
223 | return |
---|
224 | c stop |
---|
225 | end if |
---|
226 | c ******************************************* |
---|
227 | do n=1,ncomptot-1 |
---|
228 | call lubksb(alf,ncomptot-1,ncomptot-1,indx,y(1,n)) |
---|
229 | do nn=1,ncomptot-1 |
---|
230 | alfinv(l,nn,n)=y(nn,n)/hh |
---|
231 | enddo |
---|
232 | enddo |
---|
233 | enddo |
---|
234 | |
---|
235 | c |
---|
236 | c Calculating coefficients of the system |
---|
237 | c |
---|
238 | |
---|
239 | c zlocal(1)=-log(pplay(ig,1)/pplev(ig,1))* Rnew(ig,1)*tt(1)/g |
---|
240 | zlocal(1)=zzlay(ig,1) |
---|
241 | |
---|
242 | do l=2,nz-1 |
---|
243 | del1=hp(l)*pplay(ig,l)/(g*ptimestep) |
---|
244 | del2=(hp(l)/2)**2*pplay(ig,l)/(g*ptimestep) |
---|
245 | do nn=1,ncomptot-1 |
---|
246 | do n=1,ncomptot-1 |
---|
247 | dalfinvdz=(alfinv(l+1,nn,n)-alfinv(l-1,nn,n))/hp(l) |
---|
248 | aa(l,nn,n)=-dalfinvdz/del1+alfinv(l,nn,n)/del2 |
---|
249 | & +alfinv(l-1,nn,n)*b(l-1,n)/del1 |
---|
250 | bb(l,nn,n)=-2.*alfinv(l,nn,n)/del2 |
---|
251 | cc(l,nn,n)=dalfinvdz/del1+alfinv(l,nn,n)/del2 |
---|
252 | & -alfinv(l+1,nn,n)*b(l+1,n)/del1 |
---|
253 | enddo |
---|
254 | enddo |
---|
255 | |
---|
256 | c tmean=tt(l) |
---|
257 | c if(tt(l).ne.tt(l-1)) |
---|
258 | c & tmean=(tt(l)-tt(l-1))/log(tt(l)/tt(l-1)) |
---|
259 | c zlocal(l)= zlocal(l-1) |
---|
260 | c & -log(pplay(ig,l)/pplay(ig,l-1))*rnew(ig,l)*tmean/g |
---|
261 | zlocal(l)=zzlay(ig,l) |
---|
262 | enddo |
---|
263 | |
---|
264 | c zlocal(nz)= zlocal(nz-1) |
---|
265 | c & -log(pplay(ig,nz)/pplay(ig,nz-1))*rnew(ig,nz)*tmean/g |
---|
266 | zlocal(nz)=zzlay(ig,nz) |
---|
267 | |
---|
268 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
269 | c Escape velocity from Jeans equation for the flux of H and H2 |
---|
270 | c (Hunten 1973, eq. 5) |
---|
271 | |
---|
272 | do n=1,ncomptot |
---|
273 | wi(n)=1. |
---|
274 | flux(n)=0. |
---|
275 | abfac(n)=1. |
---|
276 | enddo |
---|
277 | |
---|
278 | dens=pplay(ig,nz)/(rnew(ig,nz)*tt(nz)) |
---|
279 | c |
---|
280 | c For H: |
---|
281 | c |
---|
282 | pote=(3398000.+zlocal(nz))/ |
---|
283 | & (1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h)*g)) |
---|
284 | wi(i_h)=sqrt(2.*1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h))) |
---|
285 | & /(2.*sqrt(3.1415))*(1.+pote)*exp(-pote) |
---|
286 | flux(i_h)=qq(nz,i_h)*dens/(1.6605e-27*mmol(g_h))*wi(i_h) |
---|
287 | flux(i_h)=flux(i_h)*1.6606e-27 |
---|
288 | abfac(i_h)=0. |
---|
289 | c |
---|
290 | c For H2: |
---|
291 | c |
---|
292 | pote=(3398000.+zlocal(nz))/ |
---|
293 | & (1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h2)*g)) |
---|
294 | wi(i_h2)=sqrt(2.*1.381e-23*tt(nz)/(1.6605e-27*mmol(g_h2))) |
---|
295 | & /(2.*sqrt(3.1415))*(1.+pote)*exp(-pote) |
---|
296 | flux(i_h2)=qq(nz,i_h2)*dens/(1.6605e-27*mmol(g_h2))*wi(i_h2) |
---|
297 | flux(i_h2)=flux(i_h2)*1.6606e-27 |
---|
298 | abfac(i_h2)=0. |
---|
299 | |
---|
300 | c ********* TEMPORAIRE : no escape for h and h2 |
---|
301 | c do n=1,ncomptot |
---|
302 | c wi(n)=1. |
---|
303 | c flux(n)=0. |
---|
304 | c abfac(n)=1. |
---|
305 | c enddo |
---|
306 | c ******************************************** |
---|
307 | |
---|
308 | |
---|
309 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
310 | |
---|
311 | c |
---|
312 | c Setting coefficients for tridiagonal matrix and solving the system |
---|
313 | c |
---|
314 | |
---|
315 | do nn=1,ncomptot-1 |
---|
316 | do l=2,nz-1 |
---|
317 | atri(l-1)=aa(l,nn,nn) |
---|
318 | btri(l-1)=bb(l,nn,nn)+1. |
---|
319 | ctri(l-1)=cc(l,nn,nn) |
---|
320 | rtri(l-1)=qq(l,nn) |
---|
321 | do n=1,ncomptot-1 |
---|
322 | rtri(l-1)=rtri(l-1)-(aa(l,nn,n)*qq(l-1,n) |
---|
323 | & +bb(l,nn,n)*qq(l,n) |
---|
324 | & +cc(l,nn,n)*qq(l+1,n)) |
---|
325 | enddo |
---|
326 | rtri(l-1)=rtri(l-1)+(aa(l,nn,nn)*qq(l-1,nn) |
---|
327 | & +bb(l,nn,nn)*qq(l,nn) |
---|
328 | & +cc(l,nn,nn)*qq(l+1,nn)) |
---|
329 | enddo |
---|
330 | |
---|
331 | c |
---|
332 | c Boundary conditions: |
---|
333 | c Escape flux for H and H2 at top |
---|
334 | c Diffusive equilibrium for the other species at top |
---|
335 | c Perfect mixing for all at bottom |
---|
336 | c |
---|
337 | |
---|
338 | rtri(nz-2)=rtri(nz-2) |
---|
339 | & -ctri(nz-2)*flux(nn)*mmol(gcmind(nn))/(dens*wi(nn)) |
---|
340 | |
---|
341 | atri(nz-2)=atri(nz-2) |
---|
342 | & -abfac(nn)*ctri(nz-2)/(3.-2.*hp(nz)*b(nz,nn)) |
---|
343 | btri(nz-2)=btri(nz-2) |
---|
344 | & +abfac(nn)*4.*ctri(nz-2)/(3.-2.*hp(nz)*b(nz,nn)) |
---|
345 | |
---|
346 | c rtri(1)=rtri(1)-atri(1)*qq(1,nn) |
---|
347 | btri(1)=btri(1)+atri(1) |
---|
348 | |
---|
349 | call tridag(atri,btri,ctri,rtri,qtri,nz-2) |
---|
350 | |
---|
351 | do l=2,nz-1 |
---|
352 | c qnew(l,nn)=qtri(l-1) |
---|
353 | qnew(l,nn)=max(qtri(l-1),1.e-30) |
---|
354 | enddo |
---|
355 | |
---|
356 | qnew(nz,nn)=flux(nn)*mmol(gcmind(nn))/(dens*wi(nn)) |
---|
357 | & +abfac(nn)*(4.*qnew(nz-1,nn)-qnew(nz-2,nn)) |
---|
358 | & /(3.-2.*hp(nz)*b(nz,nn)) |
---|
359 | c qnew(1,nn)=qq(1,nn) |
---|
360 | qnew(1,nn)=qnew(2,nn) |
---|
361 | |
---|
362 | qnew(nz,nn)=max(qnew(nz,nn),1.e-30) |
---|
363 | qnew(1,nn)=max(qnew(1,nn),1.e-30) |
---|
364 | |
---|
365 | enddo ! loop on species |
---|
366 | |
---|
367 | DO l=1,nz |
---|
368 | if(zlocal(l).gt.65000.)then |
---|
369 | pdqdiff(ig,l,g_o)=0. |
---|
370 | do n=1,ncomptot-1 |
---|
371 | pdqdiff(ig,l,gcmind(n))=(qnew(l,n)-qq(l,n)) |
---|
372 | pdqdiff(ig,l,g_o)=pdqdiff(ig,l,g_o)-(qnew(l,n)-qq(l,n)) |
---|
373 | pdqdiff(ig,l,gcmind(n))=pdqdiff(ig,l,gcmind(n))/ptimestep |
---|
374 | enddo |
---|
375 | pdqdiff(ig,l,g_o)=pdqdiff(ig,l,g_o)/ptimestep |
---|
376 | endif |
---|
377 | ENDDO |
---|
378 | |
---|
379 | c do l=2,nz |
---|
380 | c do n=1,ncomptot-1 |
---|
381 | c hco2(n)=qnew(l,n)*pplay(ig,l)/(rnew(ig,l)*tt(l)) / |
---|
382 | c & (qnew(l-1,n)*pplay(ig,l-1)/(rnew(ig,l-1)*tt(l-1))) |
---|
383 | c hco2(n)=-(zlocal(l)-zlocal(l-1))/log(hco2(n))/1000. |
---|
384 | c enddo |
---|
385 | c write(225,*),l,pt(1,l),(hco2(n),n=1,6) |
---|
386 | c write(226,*),l,pt(1,l),(hco2(n),n=7,12) |
---|
387 | c enddo |
---|
388 | |
---|
389 | enddo ! ig loop |
---|
390 | |
---|
391 | return |
---|
392 | end |
---|
393 | |
---|
394 | c ******************************************************************** |
---|
395 | c ******************************************************************** |
---|
396 | c ******************************************************************** |
---|
397 | |
---|
398 | subroutine tridag(a,b,c,r,u,n) |
---|
399 | parameter (nmax=100) |
---|
400 | c dimension gam(nmax),a(n),b(n),c(n),r(n),u(n) |
---|
401 | real gam(nmax),a(n),b(n),c(n),r(n),u(n) |
---|
402 | if(b(1).eq.0.)pause |
---|
403 | bet=b(1) |
---|
404 | u(1)=r(1)/bet |
---|
405 | do 11 j=2,n |
---|
406 | gam(j)=c(j-1)/bet |
---|
407 | bet=b(j)-a(j)*gam(j) |
---|
408 | if(bet.eq.0.)pause |
---|
409 | u(j)=(r(j)-a(j)*u(j-1))/bet |
---|
410 | 11 continue |
---|
411 | do 12 j=n-1,1,-1 |
---|
412 | u(j)=u(j)-gam(j+1)*u(j+1) |
---|
413 | 12 continue |
---|
414 | return |
---|
415 | end |
---|
416 | |
---|
417 | c ******************************************************************** |
---|
418 | c ******************************************************************** |
---|
419 | c ******************************************************************** |
---|
420 | |
---|
421 | SUBROUTINE LUBKSB(A,N,NP,INDX,B) |
---|
422 | |
---|
423 | implicit none |
---|
424 | |
---|
425 | integer i,j,n,np,ii,ll |
---|
426 | real sum |
---|
427 | real a(np,np),indx(np),b(np) |
---|
428 | |
---|
429 | c DIMENSION A(NP,NP),INDX(N),B(N) |
---|
430 | II=0 |
---|
431 | DO 12 I=1,N |
---|
432 | LL=INDX(I) |
---|
433 | SUM=B(LL) |
---|
434 | B(LL)=B(I) |
---|
435 | IF (II.NE.0)THEN |
---|
436 | DO 11 J=II,I-1 |
---|
437 | SUM=SUM-A(I,J)*B(J) |
---|
438 | 11 CONTINUE |
---|
439 | ELSE IF (SUM.NE.0.) THEN |
---|
440 | II=I |
---|
441 | ENDIF |
---|
442 | B(I)=SUM |
---|
443 | 12 CONTINUE |
---|
444 | DO 14 I=N,1,-1 |
---|
445 | SUM=B(I) |
---|
446 | IF(I.LT.N)THEN |
---|
447 | DO 13 J=I+1,N |
---|
448 | SUM=SUM-A(I,J)*B(J) |
---|
449 | 13 CONTINUE |
---|
450 | ENDIF |
---|
451 | B(I)=SUM/A(I,I) |
---|
452 | 14 CONTINUE |
---|
453 | RETURN |
---|
454 | END |
---|
455 | |
---|
456 | c ******************************************************************** |
---|
457 | c ******************************************************************** |
---|
458 | c ******************************************************************** |
---|
459 | |
---|
460 | SUBROUTINE LUDCMP(A,N,NP,INDX,D,ierr) |
---|
461 | |
---|
462 | implicit none |
---|
463 | |
---|
464 | integer n,np,nmax,i,j,k,imax |
---|
465 | real d,tiny,aamax |
---|
466 | real a(np,np),indx(np) |
---|
467 | integer ierr ! error =0 if OK, =1 if problem |
---|
468 | |
---|
469 | PARAMETER (NMAX=100,TINY=1.0E-20) |
---|
470 | c DIMENSION A(NP,NP),INDX(N),VV(NMAX) |
---|
471 | real sum,vv(nmax),dum |
---|
472 | |
---|
473 | D=1. |
---|
474 | DO 12 I=1,N |
---|
475 | AAMAX=0. |
---|
476 | DO 11 J=1,N |
---|
477 | IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J)) |
---|
478 | 11 CONTINUE |
---|
479 | IF (AAMAX.EQ.0.) then |
---|
480 | write(*,*) 'In moldiff: Problem in LUDCMP with matrix A' |
---|
481 | write(*,*) 'Singular matrix ?' |
---|
482 | c write(*,*) 'Matrix A = ', A |
---|
483 | c TO DEBUG : |
---|
484 | ierr =1 |
---|
485 | return |
---|
486 | c stop |
---|
487 | END IF |
---|
488 | |
---|
489 | VV(I)=1./AAMAX |
---|
490 | 12 CONTINUE |
---|
491 | DO 19 J=1,N |
---|
492 | IF (J.GT.1) THEN |
---|
493 | DO 14 I=1,J-1 |
---|
494 | SUM=A(I,J) |
---|
495 | IF (I.GT.1)THEN |
---|
496 | DO 13 K=1,I-1 |
---|
497 | SUM=SUM-A(I,K)*A(K,J) |
---|
498 | 13 CONTINUE |
---|
499 | A(I,J)=SUM |
---|
500 | ENDIF |
---|
501 | 14 CONTINUE |
---|
502 | ENDIF |
---|
503 | AAMAX=0. |
---|
504 | DO 16 I=J,N |
---|
505 | SUM=A(I,J) |
---|
506 | IF (J.GT.1)THEN |
---|
507 | DO 15 K=1,J-1 |
---|
508 | SUM=SUM-A(I,K)*A(K,J) |
---|
509 | 15 CONTINUE |
---|
510 | A(I,J)=SUM |
---|
511 | ENDIF |
---|
512 | DUM=VV(I)*ABS(SUM) |
---|
513 | IF (DUM.GE.AAMAX) THEN |
---|
514 | IMAX=I |
---|
515 | AAMAX=DUM |
---|
516 | ENDIF |
---|
517 | 16 CONTINUE |
---|
518 | IF (J.NE.IMAX)THEN |
---|
519 | DO 17 K=1,N |
---|
520 | DUM=A(IMAX,K) |
---|
521 | A(IMAX,K)=A(J,K) |
---|
522 | A(J,K)=DUM |
---|
523 | 17 CONTINUE |
---|
524 | D=-D |
---|
525 | VV(IMAX)=VV(J) |
---|
526 | ENDIF |
---|
527 | INDX(J)=IMAX |
---|
528 | IF(J.NE.N)THEN |
---|
529 | IF(A(J,J).EQ.0.)A(J,J)=TINY |
---|
530 | DUM=1./A(J,J) |
---|
531 | DO 18 I=J+1,N |
---|
532 | A(I,J)=A(I,J)*DUM |
---|
533 | 18 CONTINUE |
---|
534 | ENDIF |
---|
535 | 19 CONTINUE |
---|
536 | IF(A(N,N).EQ.0.)A(N,N)=TINY |
---|
537 | ierr =0 |
---|
538 | RETURN |
---|
539 | END |
---|
540 | |
---|