1 | SUBROUTINE SFLUXV(IPRINT,IG,dist_sol) |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | #include "dimensions.h" |
---|
6 | #include "dimphy.h" |
---|
7 | #include "comorbit.h" |
---|
8 | |
---|
9 | INTEGER NLAYER,NLEVEL,NSPECV,NSPC1V |
---|
10 | PARAMETER (NLAYER=llm,NLEVEL=NLAYER+1) |
---|
11 | PARAMETER (NSPECV=24,NSPC1V=25) |
---|
12 | INTEGER IG,IPRINT,NT,NTERM(NSPECV),J,K |
---|
13 | |
---|
14 | REAL FUW(NLEVEL),FDW(NLEVEL) |
---|
15 | REAL DT0(NLAYER),T0(NLEVEL),WB0(NLAYER),CO0(NLAYER) |
---|
16 | REAL BTOP, BSURF |
---|
17 | REAL ATERM(4,NSPECV),BTERM(4,NSPECV) |
---|
18 | REAL PEXPON(NSPECV), SOLARF(NSPECV) |
---|
19 | REAL DTAUV(klon,NLAYER,NSPECV,4) |
---|
20 | & ,TAUV (klon,NLEVEL,NSPECV,4) |
---|
21 | & ,WBARV(klon,NLAYER,NSPECV,4) |
---|
22 | & ,COSBV(klon,NLAYER,NSPECV,4) |
---|
23 | REAL BWNV(NSPC1V),WNOV(NSPECV) |
---|
24 | & ,DWNV(NSPECV),WLNV(NSPECV) |
---|
25 | REAL FNETV(klon,NLEVEL), |
---|
26 | & FUPV(klon,NLEVEL,NSPECV), |
---|
27 | & FDV(klon,NLEVEL,NSPECV), |
---|
28 | & FMNETV(klon,NLEVEL), |
---|
29 | & FMUPV(NLEVEL),FMDV(NLEVEL) |
---|
30 | REAL CSUBP,RSFI,RSFV,F0PI |
---|
31 | REAL UBARI,UBARV,UBAR0 |
---|
32 | |
---|
33 | real dist_sol |
---|
34 | |
---|
35 | COMMON /VISGAS/SOLARF,NTERM,PEXPON, |
---|
36 | & ATERM,BTERM |
---|
37 | |
---|
38 | COMMON /OPTICV/ DTAUV |
---|
39 | & ,TAUV |
---|
40 | & ,WBARV |
---|
41 | & ,COSBV |
---|
42 | |
---|
43 | COMMON /SPECTV/ BWNV,WNOV |
---|
44 | & ,DWNV,WLNV |
---|
45 | |
---|
46 | COMMON /FLUXvV/ FNETV, |
---|
47 | & FUPV, |
---|
48 | & FDV, |
---|
49 | & FMNETV |
---|
50 | |
---|
51 | COMMON /PLANT/ CSUBP,RSFI,RSFV,F0PI |
---|
52 | COMMON /UBARED/ UBARI,UBARV,UBAR0 |
---|
53 | |
---|
54 | |
---|
55 | * ON NE FAIT PAS LE CALCUL POUR TOUS LES IG EN MEME TEMPS |
---|
56 | * IG EST EN ARGUMENT...et SFLUXV EST APPELLEE NGRIDMX FOIS! |
---|
57 | |
---|
58 | C ZERO THE NET FLUXES |
---|
59 | DO 212 J=1,NLEVEL |
---|
60 | FNETV(ig,J)=-0. |
---|
61 | FMNETV(ig,J)=-0. |
---|
62 | 212 CONTINUE |
---|
63 | C |
---|
64 | C WE NOW ENTER A MAJOR LOOP OVER SPECRAL INTERVALS IN THE VISIBLE |
---|
65 | C AND OVER THE HORIZONTAL GRIDS |
---|
66 | C TO CALCULATE THE NET FLUX IN EACH SPECTRAL INTERVAL |
---|
67 | C |
---|
68 | C *************************************************************** |
---|
69 | |
---|
70 | |
---|
71 | DO 500 K=1,NSPECV ! #2 |
---|
72 | C ZERO THE SPECTRAL FLUXES IN ANTCIPATION OF SUMMING OVER NTERMS |
---|
73 | |
---|
74 | DO 214 J=1,NLEVEL ! #3 |
---|
75 | FUPV(ig,J,K)=0. |
---|
76 | FDV(ig,J,K)=0. |
---|
77 | 214 CONTINUE |
---|
78 | C |
---|
79 | C SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE VISIBLE |
---|
80 | F0PI=SOLARF(K)*(p_elips/dist_sol)**2. |
---|
81 | BTOP=0.0 |
---|
82 | C |
---|
83 | C LOOP OVER THE NTERMS BEGINING HERE |
---|
84 | DO 912 NT=1,NTERM(K) |
---|
85 | BSURF=0.+ RSFV*UBAR0*F0PI*EXP(-TAUV(ig,NLEVEL,K,NT)/UBAR0) |
---|
86 | C |
---|
87 | C* WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
---|
88 | C CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
---|
89 | C WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
---|
90 | C |
---|
91 | C FUW AND FDW ARE WORKING FLUX ARRAYS THAT WILL BE USED TO |
---|
92 | C RETURN FLUXES FOR A GIVEN NT |
---|
93 | C |
---|
94 | C23456789012345678901234567890123456789012345678901234567890123456789012 |
---|
95 | C |
---|
96 | C USE DT0,T0,WB0,CO0 INSTEAD OF DTAUV(ig,1,K,NT)..etc... |
---|
97 | |
---|
98 | DO J=1,NLAYER |
---|
99 | DT0(J)=DTAUV(ig,J,K,NT) |
---|
100 | T0(J) =TAUV(ig,J,K,NT) |
---|
101 | WB0(J)=WBARV(ig,J,K,NT) |
---|
102 | CO0(J)=COSBV(ig,J,K,NT) |
---|
103 | ENDDO |
---|
104 | |
---|
105 | T0(NLEVEL)=TAUV(ig,NLEVEL,K,NT) |
---|
106 | |
---|
107 | c PRINT*,'entree gfluxv #: ',ig,K |
---|
108 | c write(*,*) (DT0(J),J=1,NLAYER) |
---|
109 | c print*,'---' |
---|
110 | c write(*,*) (T0(J),J=1,NLEVEL) |
---|
111 | c print*,'---' |
---|
112 | c write(*,*) (WB0(J),J=1,NLAYER) |
---|
113 | c print*,'---' |
---|
114 | c write(*,*) (CO0(J),J=1,NLAYER) |
---|
115 | c print*,'UBAR0 ',UBAR0 |
---|
116 | c print*,NLEVEL,WNOV(K),F0PI,RSFV,BTOP,BSURF |
---|
117 | FUW = 0.0 |
---|
118 | FDW = 0.0 |
---|
119 | FMUPV=0.0 |
---|
120 | FMDV= 0.0 |
---|
121 | |
---|
122 | CALL GFLUXV(NLEVEL,WNOV(K),DT0,T0, |
---|
123 | & WB0,CO0,F0PI,RSFV,BTOP,BSURF,FUW,FDW,FMUPV, |
---|
124 | & FMDV,IPRINT) |
---|
125 | c PRINT*,'sortie gfluxv #: ',ig,K |
---|
126 | c print*,'UBAR0 ',UBAR0 |
---|
127 | |
---|
128 | C NOW CALCULTE THE CUMULATIVE VISIBLE NET FLUX |
---|
129 | |
---|
130 | DO 300 J=1,NLEVEL !<------------ |
---|
131 | FMNETV(ig,J)=FMNETV(ig,J)+( FMUPV(J)-FMDV(J) )*ATERM(NT,K) |
---|
132 | FNETV(ig,J)=FNETV(ig,J)+( FUW(J)-FDW(J) )*ATERM(NT,K) |
---|
133 | |
---|
134 | C AND THE SPECTRAL FLUXES SUMMED OVER THE NTERMS |
---|
135 | FUPV(ig,J,K)=FUPV(ig,J,K)+FUW(J)*ATERM(NT,K) |
---|
136 | FDV(ig,J,K)=FDV(ig,J,K)+FDW(J)*ATERM(NT,K) |
---|
137 | 300 CONTINUE !<-------------- |
---|
138 | C |
---|
139 | C |
---|
140 | 912 CONTINUE |
---|
141 | 500 CONTINUE |
---|
142 | |
---|
143 | C *** END OF MAJOR SPECTRAL INTERVAL LOOP IN THE VISIBLE***** |
---|
144 | RETURN |
---|
145 | END |
---|