! ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/phytrac.F,v 1.16 2006/03/24 15:06:23 lmdzadmin Exp $ ! c c SUBROUTINE phytrac (nstep, I gmtime, I debutphy, I lafin, I nqmax, I nlon, I nlev, I pdtphys, I u, I v, I t_seri, I paprs, I pplay, I coefh, I yu1, I yv1, I ftsol, I xlat, I xlon, I zlev, I presnivs, I pphis, I pphi, I albsol, O tr_seri) USE ioipsl IMPLICIT none c====================================================================== c Auteur(s) FH c Objet: Moniteur general des tendances traceurs c cAA Remarques en vrac: cAA-------------------- cAA 1/ le call phytrac se fait avec nqmax c====================================================================== #include "YOMCST.h" #include "dimensions.h" #include "dimphy.h" #include "clesphys.h" !///utile? #include "temps.h" #include "paramet.h" #include "control.h" #include "comgeomphy.h" #include "advtrac.h" c====================================================================== c Arguments: c c EN ENTREE: c ========== c c divers: c ------- c integer nlon ! nombre de points horizontaux integer nlev ! nombre de couches verticales integer nqmax ! nombre de traceurs auxquels on applique la physique integer nstep ! appel physique integer nseuil ! numero du premier traceur non CV c integer julien !jour julien c integer itop_con(nlon) c integer ibas_con(nlon) real gmtime real pdtphys ! pas d'integration pour la physique (seconde) real t_seri(nlon,nlev) ! temperature real tr_seri(nlon,nlev,nqmax) ! traceur real u(nlon,nlev) real v(nlon,nlev) real albsol(nlon) ! albedo surface real paprs(nlon,nlev+1) ! pression pour chaque inter-couche (en Pa) real ps(nlon) ! pression surface real pplay(nlon,nlev) ! pression pour le mileu de chaque couche (en Pa) real pphi(nlon,nlev) ! geopotentiel real pphis(nlon) REAL presnivs(nlev) logical debutphy ! le flag de l'initialisation de la physique logical lafin ! le flag de la fin de la physique c REAL flxmass_w(nlon,nlev) cAA Rem : nqmax : nombre de vrais traceurs est defini dans dimphy.h c c convection: c ----------- c REAL pmfu(nlon,nlev) ! flux de masse dans le panache montant REAL pmfd(nlon,nlev) ! flux de masse dans le panache descendant REAL pen_u(nlon,nlev) ! flux entraine dans le panache montant c c Couche limite: c -------------- c REAL coefh(nlon,nlev) ! coeff melange CL REAL yu1(nlon) ! vents au premier niveau REAL yv1(nlon) ! vents au premier niveau REAL xlat(nlon) ! latitudes pour chaque point REAL xlon(nlon) ! longitudes pour chaque point REAL zlev(nlon,nlev+1) ! altitude a chaque niveau (interface inferieure de la couche) cAA cAA Arguments necessaires pour les sources et puits de traceur: cAA ---------------- cAA real ftsol(nlon) ! Temperature du sol (surf)(Kelvin) cAA ---------------------------- cAA VARIABLES LOCALES TRACEURS cAA ---------------------------- cAA CHARACTER*2 itn C maf ioipsl CHARACTER*2 str2 INTEGER nhori, nvert REAL zsto, zout, zjulian INTEGER nid_tra SAVE nid_tra INTEGER nid_tra2,nid_tra3 SAVE nid_tra2,nid_tra3 INTEGER ndex(1) INTEGER ndex2d(iim*(jjm+1)),ndex3d(iim*(jjm+1)*klev) REAL zx_tmp_2d(iim,jjm+1), zx_tmp_3d(iim,jjm+1,klev) REAL zx_lon(iim,jjm+1), zx_lat(iim,jjm+1) c integer itau_w ! pas de temps ecriture = nstep + itau_phy c C C Variables liees a l'ecriture de la bande histoire : phytrac.nc c c INTEGER ecrit_tra c SAVE ecrit_tra logical ok_sync parameter (ok_sync = .true.) C C les traceurs C c=================== c it--------indice de traceur c k,i---------indices long, vert c=================== c Variables deja declarees dont on a besoin pour traceurs c k,i,it,tr_seri(klon,klev,nqmax),pplay(nlon,nlev), real zprof(klon,klev,nqmx) c real pzero,gamma c parameter (pzero=85000.) c parameter (gamma=5000.) REAL alpha real deltatr(klon,klev,nqmx) ! ecart au profil de ref zprof real tau(klev,nqmx) ! temps de relaxation vers le profil (s) save zprof,tau c====================================================================== c c Declaration des procedures appelees c c--modif convection tiedtke INTEGER i, k, it INTEGER iq, iiq REAL delp(klon,klev) c--end modif c c Variables liees a l'ecriture de la bande histoire physique c c Variables locales pour effectuer les appels en serie c---------------------------------------------------- c REAL d_tr(klon,klev), d_trs(klon) ! tendances de traceurs REAL d_tr_cl(klon,klev,nqmax) ! tendance de traceurs couche limite REAL d_tr_cv(klon,klev,nqmax) ! tendance de traceurs conv pour chq traceur C character*80 abort_message c c Controles c------------- logical first,couchelimite,convection save first,couchelimite,convection c Olivia data first,couchelimite,convection s /.true.,.false.,.false./ c====================================================================== ps(:)=paprs(:,1) c--------- c debutphy c--------- if (debutphy) then print*,"DEBUT PHYTRAC" C c============================================================= c Initialisation des traceurs c============================================================= c c=========== c definition de traceurs idealises c========== c c I) Declaration directe du traceur a altitude fixee c c a) traceur en carre OK c c do i=1,klon c tr_seri(i,:,1)=0. c if ((xlat(i)>=0.).and.(xlat(i)<=-30.)) then c if ((xlon(i)>=0.).and.(xlon(i)<=40.)) then c tr_seri(i,10,1)=1. c endif c endif c end do c c a bis) 2 traceurs en carre lat/alt, uniforme en longitude OK c C entre 45-55 km c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,1)=0. c if ((xlat(i)>=60.).and.(xlat(i)<=80.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=5.e4).and.(pplay(klon/2,k)<=4.e5)) then c tr_seri(i,k,1)=1. c endif c endif c endif c else c tr_seri(i,k,1)=0. c end do c end do cc c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,2)=0. c if ((xlat(i)>=-60.).and.(xlat(i)<=-80.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=5.e4).and.(pplay(klon/2,k)<=4.e5)) then c tr_seri(i,k,2)=1. c endif c endif c endif c else c tr_seri(i,k,2)=0. c end do c end do cc c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,3)=0. c if ((xlat(i)>=40.).and.(xlat(i)<=60.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=5.e4).and.(pplay(klon/2,k)<=4.e5)) then c tr_seri(i,k,3)=1. c endif c endif c endif c else c tr_seri(i,k,3)=0. c end do c end do cc c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,4)=0. c if ((xlat(i)>=-40.).and.(xlat(i)<=-60.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=5.e4).and.(pplay(klon/2,k)<=4.e5)) then c tr_seri(i,k,4)=1. c endif c endif c endif c else c tr_seri(i,k,4)=0. c end do c end do cc c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,5)=0. c if ((xlat(i)>=-20.).and.(xlat(i)<=20.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=5.e4).and.(pplay(klon/2,k)<=4.e5)) then c tr_seri(i,k,5)=1. c endif c endif c endif c else c tr_seri(i,k,5)=0. c end do c end do c c entre 35-45 km c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,6)=0. c if ((xlat(i)>=60.).and.(xlat(i)<=80.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=4.e5).and.(pplay(klon/2,k)<=8.e6)) then c tr_seri(i,k,6)=1. c endif c endif c endif c else c tr_seri(i,k,6)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,7)=0. c if ((xlat(i)>=-60.).and.(xlat(i)<=-80.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=4.e5).and.(pplay(klon/2,k)<=8.e6)) then c tr_seri(i,k,7)=1. c endif c endif c endif c else c tr_seri(i,k,7)=0. c end do c end do c C entre 50-60 km c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,8)=0. c if ((xlat(i)>=60.).and.(xlat(i)<=80.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=1.e5)) then c tr_seri(i,k,8)=1. c endif c endif c endif c else c tr_seri(i,k,8)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,9)=0. c if ((xlat(i)>=-80.).and.(xlat(i)<=-60.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=1.e5)) then c tr_seri(i,k,9)=1. c endif c endif c endif c else c tr_seri(i,k,9)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,10)=0. c if ((xlat(i)>=40.).and.(xlat(i)<=60.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=1.e5)) then c tr_seri(i,k,10)=1. c endif c endif c endif c else c tr_seri(i,k,10)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,11)=0. c if ((xlat(i)>=-60.).and.(xlat(i)<=-40.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=1.e5)) then c tr_seri(i,k,11)=1. c endif c endif c endif c else c tr_seri(i,k,11)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,12)=0. c if ((xlat(i)>=-20.).and.(xlat(i)<=20.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=1.e5)) then c tr_seri(i,k,12)=1. c endif c endif c endif c else c tr_seri(i,k,12)=0. c end do c end do c c entre 20-30 km c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,13)=0. c if ((xlat(i)>=60.).and.(xlat(i)<=80.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e6).and.(pplay(klon/2,k)<=2.e6)) then c tr_seri(i,k,13)=1. c endif c endif c endif c else c tr_seri(i,k,13)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,14)=0. c if ((xlat(i)>=-80.).and.(xlat(i)<=-60.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e6).and.(pplay(klon/2,k)<=2.e6)) then c tr_seri(i,k,14)=1. c endif c endif c endif c else c tr_seri(i,k,14)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,15)=0. c if ((xlat(i)>=-20.).and.(xlat(i)<=20.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e6).and.(pplay(klon/2,k)<=2.e6)) then c tr_seri(i,k,15)=1. c endif c endif c endif c else c tr_seri(i,k,15)=0. c end do c end do c c entre 55-65 km c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,16)=0. c if ((xlat(i)>=60.).and.(xlat(i)<=80.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=5.e4)) then c tr_seri(i,k,16)=1. c endif c endif c endif c endif c else c tr_seri(i,k,16)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,17)=0. c if ((xlat(i)>=-80.).and.(xlat(i)<=-60.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=5.e4)) then c tr_seri(i,k,17)=1. c endif c endif c endif c endif c else c tr_seri(i,k,17)=0. c end do c end do c c do i=1,klon c do k=1,klev+1 cc tr_seri(i,k,18)=0. c if ((xlat(i)>=-20.).and.(xlat(i)<=20.)) then c if ((xlon(i)>=-180.).and.(xlon(i)<=180.)) then c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=5.e4)) then c tr_seri(i,k,18)=1. c endif c endif c endif c endif c else c tr_seri(i,k,18)=0. c end do c end do c c b) traceur a une bande en latitudeOK c c a 65km c c do i=1,klon c tr_seri(i,:,1)=0. c if ((xlat(i)>=60.).and.(xlat(i)<=80.)) then c tr_seri(i,20,1)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,2)=0. c if ((xlat(i)>=40.).and.(xlat(i)<=60.)) then c tr_seri(i,20,2)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,3)=0. c if ((xlat(i)>=20.).and.(xlat(i)<=40.)) then c tr_seri(i,20,3)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,4)=0. c if ((xlat(i)>=0.).and.(xlat(i)<=20.)) then c tr_seri(i,20,4)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,5)=0. c if ((xlat(i)>=-20.).and.(xlat(i)<=0.)) then c tr_seri(i,20,5)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,6)=0. c if ((xlat(i)>=-40.).and.(xlat(i)<=-20.)) then c tr_seri(i,20,6)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,7)=0. c if ((xlat(i)>=-60.).and.(xlat(i)<=-40.)) then c tr_seri(i,20,7)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,8)=0. c if ((xlat(i)>=-80.).and.(xlat(i)<=-60.)) then c tr_seri(i,20,8)=1. c endif c end do c c a 50km c c do i=1,klon c tr_seri(i,:,1)=0. c if ((xlat(i)>=40.).and.(xlat(i)<=60.)) then c tr_seri(i,27,1)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,2)=0. c if ((xlat(i)>=60.).and.(xlat(i)<=80.)) then c tr_seri(i,27,2)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,3)=0. c if ((xlat(i)>=20.).and.(xlat(i)<=40.)) then c tr_seri(i,27,3)=1. c endif c end do c c do i=1,klon c tr_seri(i,:4)=0. c if ((xlat(i)>=0.).and.(xlat(i)<=20.)) then c tr_seri(i,27,4)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,5)=0. c if ((xlat(i)>=-20.).and.(xlat(i)<=0.)) then c tr_seri(i,27,5)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,6)=0. c if ((xlat(i)>=-40.).and.(xlat(i)<=-20.)) then c tr_seri(i,27,6)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,7)=0. c if ((xlat(i)>=-60.).and.(xlat(i)<=-40.)) then c tr_seri(i,27,7)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,8)=0. c if ((xlat(i)>=-80.).and.(xlat(i)<=-60.)) then c tr_seri(i,27,8)=1. c endif c end do c c c) traceur a plusieurs bandes en latitude OK c c do i=1,klon c tr_seri(i,:,2)=0. c if ((xlat(i)>=50.).and.(xlat(i)<=70.)) then c tr_seri(i,10,2)=1. c endif c if ((xlat(i)>=-10.).and.(xlat(i)<=10.)) then c tr_seri(i,10,2)=1. c endif c c if ((xlat(i)>=-70.).and.(xlat(i)<=-50.)) then c tr_seri(i,10,2)=1. c endif c end do c c d) traceur a une bande en altitude OK c c do k=1,klev+1 c tr_seri(:,k,1)=0. c if ((pplay(klon/2,k)>=1.e5).and.(pplay(klon/2,k)<=1.e6)) then c tr_seri(:,k,1)=1. c endif c end do c c dbis) plusieurs traceurs a une bande en altitude OK c c bande tres basse tropo c do k=1,klev c tr_seri(:,k,1)=0. c if ((pplay(klon/2,k)>=5.e5).and.(pplay(klon/2,k)<=5.e6)) then c tr_seri(:,k,1)=1. c endif c end do c bande dans les nuages et un peu en-dessous c do k=1,klev c tr_seri(:,k,2)=0. c if ((pplay(klon/2,k)>=5.e4).and.(pplay(klon/2,k)<=5.e5)) then c tr_seri(:,k,2)=1. c endif c end do cune grosse epaisseur: inclue toute la circulation meridienne c do k=1,klev c tr_seri(:,k,1)=0. c if ((pplay(klon/2,k)>=1.e4).and.(pplay(klon/2,k)<=1.e6)) then c tr_seri(:,k,1)=1. c endif c end do cune grosse epaisseur: inclue la mesosphere c do k=1,klev c tr_seri(:,k,2)=0. c if ((pplay(klon/2,k)>=2.e2).and.(pplay(klon/2,k)<=1.e4)) then c tr_seri(:,k,2)=1. c endif c end do c c do k=1,klev c tr_seri(:,k,3)=0. c if ((pplay(klon/2,k)>=5.e1).and.(pplay(klon/2,k)<=5.e2)) then c tr_seri(:,k,3)=1. c endif c end do c c e) plusieurs couches verticales de traceurs, a plusieurs bandes en latitude??? c c au sol c do i=1,klon c tr_seri(i,:,1)=0. c if ((xlat(i)>=50.).and.(xlat(i)<=70.)) then c tr_seri(i,5,1)=1. c endif c if ((xlat(i)>=-10.).and.(xlat(i)<=10.)) then c tr_seri(i,5,1)=1. c endif c c if ((xlat(i)>=-70.).and.(xlat(i)<=-50.)) then c tr_seri(i,5,1)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,2)=0. c if ((xlat(i)>=50.).and.(xlat(i)<=70.)) then c tr_seri(i,10,2)=1. c endif c if ((xlat(i)>=-10.).and.(xlat(i)<=10.)) then c tr_seri(i,10,2)=1. c endif c c if ((xlat(i)>=-70.).and.(xlat(i)<=-50.)) then c tr_seri(i,10,2)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,3)=0. c if ((xlat(i)>=50.).and.(xlat(i)<=70.)) then c tr_seri(i,30,3)=1. c endif c if ((xlat(i)>=-10.).and.(xlat(i)<=10.)) then c tr_seri(i,30,3)=1. c endif c c if ((xlat(i)>=-70.).and.(xlat(i)<=-50.)) then c tr_seri(i,30,3)=1. c endif c end do c c do i=1,klon c tr_seri(i,:,4)=0. c if ((xlat(i)>=50.).and.(xlat(i)<=70.)) then c tr_seri(i,45,4)=1. c endif c if ((xlat(i)>=-10.).and.(xlat(i)<=10.)) then c tr_seri(i,45,4)=1. c endif c c if ((xlat(i)>=-70.).and.(xlat(i)<=-50.)) then c tr_seri(i,45,4)=1. c endif c end do c c II) Declaration d'un profil vertical de traceur OK c c tr_seri = profil initial c zprof = profil de rappel c (identiques a l'initialisation) c c 1 -> CO ; 2 -> OCS c def des profils en log(a) = a * log(P) + b par morceaux, cf. pollack et al c tr_seri en ppm c Constantes de rappel: do k=1,klev tau(k,1)=1.e6 tau(k,2)=1.e7 tau(k,3)=1.e8 tau(k,4)=1.e6 tau(k,5)=1.e7 tau(k,6)=1.e8 enddo c CO do it=1,3 do k=1,klev tr_seri(:,k,it)=0. c pour l'instant, tau fixe, mais possibilite de le faire varier avec z if (pplay(klon/2,k) >= 1.9e6) then tr_seri(:,k,it)=20. endif if ((pplay(klon/2,k)<=1.9e6).and.(pplay(klon/2,k)>=2.73e5)) then alpha=(log(pplay(klon/2,k))-log(2.73e5))/ . (log(1.9e6)-log(2.73e5)) tr_seri(:,k,it)=30.*(20./30.)**alpha endif if ((pplay(klon/2,k)<=2.73e5).and.(pplay(klon/2,k)>=1.1e4)) then alpha=(log(pplay(klon/2,k))-log(1.1e4))/ . (log(2.73e5)-log(1.1e4)) tr_seri(:,k,it)=50.*(30./50.)**alpha endif if ((pplay(klon/2,k)<=1.1e4).and.(pplay(klon/2,k)>=1.3e3)) then alpha=(log(pplay(klon/2,k))-log(1.3e3))/ . (log(1.1e4)-log(1.3e3)) tr_seri(:,k,it)=2.*(50./2.)**alpha endif if ((pplay(klon/2,k)<=1.3e3).and.(pplay(klon/2,k)>=2.4)) then alpha=(log(pplay(klon/2,k))-log(2.4))/ . (log(1.3e3)-log(2.4)) tr_seri(:,k,it)=1000.*(2./1000.)**alpha endif if (pplay(klon/2,k) <= 2.4) then tr_seri(:,k,it)=1000. endif enddo c OCS do k=1,klev tr_seri(:,k,it+3)=0. if (pplay(klon/2,k) >= 9.45e5) then tr_seri(:,k,it+3)=16. endif if ((pplay(klon/2,k)<=9.45e5).and.(pplay(klon/2,k)>=4.724e5)) * then alpha=(log(pplay(klon/2,k))-log(4.724e5))/ * (log(9.45e5)-log(4.724e5)) tr_seri(:,k,it+3)=0.5*(16/0.5)**alpha endif if ((pplay(klon/2,k)<=4.724e5).and.(pplay(klon/2,k)>=1.1e4)) * then alpha=(log(pplay(klon/2,k))-log(1.1e4))/ * (log(4.724e5)-log(1.1e4)) tr_seri(:,k,it+3)=0.005*(0.5/0.005)**alpha endif if (pplay(klon/2,k)<=1.1e4) then tr_seri(:,k,it+3)=0. endif end do enddo do it=1,nqmax do k=1,klev do i=1,klon zprof(i,k,it) = tr_seri(i,k,it) enddo enddo enddo c------------- c fin debutphy c------------- ENDIF ! fin debutphy c====================================================================== c Rappel vers un profil c====================================================================== do it=1,nqmax do k=1,klev do i=1,klon c VERIF if (tr_seri(i,k,it).lt.0) then print*,"Traceur negatif AVANT rappel:",i,k,it stop endif c FIN VERIF deltatr(i,k,it) = (-tr_seri(i,k,it)+zprof(i,k,it))/tau(k,it) tr_seri(i,k,it) = tr_seri(i,k,it) + deltatr(i,k,it)*pdtphys c VERIF if (tr_seri(i,k,it).lt.0) then print*,"APRES rappel:",i,k,it, . deltatr(i,k,it),zprof(i,k,it),tr_seri(i,k,it),pdtphys/tau(k,it) stop endif c FIN VERIF enddo enddo enddo c====================================================================== c Calcul de l'effet de la couche limite remis directement dans physiq c====================================================================== RETURN END