[42] | 1 | SUBROUTINE param_slope_full( & |
---|
| 2 | ! |
---|
| 3 | ! INPUTS |
---|
| 4 | ! |
---|
| 5 | & ls, localtime, latitude, taudust, albedo & |
---|
| 6 | & ,theta_s, psi_s & |
---|
| 7 | & ,ftot_0 & |
---|
| 8 | ! |
---|
| 9 | ! OUTPUTS |
---|
| 10 | ! |
---|
| 11 | & ,ftot & |
---|
| 12 | ) |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | !!***************************************************************************************** |
---|
| 16 | ! |
---|
| 17 | ! SUBROUTINE: |
---|
| 18 | ! param_slope |
---|
| 19 | ! |
---|
| 20 | ! |
---|
| 21 | ! PURPOSE: |
---|
| 22 | ! computes total solar irradiance on a given Martian slope |
---|
| 23 | ! |
---|
| 24 | ! |
---|
| 25 | ! INPUTS: |
---|
| 26 | ! ls aerocentric longitude (deg) |
---|
| 27 | ! localtime local true solar time (Martian hours) |
---|
| 28 | ! latitude latitude (deg) |
---|
| 29 | ! taudust dust optical depth at reference wavelength 0.67 mic. |
---|
| 30 | ! albedo spectrally integrated surface Lambertian reflection albedo |
---|
| 31 | ! theta_s slope inclination angle (deg) |
---|
| 32 | ! 0 is horizontal, 90 is vertical |
---|
| 33 | ! phi_s slope azimuth (deg) |
---|
| 34 | ! 0 >> Northward |
---|
| 35 | ! 90 >> Eastward |
---|
| 36 | ! 180 >> Southward |
---|
| 37 | ! 270 >> Westward |
---|
| 38 | ! ftot_0 spectrally integrated total irradiance on an horizontal surface (W/m2) |
---|
| 39 | ! |
---|
| 40 | ! |
---|
| 41 | ! OUTPUTS: |
---|
| 42 | ! ftot spectrally integrated total irradiance on the slope (W/m2) |
---|
| 43 | ! |
---|
| 44 | ! REFERENCE: |
---|
| 45 | ! "Fast and accurate estimation of irradiance on Martian slopes" |
---|
| 46 | ! A. Spiga & F. Forget |
---|
| 47 | ! ..... |
---|
| 48 | ! |
---|
| 49 | ! AUTHOR: |
---|
| 50 | ! A. Spiga (spiga@lmd.jussieu.fr) |
---|
| 51 | ! March 2008 |
---|
| 52 | ! |
---|
| 53 | !!***************************************************************************************** |
---|
| 54 | |
---|
| 55 | IMPLICIT NONE |
---|
| 56 | |
---|
| 57 | !! |
---|
| 58 | !! INPUT |
---|
| 59 | !! |
---|
| 60 | REAL, INTENT(IN) :: ls, localtime, latitude, taudust, theta_s, psi_s, albedo, ftot_0 |
---|
| 61 | |
---|
| 62 | !! |
---|
| 63 | !! LOCAL |
---|
| 64 | !! |
---|
| 65 | REAL :: pi, deg2rad, dist_sol, cste_mars |
---|
| 66 | REAL, PARAMETER :: p = 1.510404 ! Semi-latus rectum of Martian elliptic orbit (AU) |
---|
| 67 | REAL, PARAMETER :: e = 9.3357898E-02 ! Eccentricity of Martian elliptic orbit |
---|
| 68 | REAL, PARAMETER :: t = 1.908231 ! Angle from Ls=0 to the perihelion (radian) |
---|
| 69 | REAL, PARAMETER :: so = 0.4256214 ! sin(Obliquity of Martian axis) |
---|
| 70 | REAL :: rho, sdec, dec, cdec, csza, sza, ssza, psi0 |
---|
| 71 | REAL :: px, py |
---|
| 72 | REAL :: a |
---|
| 73 | REAL :: mu_s, sigma_s |
---|
| 74 | REAL :: fdir, fdir_0, fscat, fscat_0, fref |
---|
| 75 | REAL, DIMENSION(4,2) :: mat_M, mat_N, mat_T |
---|
| 76 | REAL, DIMENSION(2) :: g_vector |
---|
| 77 | REAL, DIMENSION(4) :: s_vector |
---|
| 78 | REAL :: ratio |
---|
| 79 | |
---|
| 80 | !! |
---|
| 81 | !! OUTPUT |
---|
| 82 | !! |
---|
| 83 | REAL, INTENT(OUT) :: ftot |
---|
| 84 | |
---|
| 85 | !!***************************************************************************************** |
---|
| 86 | |
---|
| 87 | ! |
---|
| 88 | ! Prerequisite |
---|
| 89 | ! |
---|
| 90 | pi = 2.*asin(1.) |
---|
| 91 | deg2rad = pi/180. |
---|
| 92 | if ((theta_s > 90.) .or. (theta_s < 0.)) then |
---|
| 93 | print *, 'please set theta_s between 0 and 90', theta_s |
---|
| 94 | stop |
---|
| 95 | endif |
---|
| 96 | |
---|
| 97 | ! |
---|
| 98 | ! Sun right ascension (radian) |
---|
| 99 | ! |
---|
| 100 | rho = pi*(1.0-localtime/12.0) |
---|
| 101 | |
---|
| 102 | ! |
---|
| 103 | ! Distance to sun (AU) |
---|
| 104 | ! |
---|
| 105 | dist_sol = p/(1.0+e*cos(deg2rad*Ls+t)) !! ellipse polar equation |
---|
| 106 | |
---|
| 107 | ! |
---|
| 108 | ! Incident flux @ top of the atmosphere (Mars solar constant, W m-2) |
---|
| 109 | ! |
---|
| 110 | cste_mars=1370./(dist_sol*dist_sol) !! 1370 W.m-2 is the solar constant at 1 AU. |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 114 | !!! pour comparer avec spectres ESA |
---|
| 115 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 116 | !cste_mars=cste_mars*0.92 |
---|
| 117 | |
---|
| 118 | |
---|
| 119 | ! |
---|
| 120 | ! Sun declination (radian) [= subsolar point latitude] |
---|
| 121 | ! |
---|
| 122 | sdec = sin(deg2rad*Ls)*so |
---|
| 123 | dec = asin(sdec) |
---|
| 124 | cdec = cos(dec) |
---|
| 125 | |
---|
| 126 | ! |
---|
| 127 | ! Solar Zenith angle (radian) |
---|
| 128 | ! |
---|
| 129 | csza = sin(deg2rad*latitude)*sdec + cos(deg2rad*latitude)*cdec*cos(rho) |
---|
| 130 | sza = acos(csza) |
---|
| 131 | ssza = sin(sza) |
---|
| 132 | if (csza < 0.01) then |
---|
| 133 | !print *, 'sun below horizon' |
---|
| 134 | fdir_0=0. |
---|
| 135 | fdir=0. |
---|
| 136 | fscat_0=0. |
---|
| 137 | fscat=0. |
---|
| 138 | fref=0. |
---|
| 139 | else |
---|
| 140 | |
---|
| 141 | ! |
---|
| 142 | ! 'Slope vs Sun' azimuth (radian) |
---|
| 143 | ! |
---|
| 144 | if ( ( (cdec*sin(rho)) .eq. 0.0 ) .and. ( ( sin(deg2rad*latitude)*cdec*cos(rho)-cos(deg2rad*latitude)*sdec ) .eq. 0.0 ) ) then |
---|
| 145 | a = deg2rad*psi_s ! some compilator need specfying value for atan2(0,0) |
---|
| 146 | else |
---|
| 147 | a = deg2rad*psi_s + atan2(cdec*sin(rho),sin(deg2rad*latitude)*cdec*cos(rho)-cos(deg2rad*latitude)*sdec) |
---|
| 148 | end if |
---|
| 149 | |
---|
| 150 | ! |
---|
| 151 | ! Cosine of slope-sun phase angle |
---|
| 152 | ! |
---|
| 153 | mu_s = csza*cos(deg2rad*theta_s) - cos(a)*sin(deg2rad*theta_s)*sqrt(1-csza**2) |
---|
| 154 | if (mu_s .le. 0.) mu_s=0. |
---|
| 155 | |
---|
| 156 | ! |
---|
| 157 | ! Sky-view factor |
---|
| 158 | ! |
---|
| 159 | sigma_s=0.5*(1.+cos(deg2rad*theta_s)) |
---|
| 160 | |
---|
| 161 | ! |
---|
| 162 | ! Direct flux on a flat surface |
---|
| 163 | ! |
---|
| 164 | fdir_0 = cste_mars*csza*exp(-taudust/csza) |
---|
| 165 | |
---|
| 166 | ! |
---|
| 167 | ! Direct flux on the slope |
---|
| 168 | ! |
---|
| 169 | fdir = fdir_0 * mu_s/csza |
---|
| 170 | |
---|
| 171 | ! |
---|
| 172 | ! Reflected flux on the slope |
---|
| 173 | ! |
---|
| 174 | fref = albedo * (1-sigma_s) * ftot_0 |
---|
| 175 | |
---|
| 176 | ! |
---|
| 177 | ! Scattered flux on a flat surface |
---|
| 178 | ! |
---|
| 179 | fscat_0 = ftot_0 - fdir_0 |
---|
| 180 | |
---|
| 181 | ! |
---|
| 182 | ! Scattering vector (slope vs sky) |
---|
| 183 | ! |
---|
| 184 | s_vector=(/ 1., exp(-taudust) , sin(deg2rad*theta_s), sin(deg2rad*theta_s)*exp(-taudust) /) |
---|
| 185 | |
---|
| 186 | ! |
---|
| 187 | ! Geometry vector (slope vs sun) |
---|
| 188 | ! |
---|
| 189 | g_vector=(/ mu_s/csza, 1. /) |
---|
| 190 | |
---|
| 191 | ! |
---|
| 192 | ! Coupling matrix |
---|
| 193 | ! |
---|
| 194 | if (csza .ge. 0.5) then |
---|
| 195 | mat_M(:,1) = (/ -0.264, 1.309, 0.208, -0.828 /) |
---|
| 196 | mat_M(:,2) = (/ 1.291*sigma_s, -1.371*sigma_s, -0.581, 1.641 /) |
---|
| 197 | mat_N(:,1) = (/ 0.911, -0.777, -0.223, 0.623 /) |
---|
| 198 | mat_N(:,2) = (/ -0.933*sigma_s, 0.822*sigma_s, 0.514, -1.195 /) |
---|
| 199 | |
---|
| 200 | else |
---|
| 201 | mat_M(:,1) = (/ -0.373, 0.792, -0.095, 0.398 /) |
---|
| 202 | mat_M(:,2) = (/ 1.389*sigma_s, -0.794*sigma_s, -0.325, 0.183 /) |
---|
| 203 | mat_N(:,1) = (/ 1.079, 0.275, 0.419, -1.855 /) |
---|
| 204 | mat_N(:,2) = (/ -1.076*sigma_s, -0.357*sigma_s, -0.075, 1.844 /) |
---|
| 205 | endif |
---|
| 206 | ! |
---|
| 207 | mat_T = mat_M + csza*mat_N |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | ! |
---|
| 211 | ! Scattered flux slope ratio |
---|
| 212 | ! |
---|
| 213 | if (deg2rad*theta_s <= 0.0872664626) then |
---|
| 214 | ! |
---|
| 215 | ! low angles |
---|
| 216 | ! |
---|
| 217 | s_vector = (/ 1., exp(-taudust) , sin(0.0872664626), sin(0.0872664626)*exp(-taudust) /) |
---|
| 218 | ratio = DOT_PRODUCT ( MATMUL( s_vector, mat_T), g_vector ) |
---|
| 219 | ratio = 1. + (ratio - 1.)*deg2rad*theta_s/0.0872664626 |
---|
| 220 | else |
---|
| 221 | ! |
---|
| 222 | ! general case |
---|
| 223 | ! |
---|
| 224 | ratio= DOT_PRODUCT ( MATMUL( s_vector, mat_T), g_vector ) |
---|
| 225 | ! |
---|
| 226 | ! NB: ratio= DOT_PRODUCT ( s_vector, MATMUL( mat_T, g_vector ) ) is equivalent |
---|
| 227 | endif |
---|
| 228 | |
---|
| 229 | ! |
---|
| 230 | ! Scattered flux on the slope |
---|
| 231 | ! |
---|
| 232 | fscat = ratio * fscat_0 |
---|
| 233 | |
---|
| 234 | endif !! if (csza < 0.01) |
---|
| 235 | |
---|
| 236 | ! |
---|
| 237 | ! Total flux on the slope |
---|
| 238 | ! |
---|
| 239 | ftot = fdir + fref + fscat |
---|
| 240 | |
---|
| 241 | !! |
---|
| 242 | !! Display results |
---|
| 243 | !! |
---|
| 244 | ! print *, 'scattered component ', fscat |
---|
| 245 | ! print *, 'direct component ', fdir |
---|
| 246 | ! print *, 'reflected component ', fref |
---|
| 247 | |
---|
| 248 | END SUBROUTINE param_slope_full |
---|