[42] | 1 | SUBROUTINE aeropacity(ngrid,nlayer,nq,zday,pplay,pplev,ls,pq, |
---|
| 2 | & tauref,tau,aerosol,reffrad, |
---|
| 3 | & QREFvis3d,QREFir3d,omegaREFvis3d,omegaREFir3d) |
---|
| 4 | |
---|
| 5 | ! to use 'getin' |
---|
| 6 | USE ioipsl_getincom |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | c======================================================================= |
---|
| 9 | c subject: |
---|
| 10 | c -------- |
---|
| 11 | c Computing aerosol optical depth in each gridbox. |
---|
| 12 | c |
---|
| 13 | c author: F.Forget |
---|
| 14 | c ------ |
---|
| 15 | c update F. Montmessin (water ice scheme) |
---|
| 16 | c and S. Lebonnois (12/06/2003) compatibility dust/ice/chemistry |
---|
| 17 | c update J.-B. Madeleine 2008-2009: |
---|
| 18 | c - added 3D scattering by aerosols; |
---|
| 19 | c - dustopacity transferred from physiq.F to callradite.F, |
---|
| 20 | c and renamed into aeropacity.F; |
---|
| 21 | c |
---|
| 22 | c input: |
---|
| 23 | c ----- |
---|
| 24 | c ngrid Number of gridpoint of horizontal grid |
---|
| 25 | c nlayer Number of layer |
---|
| 26 | c nq Number of tracer |
---|
| 27 | c zday Date (time since Ls=0, in martian days) |
---|
| 28 | c ls Solar longitude (Ls) , radian |
---|
| 29 | c pplay,pplev pressure (Pa) in the middle and boundary of each layer |
---|
| 30 | c pq Dust mixing ratio (used if tracer =T and active=T). |
---|
| 31 | c reffrad(ngrid,nlayer,naerkind) Aerosol effective radius |
---|
| 32 | c QREFvis3d(ngridmx,nlayermx,naerkind) \ 3d extinction coefficients |
---|
| 33 | c QREFir3d(ngridmx,nlayermx,naerkind) / at reference wavelengths; |
---|
| 34 | c omegaREFvis3d(ngridmx,nlayermx,naerkind) \ 3d single scat. albedo |
---|
| 35 | c omegaREFir3d(ngridmx,nlayermx,naerkind) / at reference wavelengths; |
---|
| 36 | c |
---|
| 37 | c output: |
---|
| 38 | c ------- |
---|
| 39 | c tauref Prescribed mean column optical depth at 700 Pa |
---|
| 40 | c tau Column total visible dust optical depth at each point |
---|
| 41 | c aerosol aerosol(ig,l,1) is the dust optical |
---|
| 42 | c depth in layer l, grid point ig |
---|
| 43 | |
---|
| 44 | c |
---|
| 45 | c======================================================================= |
---|
| 46 | #include "dimensions.h" |
---|
| 47 | #include "dimphys.h" |
---|
| 48 | #include "callkeys.h" |
---|
| 49 | #include "comcstfi.h" |
---|
| 50 | #include "comgeomfi.h" |
---|
| 51 | #include "dimradmars.h" |
---|
| 52 | #include "yomaer.h" |
---|
| 53 | #include "tracer.h" |
---|
| 54 | #include "planete.h" |
---|
| 55 | |
---|
| 56 | c----------------------------------------------------------------------- |
---|
| 57 | c |
---|
| 58 | c Declarations : |
---|
| 59 | c -------------- |
---|
| 60 | c |
---|
| 61 | c Input/Output |
---|
| 62 | c ------------ |
---|
| 63 | INTEGER ngrid,nlayer,nq |
---|
| 64 | |
---|
| 65 | REAL ls,zday,expfactor |
---|
| 66 | REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
| 67 | REAL pq(ngrid,nlayer,nq) |
---|
| 68 | REAL tauref(ngrid), tau(ngrid,naerkind) |
---|
| 69 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
| 70 | REAL reffrad(ngrid,nlayer,naerkind) |
---|
| 71 | REAL QREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 72 | REAL QREFir3d(ngridmx,nlayermx,naerkind) |
---|
| 73 | REAL omegaREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 74 | REAL omegaREFir3d(ngridmx,nlayermx,naerkind) |
---|
| 75 | c |
---|
| 76 | c Local variables : |
---|
| 77 | c ----------------- |
---|
| 78 | INTEGER l,ig,iq,i,j |
---|
| 79 | INTEGER iaer ! Aerosol index |
---|
| 80 | real topdust(ngridmx) |
---|
| 81 | real zlsconst, zp |
---|
| 82 | real taueq,tauS,tauN |
---|
| 83 | real r0,reff,coefsize |
---|
| 84 | c Mean Qext(vis)/Qext(ir) profile |
---|
| 85 | real msolsir(nlayermx,naerkind) |
---|
| 86 | c Mean Qext(ir)/Qabs(ir) profile |
---|
| 87 | real mqextsqabs(nlayermx,naerkind) |
---|
| 88 | c Variables used when multiple particle sizes are used |
---|
| 89 | c for dust or water ice particles in the radiative transfer |
---|
| 90 | c (see callradite.F for more information). |
---|
| 91 | REAL taudusttmp(ngridmx)! Temporary dust opacity |
---|
| 92 | ! used before scaling |
---|
| 93 | REAL taudustvis(ngridmx) ! Dust opacity after scaling |
---|
| 94 | REAL taudusttes(ngridmx) ! Dust opacity at IR ref. wav. as |
---|
| 95 | ! "seen" by the GCM. |
---|
| 96 | REAL taucloudvis(ngridmx)! Cloud opacity at visible |
---|
| 97 | ! reference wavelength |
---|
| 98 | REAL taucloudtes(ngridmx)! Cloud opacity at infrared |
---|
| 99 | ! reference wavelength using |
---|
| 100 | ! Qabs instead of Qext |
---|
| 101 | ! (direct comparison with TES) |
---|
| 102 | c |
---|
| 103 | c local saved variables |
---|
| 104 | c --------------------- |
---|
| 105 | |
---|
| 106 | REAL topdust0(ngridmx) |
---|
| 107 | SAVE topdust0 |
---|
| 108 | |
---|
| 109 | LOGICAL firstcall |
---|
| 110 | DATA firstcall/.true./ |
---|
| 111 | SAVE firstcall |
---|
| 112 | |
---|
| 113 | ! indexes of water ice and dust tracers: |
---|
| 114 | INTEGER,SAVE :: nqdust(nqmx) ! to store the indexes of dust tracers |
---|
| 115 | INTEGER,SAVE :: i_ice=0 ! water ice |
---|
| 116 | CHARACTER(LEN=20) :: tracername ! to temporarly store text |
---|
| 117 | |
---|
| 118 | call zerophys(ngrid*naerkind,tau) |
---|
| 119 | |
---|
| 120 | ! identify tracers |
---|
| 121 | |
---|
| 122 | IF (firstcall) THEN |
---|
| 123 | ! identify tracers which are dust |
---|
| 124 | i=0 |
---|
| 125 | DO iq=1,nq |
---|
| 126 | tracername=noms(iq) |
---|
| 127 | IF (tracername(1:4).eq."dust") THEN |
---|
| 128 | i=i+1 |
---|
| 129 | nqdust(i)=iq |
---|
| 130 | ENDIF |
---|
| 131 | ENDDO |
---|
| 132 | |
---|
| 133 | IF (water.AND.activice) THEN |
---|
| 134 | i_ice=igcm_h2o_ice |
---|
| 135 | write(*,*) "aeropacity: i_ice=",i_ice |
---|
| 136 | ENDIF |
---|
| 137 | |
---|
| 138 | c altitude of the top of the aerosol layer (km) at Ls=2.76rad: |
---|
| 139 | c in the Viking year scenario |
---|
| 140 | DO ig=1,ngrid |
---|
| 141 | topdust0(ig)=60. -22.*SIN(lati(ig))**2 |
---|
| 142 | END DO |
---|
| 143 | |
---|
| 144 | c typical profile of solsir and (1-w)^(-1): |
---|
| 145 | call zerophys(nlayer*naerkind,msolsir) |
---|
| 146 | call zerophys(nlayer*naerkind,mqextsqabs) |
---|
| 147 | WRITE(*,*) "Typical profiles of solsir and Qext/Qabs(IR):" |
---|
| 148 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 149 | WRITE(*,*) "Aerosol # ",iaer |
---|
| 150 | DO l=1,nlayer |
---|
| 151 | DO ig=1,ngridmx |
---|
| 152 | msolsir(l,iaer)=msolsir(l,iaer)+ |
---|
| 153 | & QREFvis3d(ig,l,iaer)/ |
---|
| 154 | & QREFir3d(ig,l,iaer) |
---|
| 155 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)+ |
---|
| 156 | & (1.E0-omegaREFir3d(ig,l,iaer))**(-1) |
---|
| 157 | ENDDO |
---|
| 158 | msolsir(l,iaer)=msolsir(l,iaer)/REAL(ngridmx) |
---|
| 159 | mqextsqabs(l,iaer)=mqextsqabs(l,iaer)/REAL(ngridmx) |
---|
| 160 | ENDDO |
---|
| 161 | WRITE(*,*) "solsir: ",msolsir(:,iaer) |
---|
| 162 | WRITE(*,*) "Qext/Qabs(IR): ",mqextsqabs(:,iaer) |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
| 165 | ! load value of tauvis from callphys.def (if given there, |
---|
| 166 | ! otherwise default value read from starfi.nc file will be used) |
---|
| 167 | call getin("tauvis",tauvis) |
---|
| 168 | |
---|
| 169 | firstcall=.false. |
---|
| 170 | |
---|
| 171 | END IF |
---|
| 172 | |
---|
| 173 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 174 | c -------------------------------------------- |
---|
| 175 | aerkind: SELECT CASE (iaer) |
---|
| 176 | c================================================================== |
---|
| 177 | CASE(1) aerkind ! Dust (iaer=1) |
---|
| 178 | c================================================================== |
---|
| 179 | |
---|
| 180 | c ------------------------------------------------------------- |
---|
| 181 | c 1) Prescribed dust (if tracer=F or active=F) |
---|
| 182 | c ------------------------------------------------------------- |
---|
| 183 | IF ((.not.tracer) .or. (.not.active)) THEN |
---|
| 184 | |
---|
| 185 | c Vertical column optical depth at 700.Pa |
---|
| 186 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 187 | IF(iaervar.eq.1) THEN |
---|
| 188 | do ig=1, ngridmx |
---|
| 189 | tauref(ig)=max(tauvis,1.e-9) ! tauvis=cste (set in callphys.def |
---|
| 190 | ! or read in starfi |
---|
| 191 | end do |
---|
| 192 | ELSE IF (iaervar.eq.2) THEN ! << "Viking" Scenario>> |
---|
| 193 | |
---|
| 194 | tauref(1) = 0.7+.3*cos(ls+80.*pi/180.) ! like seen by VL1 |
---|
| 195 | do ig=2,ngrid |
---|
| 196 | tauref(ig) = tauref(1) |
---|
| 197 | end do |
---|
| 198 | |
---|
| 199 | ELSE IF (iaervar.eq.3) THEN ! << "MGS" scenario >> |
---|
| 200 | |
---|
| 201 | taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls-4.363)))**14 |
---|
| 202 | tauS= 0.1 +(0.5-0.1) *(cos(0.5*(ls-4.363)))**14 |
---|
| 203 | tauN = 0.1 |
---|
| 204 | c if (peri_day.eq.150) then |
---|
| 205 | c tauS=0.1 |
---|
| 206 | c tauN=0.1 +(0.5-0.1) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
| 207 | c taueq= 0.2 +(0.5-0.2) *(cos(0.5*(ls+pi-4.363)))**14 |
---|
| 208 | c endif |
---|
| 209 | do ig=1,ngrid/2 ! Northern hemisphere |
---|
| 210 | tauref(ig)= tauN + |
---|
| 211 | & (taueq-tauN)*0.5*(1+tanh((45-lati(ig)*180./pi)*6/60)) |
---|
| 212 | end do |
---|
| 213 | do ig=ngrid/2+1, ngridmx ! Southern hemisphere |
---|
| 214 | tauref(ig)= tauS + |
---|
| 215 | & (taueq-tauS)*0.5*(1+tanh((45+lati(ig)*180./pi)*6/60)) |
---|
| 216 | end do |
---|
| 217 | |
---|
| 218 | ELSE IF ((iaervar.eq.4).or. |
---|
| 219 | & ((iaervar.ge.24).and.(iaervar.le.26))) |
---|
| 220 | & THEN ! << "TES assimilated dust scenarios >> |
---|
| 221 | call readtesassim(ngrid,nlayer,zday,pplev,tauref) |
---|
| 222 | |
---|
| 223 | ELSE IF (iaervar.eq.5) THEN ! << Escalier Scenario>> |
---|
| 224 | c tauref(1) = 0.2 |
---|
| 225 | c if ((ls.ge.210.*pi/180.).and.(ls.le.330.*pi/180.)) |
---|
| 226 | c & tauref(1) = 2.5 |
---|
| 227 | tauref(1) = 2.5 |
---|
| 228 | if ((ls.ge.30.*pi/180.).and.(ls.le.150.*pi/180.)) |
---|
| 229 | & tauref(1) = .2 |
---|
| 230 | do ig=2,ngrid |
---|
| 231 | tauref(ig) = tauref(1) |
---|
| 232 | end do |
---|
| 233 | |
---|
| 234 | ELSE IF (iaervar.gt.99) THEN ! << input netcdf file >> |
---|
| 235 | c*************WRF |
---|
| 236 | c |
---|
| 237 | c 2. customized dust opacity field |
---|
| 238 | c ex: from assimilation |
---|
| 239 | call meso_readtesassim(ngrid,nlayer,zday,pplev,tauref, |
---|
| 240 | . iaervar) |
---|
| 241 | c |
---|
| 242 | c*************WRF |
---|
| 243 | |
---|
| 244 | ELSE |
---|
| 245 | stop 'problem with iaervar in aeropacity.F' |
---|
| 246 | ENDIF |
---|
| 247 | |
---|
| 248 | c Altitude of the top of the dust layer |
---|
| 249 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 250 | zlsconst=SIN(ls-2.76) |
---|
| 251 | if (iddist.eq.1) then |
---|
| 252 | do ig=1,ngrid |
---|
| 253 | topdust(ig)=topdustref ! constant dust layer top |
---|
| 254 | end do |
---|
| 255 | |
---|
| 256 | else if (iddist.eq.2) then ! "Viking" scenario |
---|
| 257 | do ig=1,ngrid |
---|
| 258 | topdust(ig)=topdust0(ig)+18.*zlsconst |
---|
| 259 | end do |
---|
| 260 | |
---|
| 261 | else if(iddist.eq.3) then !"MGS" scenario |
---|
| 262 | do ig=1,ngrid |
---|
| 263 | topdust(ig)=60.+18.*zlsconst |
---|
| 264 | & -(32+18*zlsconst)*sin(lati(ig))**4 |
---|
| 265 | & - 8*zlsconst*(sin(lati(ig)))**5 |
---|
| 266 | end do |
---|
| 267 | endif |
---|
| 268 | |
---|
| 269 | |
---|
| 270 | c Optical depth in each layer : |
---|
| 271 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 272 | if(iddist.ge.1) then |
---|
| 273 | expfactor=0. |
---|
| 274 | CALL zerophys(ngrid,taudusttmp) |
---|
| 275 | DO l=1,nlayer |
---|
| 276 | DO ig=1,ngrid |
---|
| 277 | c Typical mixing ratio profile |
---|
| 278 | if(pplay(ig,l).gt.700. |
---|
| 279 | $ /(988.**(topdust(ig)/70.))) then |
---|
| 280 | zp=(700./pplay(ig,l))**(70./topdust(ig)) |
---|
| 281 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
| 282 | else |
---|
| 283 | expfactor=1.e-3 |
---|
| 284 | endif |
---|
| 285 | c Vertical scaling function |
---|
| 286 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) * |
---|
| 287 | & expfactor * |
---|
| 288 | & QREFvis3d(ig,l,iaer) / QREFvis3d(ig,1,iaer) |
---|
| 289 | c Scaling factor |
---|
| 290 | taudusttmp(ig)=taudusttmp(ig)+aerosol(ig,l,iaer) |
---|
| 291 | ENDDO |
---|
| 292 | ENDDO |
---|
| 293 | |
---|
| 294 | c Rescaling each layer to reproduce the choosen (or |
---|
| 295 | c assimilated) dust extinction opacity at visible |
---|
| 296 | c reference wavelength, which is originally scaled |
---|
| 297 | c to an equivalent 700Pa pressure surface. |
---|
| 298 | DO l=1,nlayer |
---|
| 299 | DO ig=1,ngrid |
---|
| 300 | aerosol(ig,l,iaer) = tauref(ig) * |
---|
| 301 | & pplev(ig,1) / 700.E0 * |
---|
| 302 | & aerosol(ig,l,iaer) / taudusttmp(ig) |
---|
| 303 | ENDDO |
---|
| 304 | ENDDO |
---|
| 305 | |
---|
| 306 | CALL zerophys(ngrid,taudustvis) |
---|
| 307 | CALL zerophys(ngrid,taudusttes) |
---|
| 308 | DO l=1,nlayer |
---|
| 309 | DO ig=1,ngrid |
---|
| 310 | taudustvis(ig) = taudustvis(ig) + aerosol(ig,l,iaer) |
---|
| 311 | taudusttes(ig) = taudusttes(ig) + aerosol(ig,l,iaer)* |
---|
| 312 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer)* |
---|
| 313 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
| 314 | ENDDO |
---|
| 315 | ENDDO |
---|
| 316 | |
---|
| 317 | c Outputs |
---|
| 318 | IF (ngrid.NE.1) THEN |
---|
| 319 | CALL WRITEDIAGFI(ngridmx,'taudustTES','dust abs IR', |
---|
| 320 | & ' ',2,taudusttes) |
---|
| 321 | CALL wstats(ngridmx,'taudustTES','dust abs IR', |
---|
| 322 | & ' ',2,taudusttes) |
---|
| 323 | ELSE |
---|
| 324 | CALL writeg1d(ngrid,1,taudusttes,'taudusttes','NU') |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | c changement dans le calcul de la distribution verticale |
---|
| 328 | c dans le cas des scenarios de poussieres assimiles |
---|
| 329 | c if (iaervar.eq.4) THEN ! TES |
---|
| 330 | c call zerophys(ngrid*naerkind,tau) |
---|
| 331 | c |
---|
| 332 | c do l=1,nlayer |
---|
| 333 | c do ig=1,ngrid |
---|
| 334 | c tau(ig,1)=tau(ig,1)+ aerosol(ig,l,1) |
---|
| 335 | c end do |
---|
| 336 | c end do |
---|
| 337 | c do l=1,nlayer |
---|
| 338 | c do ig=1,ngrid |
---|
| 339 | c aerosol(ig,l,1)=aerosol(ig,l,1)*tauref(ig)/tau(ig,1) |
---|
| 340 | c $ *(pplev(ig,1)/700) |
---|
| 341 | c end do |
---|
| 342 | c end do |
---|
| 343 | c endif |
---|
| 344 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 345 | else if(iddist.eq.0) then |
---|
| 346 | c old dust vertical distribution function (pollack90) |
---|
| 347 | DO l=1,nlayer |
---|
| 348 | DO ig=1,ngrid |
---|
| 349 | zp=700./pplay(ig,l) |
---|
| 350 | aerosol(ig,l,1)= tauref(ig)/700. * |
---|
| 351 | s (pplev(ig,l)-pplev(ig,l+1)) |
---|
| 352 | s *max( exp(.03*(1.-max(zp,1.))) , 1.E-3 ) |
---|
| 353 | ENDDO |
---|
| 354 | ENDDO |
---|
| 355 | end if |
---|
| 356 | |
---|
| 357 | c --------------------------------------------------------------------- |
---|
| 358 | c 2) Transported radiatively active dust (if tracer=T and active=T) |
---|
| 359 | c ---------------------------------------------------------------------- |
---|
| 360 | ELSE IF ((tracer) .and. (active)) THEN |
---|
| 361 | c The dust opacity is computed from q |
---|
| 362 | |
---|
| 363 | c a) "doubleq" technique (transport of mass and number mixing ratio) |
---|
| 364 | c ~~~~~~~~~~~~~~~~~~~ |
---|
| 365 | if(doubleq) then |
---|
| 366 | |
---|
| 367 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
| 368 | |
---|
| 369 | c Computing effective radius : |
---|
| 370 | do l=1,nlayer |
---|
| 371 | do ig=1, ngrid |
---|
| 372 | r0= |
---|
| 373 | & (r3n_q*pq(ig,l,1)/max(pq(ig,l,2),0.01))**(1./3.) |
---|
| 374 | r0=min(max(r0,1.e-10),500.e-6) |
---|
| 375 | reff= ref_r0 * r0 |
---|
| 376 | cc If reff is small, the transported dust mean Qext |
---|
| 377 | c is reduced from the reference dust Qext by a factor "coefsize" |
---|
| 378 | |
---|
| 379 | coefsize=min(max(2.52e6*reff-0.043 ,0.) ,1.) |
---|
| 380 | |
---|
| 381 | cc It is added 1.e-8 to pq to avoid low |
---|
| 382 | |
---|
| 383 | aerosol(ig,l,1)=aerosol(ig,l,1)+ 1.E-8 + |
---|
| 384 | & ( 0.75*Qext(1)*coefsize/(rho_dust*reff)) |
---|
| 385 | & * (pq(ig,l,nqdust(1)))* |
---|
| 386 | c only one dust bin to use with doubleq |
---|
| 387 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
| 388 | end do |
---|
| 389 | end do |
---|
| 390 | call zerophys(ngrid,tauref) |
---|
| 391 | |
---|
| 392 | c b) Size bin technique (each aerosol can contribute to opacity)) |
---|
| 393 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 394 | else |
---|
| 395 | c The dust opacity is computed from q |
---|
| 396 | call zerophys(ngrid*nlayer*naerkind,aerosol) |
---|
| 397 | do iq=1,dustbin |
---|
| 398 | do l=1,nlayer |
---|
| 399 | do ig=1,ngrid |
---|
| 400 | cc qextrhor(iq) is (3/4)*Qext/(rho*reff) |
---|
| 401 | cc It is added 1.e-8 to pq to avoid low |
---|
| 402 | aerosol(ig,l,1)=aerosol(ig,l,1)+ |
---|
| 403 | & qextrhor(nqdust(iq))*(pq(ig,l,nqdust(iq))+1.e-8)* |
---|
| 404 | & (pplev(ig,l)-pplev(ig,l+1))/g |
---|
| 405 | end do |
---|
| 406 | end do |
---|
| 407 | end do |
---|
| 408 | call zerophys(ngrid,tauref) |
---|
| 409 | end if ! (doubleq) |
---|
| 410 | END IF ! (dust scenario) |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | c================================================================== |
---|
| 414 | CASE(2) aerkind ! Water ice crystals (iaer=2) |
---|
| 415 | c================================================================== |
---|
| 416 | |
---|
| 417 | IF (water.AND.activice) THEN |
---|
| 418 | c 1. Initialization |
---|
| 419 | CALL zerophys(ngrid*nlayer,aerosol(1,1,iaer)) |
---|
| 420 | CALL zerophys(ngrid,taucloudvis) |
---|
| 421 | CALL zerophys(ngrid,taucloudtes) |
---|
| 422 | c 2. Opacity calculation |
---|
| 423 | DO ig=1, ngrid |
---|
| 424 | DO l=1,nlayer |
---|
| 425 | aerosol(ig,l,iaer) = |
---|
| 426 | & ( 0.75 * QREFvis3d(ig,l,iaer) / |
---|
| 427 | & ( rho_ice * reffrad(ig,l,iaer) ) ) * |
---|
| 428 | & ( pq(ig,l,i_ice) + 1.E-8 ) * |
---|
| 429 | & ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
| 430 | taucloudvis(ig) = taucloudvis(ig) + aerosol(ig,l,iaer) |
---|
| 431 | taucloudtes(ig) = taucloudtes(ig) + aerosol(ig,l,iaer)* |
---|
| 432 | & QREFir3d(ig,l,iaer) / QREFvis3d(ig,l,iaer) * |
---|
| 433 | & ( 1.E0 - omegaREFir3d(ig,l,iaer) ) |
---|
| 434 | ENDDO |
---|
| 435 | ENDDO |
---|
| 436 | c 3. Outputs |
---|
| 437 | IF (ngrid.NE.1) THEN |
---|
| 438 | CALL WRITEDIAGFI(ngridmx,'tauTES','tauabs IR refwvl', |
---|
| 439 | & ' ',2,taucloudtes) |
---|
| 440 | CALL wstats(ngridmx,'tauTES','tauabs IR refwvl', |
---|
| 441 | & ' ',2,taucloudtes) |
---|
| 442 | ELSE |
---|
| 443 | CALL writeg1d(ngrid,1,taucloudtes,'tautes','NU') |
---|
| 444 | ENDIF |
---|
| 445 | ENDIF |
---|
| 446 | |
---|
| 447 | c================================================================== |
---|
| 448 | END SELECT aerkind |
---|
| 449 | |
---|
| 450 | c ----------------------------------------------------------------- |
---|
| 451 | c Column integrated visible optical depth in each point |
---|
| 452 | c ----------------------------------------------------------------- |
---|
| 453 | |
---|
| 454 | do l=1,nlayer |
---|
| 455 | do ig=1,ngrid |
---|
| 456 | tau(ig,iaer) = tau(ig,iaer) + aerosol(ig,l,iaer) |
---|
| 457 | end do |
---|
| 458 | end do |
---|
| 459 | |
---|
| 460 | c ----------------------------------- |
---|
| 461 | ENDDO ! iaer (loop on aerosol kind) |
---|
| 462 | |
---|
| 463 | return |
---|
| 464 | end |
---|