[3] | 1 | SUBROUTINE optcv_1pt(zqaer_1pt,ioptv, |
---|
| 2 | . COSBV_1pt,DTAUV_1pt,TAUHV_1pt,TAUHVD_1pt,TAUCV_1pt, |
---|
| 3 | . TAURV_1pt,TAUGV_1pt,TAUGVD_1pt,WBARV_1pt,TAUV_1pt,IPRINT) |
---|
| 4 | |
---|
| 5 | |
---|
[102] | 6 | use dimphy |
---|
[3] | 7 | #include "dimensions.h" |
---|
| 8 | #include "microtab.h" |
---|
| 9 | #include "clesphys.h" |
---|
| 10 | |
---|
| 11 | PARAMETER(NLAYER=llm,NLEVEL=NLAYER+1) |
---|
| 12 | PARAMETER (NSPECI=46,NSPC1I=47,NSPECV=24,NSPC1V=25) |
---|
| 13 | |
---|
| 14 | c Arguments: |
---|
| 15 | c --------- |
---|
| 16 | integer IPRINT,ioptv |
---|
| 17 | C ioptv: premier appel, on ne calcule qu'une fois les QM et QF |
---|
| 18 | * nrad dans microtab.h |
---|
| 19 | real zqaer_1pt(NLAYER,nrad) |
---|
| 20 | real TAUHVD_1pt(NLAYER,NSPECV) |
---|
| 21 | real TAUGVD_1pt(NLAYER,NSPECV) |
---|
| 22 | real TAUHV_1pt(NSPECV),TAUCV_1pt(NSPECV) |
---|
| 23 | real TAURV_1pt(NSPECV),TAUGV_1pt(NSPECV) |
---|
| 24 | real DTAUV_1pt(NLAYER,NSPECV,4),TAUV_1pt(NLEVEL,NSPECV,4) |
---|
| 25 | real WBARV_1pt(NLAYER,NSPECV,4) |
---|
| 26 | real COSBV_1pt(NLAYER,NSPECV,4) |
---|
| 27 | c --------- |
---|
| 28 | |
---|
| 29 | COMMON /ATM/ Z(NLEVEL),PRESS(NLEVEL),DEN(NLEVEL),TEMP(NLEVEL) |
---|
| 30 | |
---|
| 31 | COMMON /GASS/ CH4(NLEVEL),XN2(NLEVEL),H2(NLEVEL),AR(NLEVEL) |
---|
| 32 | & ,XMU(NLEVEL),GAS1(NLAYER),COLDEN(NLAYER) |
---|
| 33 | |
---|
| 34 | COMMON /VISGAS/SOLARF(NSPECV),NTERM(NSPECV),PEXPON(NSPECV), |
---|
| 35 | & ATERM(4,NSPECV),BTERM(4,NSPECV) |
---|
| 36 | |
---|
| 37 | COMMON /AERSOL/ RADIUS(NLAYER), XNUMB(NLAYER) |
---|
| 38 | & , REALI(NSPECI), XIMGI(NSPECI), REALV(NSPECV), XIMGV(NSPECV) |
---|
| 39 | |
---|
| 40 | COMMON /CLOUD/ RADCLD(NLAYER), XNCLD(NLAYER) |
---|
| 41 | & , RCLDI(NSPECI), XICLDI(NSPECI) |
---|
| 42 | & , RCLDV(NSPECV), XICLDV(NSPECV) |
---|
| 43 | |
---|
| 44 | COMMON /SPECTV/ BWNV(NSPC1V),WNOV(NSPECV) |
---|
| 45 | & ,DWNV(NSPECV),WLNV(NSPECV) |
---|
| 46 | |
---|
| 47 | COMMON /PLANT/ CSUBP,RSFI,RSFV,F0PI |
---|
| 48 | COMMON /ADJUST/ RHCH4,FH2,FHAZE,FHVIS,FHIR,TAUFAC,RCLOUD,FARGON |
---|
| 49 | COMMON /CONST/ RGAS,RHOP,PI,SIGMA |
---|
| 50 | * nrad dans microtab.h |
---|
| 51 | COMMON /part/ v(nrad),rayon(nrad),vrat,dr(nrad),dv(nrad) |
---|
| 52 | |
---|
| 53 | REAL QF1(nrad,NSPECV),QF2(nrad,NSPECV) |
---|
| 54 | REAL QF3(nrad,NSPECV),QF4(nrad,NSPECV) |
---|
| 55 | REAL QM1(nrad,NSPECV),QM2(nrad,NSPECV) |
---|
| 56 | REAL QM3(nrad,NSPECV),QM4(nrad,NSPECV) |
---|
| 57 | |
---|
| 58 | save qf1,qf2,qf3,qf4,qm1,qm2,qm3,qm4 |
---|
| 59 | |
---|
| 60 | C* |
---|
| 61 | C THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISIBLE |
---|
| 62 | C IT CALCUALTES FOR EACH LAYER, FOR EACH SPECRAL INTERVAL IN THE VIS |
---|
| 63 | C LAYER: WBAR, DTAU, COSBAR |
---|
| 64 | C LEVEL: TAU |
---|
| 65 | C |
---|
| 66 | C ZERO THE COLUMN OPTICAL DEPTHS OF EACH TYPE |
---|
| 67 | C ??FLAG? THE OPTICAL DEPTH OF THE TOP OF THE MODEL |
---|
| 68 | C MAY NOT BE ZERO. |
---|
| 69 | |
---|
| 70 | c******* DEBUT DES BOUCLES ************************ |
---|
| 71 | DO 100 K=1,NSPECV !b! BOUCLE SUR LAMBDA |
---|
| 72 | |
---|
| 73 | TAURV_1pt(K)=0. |
---|
| 74 | TAUHV_1pt(K)=0. ! INTEGRATED TAU.......INITIALIZATION. |
---|
| 75 | TAUCV_1pt(K)=0. ! Rayleigh, Haze, Cloud, Gas |
---|
| 76 | TAUGV_1pt(K)=0. ! sca, abs, abs , abs |
---|
| 77 | |
---|
| 78 | DO 100 J=1,NLAYER !a! BOUCLE SUR L"ALTITUDE |
---|
| 79 | |
---|
| 80 | C #1: HAZE |
---|
| 81 | c--------------------------- |
---|
| 82 | |
---|
| 83 | c CALL THE MIE CODE TO GIVE THE AEROSOL PROPERTIES |
---|
| 84 | c USE XFRAC FOR FRACTAL AEROSOLS PROPERTIES AT LAMBDA < 2. um |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | c /\ |
---|
| 90 | c / \ |
---|
| 91 | c / \ |
---|
| 92 | c / _O \ |
---|
| 93 | c / |/ \ |
---|
| 94 | c / / \ \ |
---|
| 95 | c / |\ \/\ \ |
---|
| 96 | c / || / \ \ |
---|
| 97 | c ---------------- |
---|
| 98 | c | WARNING | |
---|
| 99 | c | SLOW DOWN | |
---|
| 100 | c ---------------- |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | c*********** EN TRAVAUX *************************** |
---|
| 106 | |
---|
| 107 | TAEROS=0. |
---|
| 108 | TAEROSCAT=0. |
---|
| 109 | CBAR=0. |
---|
| 110 | |
---|
| 111 | c print*,"rayon=",rayon |
---|
| 112 | c print*,"RF=",RF |
---|
| 113 | |
---|
| 114 | DO inq=1,nrad !BOUCLE SUR LES TAILLE D"AEROSOLS |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | IF (rayon(inq).lt.RF(inq)) THEN ! aerosols spheriques |
---|
| 118 | |
---|
| 119 | |
---|
| 120 | if(ioptv.eq.0.and.J.eq.1) then |
---|
| 121 | c CALL XMIE(rayon(inq)*1.e6,REALV(K),XIMGV(K), |
---|
| 122 | c & QEXT,QSCT,QABS,QBAR,WNOV(K)) |
---|
| 123 | |
---|
| 124 | CALL CMIE(1.E-2/WNOV(K),REALV(K),XIMGV(K),rayon(inq), |
---|
| 125 | & QEXT,QSCT,QABS,QBAR) |
---|
| 126 | |
---|
| 127 | c print*,'inq=',inq,' QM1=',QM1(inq,K),' QEXT=',QEXT |
---|
| 128 | |
---|
| 129 | QM1(inq,K)=QEXT |
---|
| 130 | QM2(inq,K)=QSCT |
---|
| 131 | QM3(inq,K)=QABS |
---|
| 132 | QM4(inq,K)=QBAR |
---|
| 133 | endif |
---|
| 134 | |
---|
| 135 | TAEROS=QM1(inq,K)*zqaer_1pt(NLAYER+1-J,inq)*1.e-4+TAEROS |
---|
| 136 | TAEROSCAT=QM2(inq,K)*zqaer_1pt(NLAYER+1-J,inq)*1.e-4+TAEROSCAT |
---|
| 137 | CBAR=CBAR+QM4(inq,K)*QM2(inq,K)*zqaer_1pt(NLAYER+1-J,inq)*1.e-4 |
---|
| 138 | |
---|
| 139 | ELSE ! aerosols fractals |
---|
| 140 | |
---|
| 141 | XMONO=(rayon(inq)/RF(inq))**3. |
---|
| 142 | XRULE=1. |
---|
| 143 | |
---|
| 144 | if(XMONO.gt.16384./1.5) then |
---|
| 145 | XRULE=(XMONO/16384.) |
---|
| 146 | XMONO=16384. |
---|
| 147 | endif |
---|
| 148 | |
---|
| 149 | if(ioptv.eq.0.and.J.eq.1) then |
---|
| 150 | |
---|
| 151 | CALL OPTFRAC(XMONO,10000./WNOV(K) |
---|
| 152 | & ,QEXT,QSCT,QABS,QBAR) |
---|
| 153 | |
---|
| 154 | c CALL CFFFV11(1.e-2/WNOV(K),REALV(K),XIMGV(K),RF(inq),2. |
---|
| 155 | c & ,XMONO,QSCT,QEXT,QABS,QBAR) |
---|
| 156 | |
---|
| 157 | |
---|
| 158 | QF1(inq,K)=QEXT*XRULE |
---|
| 159 | QF2(inq,K)=QSCT*XRULE |
---|
| 160 | QF3(inq,K)=QABS*XRULE |
---|
| 161 | QF4(inq,K)=QBAR |
---|
| 162 | |
---|
| 163 | c print*,'inq=',inq,' QF1=',QF1(inq,K),' QEXT=',QEXT,' XRULE=',XRULE |
---|
| 164 | |
---|
| 165 | endif |
---|
| 166 | |
---|
| 167 | TAEROS=QF1(inq,K)*zqaer_1pt(NLAYER+1-J,inq)+TAEROS |
---|
| 168 | TAEROSCAT=QF2(inq,K)*zqaer_1pt(NLAYER+1-J,inq)+TAEROSCAT |
---|
| 169 | CBAR=CBAR+QF4(inq,K)*QF2(inq,K)*zqaer_1pt(NLAYER+1-J,inq) |
---|
| 170 | |
---|
| 171 | ENDIF |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | ENDDO ! nrad |
---|
| 175 | |
---|
| 176 | |
---|
| 177 | CBAR=CBAR/TAEROSCAT |
---|
| 178 | |
---|
| 179 | DELTAZ=Z(J)-Z(J+1) |
---|
| 180 | |
---|
| 181 | c -------------------------------------------------------------------- |
---|
| 182 | c profil brume Pascal: fit T (sauf tropopause) et albedo |
---|
| 183 | c ------------------- |
---|
| 184 | if( cutoff.eq.1) then |
---|
| 185 | IF(PRESS(J).gt.9.e-3) THEN |
---|
| 186 | TAEROS=TAEROSM1*DELTAZ/DELTAZM1*0.85 |
---|
| 187 | TAEROSCAT=TAEROSCATM1*DELTAZ/DELTAZM1*0.85 |
---|
| 188 | c TAEROS=0. |
---|
| 189 | c TAEROSCAT=0. |
---|
| 190 | ENDIF |
---|
| 191 | |
---|
| 192 | IF(PRESS(J).gt.1.e-1) THEN |
---|
| 193 | TAEROS=TAEROSM1*DELTAZ/DELTAZM1*1.15 |
---|
| 194 | TAEROSCAT=TAEROSCATM1*DELTAZ/DELTAZM1*1.15 |
---|
| 195 | c TAEROS=0. |
---|
| 196 | c TAEROSCAT=0. |
---|
| 197 | ENDIF |
---|
| 198 | endif !cutoff=1 |
---|
| 199 | |
---|
| 200 | c profil brume pour fit T (y compris tropopause), mais ne fit plus albedo... |
---|
| 201 | c ----------------------- |
---|
| 202 | if( cutoff.eq.2) then |
---|
| 203 | IF(PRESS(J).gt.1.e-1) THEN |
---|
| 204 | TAEROS=0. |
---|
| 205 | TAEROSCAT=0. |
---|
| 206 | ENDIF |
---|
| 207 | endif !cutoff=2 |
---|
| 208 | c -------------------------------------------------------------------- |
---|
| 209 | |
---|
| 210 | TAEROSM1=TAEROS |
---|
| 211 | TAEROSCATM1=TAEROSCAT |
---|
| 212 | DELTAZM1=DELTAZ |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | IF (TAEROSCAT.le.0.) CBAR=0. |
---|
| 216 | |
---|
| 217 | if (IPRINT.eq.1) then |
---|
| 218 | if (k.eq.NSPECV/2) then |
---|
| 219 | print*,'@VI',K,J,TAEROS,TAEROSCAT,CBAR |
---|
| 220 | print*,'@ ',K,J,QF1(1,K),QF2(1,K),zqaer_1pt(NLAYER+1-J,1) |
---|
| 221 | print*,'@ ',K,J,QF1(3,K),QF2(3,K),zqaer_1pt(NLAYER+1-J,3) |
---|
| 222 | print*,'@ ',K,J,QF1(5,K),QF2(5,K),zqaer_1pt(NLAYER+1-J,5) |
---|
| 223 | print*,'@ ',K,J,QF1(7,K),QF2(7,K),zqaer_1pt(NLAYER+1-J,7) |
---|
| 224 | print*,'@ ',K,J,QF1(9,K),QF2(9,K),zqaer_1pt(NLAYER+1-J,9) |
---|
| 225 | print* |
---|
| 226 | endif |
---|
| 227 | endif |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | c*********** EN TRAVAUX *************************** |
---|
| 232 | |
---|
| 233 | C #2: RAYLEIGH |
---|
| 234 | c------------------------------- |
---|
| 235 | |
---|
| 236 | C RAYLEIGH SCATTERING STRAIGHT FROM HANSEN AND TRAVIS...SEE NOTES |
---|
| 237 | C RATIOED BY THE LAYER COLUMN NUMBER TO THE TOTAL |
---|
| 238 | C COLUMN NUMBER ON EARTH. CM-2 |
---|
| 239 | C THIS IS THE SCATTERING BY THE ATMOSPHERE |
---|
| 240 | |
---|
| 241 | TAURAY=(COLDEN(J)*28.9/(XMU(J)*1013.25))* |
---|
| 242 | &(.008569/WLNV(K)**4)*(1.+.0113/WLNV(K)**2+.00013/WLNV(K)**4) |
---|
| 243 | |
---|
| 244 | c PRINT*,WLNV(K) |
---|
| 245 | c COLX=0. |
---|
| 246 | c COLP=0. |
---|
| 247 | c COLT=0. |
---|
| 248 | c DO IU=1,NLAYER |
---|
| 249 | c COLP=COLDEN(IU)*1.e+1*1.35+COLP |
---|
| 250 | c TAURAY=(COLDEN(IU)*28.9/(XMU(IU)*1013.25))* |
---|
| 251 | c & (.008569/WLNV(K)**4)*(1.+.0113/WLNV(K)**2 |
---|
| 252 | c & +.00013/WLNV(K)**4) |
---|
| 253 | c COLT=COLT+TAURAY |
---|
| 254 | c COLX=COLDEN(IU)*1.e+1/(1.E5*28./22.4E3)*1.e-1*0.0933e-1+COLX |
---|
| 255 | c | |
---|
| 256 | c | |
---|
| 257 | c g/cm2->kg/m2 | m2/kg |
---|
| 258 | c Print*,IU, tauray, |
---|
| 259 | c & COLDEN(IU)*1.e+1/(1.E5*28./22.4E3)*1.e-1*0.543e-1 |
---|
| 260 | c ENDDO |
---|
| 261 | c PRINT*,COLP,' PRESSURE AT GROUND;' |
---|
| 262 | c PRINT*,COLX,' TAU_GAS AT GROUND;' |
---|
| 263 | c print*,colt,colx,' COLT, COLX' |
---|
| 264 | c STOP |
---|
| 265 | |
---|
| 266 | c DZ=Z(J)-Z(J+1) |
---|
| 267 | c PRINT*, Z(J),WLNV(K), |
---|
| 268 | c &(28.9/(XMU(J)*1013.25))*(.008569/WLNV(K)**4)* |
---|
| 269 | c &(1.+.0113/WLNV(K)**2+.00013/WLNV(K)**4) |
---|
| 270 | c & ,COLDEN(J)/DZ/100000., |
---|
| 271 | c &(28.9/(XMU(J)*1013.25))*(.008569/WLNV(K)**4)* |
---|
| 272 | c &(1.+.0113/WLNV(K)**2+.00013/WLNV(K)**4) |
---|
| 273 | c & *COLDEN(J)/DZ/100000. |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | |
---|
| 277 | C #3: CLOUD |
---|
| 278 | c---------------------------- |
---|
| 279 | |
---|
| 280 | C NEXT COMPUTE TAU CLOUD |
---|
| 281 | |
---|
| 282 | TAUCLD=0.0 |
---|
| 283 | CBARC =0.0 |
---|
| 284 | QEXTC =0.0 |
---|
| 285 | QSCTC =0.0 |
---|
| 286 | c XNCLD(J)=0. |
---|
| 287 | IF ( XNCLD(J) .GT. 0. .and .taufac.gt.0.) THEN |
---|
| 288 | CALL XMIE(RADCLD(J),RCLDV(K),XICLDV(K), |
---|
| 289 | & QEXTC,QSCTC,QABSC,CBARC,WNOV(K)) |
---|
| 290 | TAUCLD=QEXTC*XNCLD(J) |
---|
| 291 | ENDIF |
---|
| 292 | C |
---|
| 293 | TAURV_1pt(K)=TAURV_1pt(K)+TAURAY |
---|
| 294 | TAUGVD_1pt(J,K)=TAURV_1pt(K) |
---|
| 295 | |
---|
| 296 | TAUHV_1pt(K)=TAUHV_1pt(K)+TAEROS ! INTEGRATED Quant. |
---|
| 297 | TAUHVD_1pt(J,K)=TAUHV_1pt(K) |
---|
| 298 | |
---|
| 299 | TAUCV_1pt(K)=TAUCV_1pt(K)+TAUCLD |
---|
| 300 | |
---|
| 301 | C #4: TAUGAS |
---|
| 302 | C---------------------------- |
---|
| 303 | |
---|
| 304 | C LOOP OVER THE NTERMS |
---|
| 305 | C THIS IS THE ABSORPTION BY THE ATMOSPHERE (METHANE) |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | DO 909 NT=1,NTERM(K) |
---|
| 309 | TAUGAS=COLDEN(J)*GAS1(J)*BTERM(NT,K)* |
---|
| 310 | & ( (PRESS(J+1) + PRESS(J))*.5 )**PEXPON(K) |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | C COMPUTE THE AVERAGE COSBAR AND WBAR |
---|
| 314 | C&& |
---|
| 315 | |
---|
| 316 | c CBAR=MIN(1.0,1.05*CBAR) ! THE HAZE FORWARD SCATTERING 5%(WHY?) |
---|
| 317 | COSBV_1pt(J,K,NT)=(CBAR*TAEROSCAT + CBARC*TAUCLD) |
---|
| 318 | & /(TAEROSCAT+TAUCLD+TAURAY) !CBAR_RAY=0. |
---|
| 319 | c print*,'CBV',J,K,NT,CBAR,TAEROSCAT,CBARC,TAUCLD |
---|
| 320 | |
---|
| 321 | DTAUV_1pt(J,K,NT)=TAUGAS+TAEROS+TAURAY+TAUCLD !TOTAL TAU_EXT |
---|
| 322 | TAUGV_1pt(K)=TAUGV_1pt(K)+TAUGAS*ATERM(NT,K) !TAU_ABS_METH INTEG. |
---|
| 323 | |
---|
| 324 | C WE LET W RAYLEIGH BE .999 OR W=1 WHEN ONLY RAYLEIGH=PROBLEM FOR TRID |
---|
| 325 | c WE HAVE ASSUMED ABOVE THAT COSBAR FOR RAYLEIGH IS ZERO. |
---|
| 326 | if (IPRINT.eq.1) then |
---|
| 327 | if (k.eq.NSPECV/2) then |
---|
| 328 | print*,'@VI',K,J,DTAUV_1pt(J,K,1),TAUGAS,TAEROS,TAUCLD |
---|
| 329 | endif |
---|
| 330 | endif |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | c***************** ECHANGE |
---|
| 334 | c WBARV(J,K,NT)=(QSCT*XNUMB(J)+TAURAY*0.9999999 + QSCTC*XNCLD(J) ) |
---|
| 335 | c**************** |
---|
| 336 | WBARV_1pt(J,K,NT)=(TAEROSCAT+TAURAY*0.9999999 + QSCTC*XNCLD(J) ) |
---|
| 337 | c WBARV_1pt(J,K,NT)=(TAEROSCAT+TAURAY*0.9999999 ) |
---|
| 338 | & /(TAUGAS+TAEROS+TAURAY+TAUCLD) |
---|
| 339 | c**************** |
---|
| 340 | IF((TAEROS+TAUCLD+TAURAY+TAUCLD).le.0.) WBARV_1pt(J,K,NT)=0. |
---|
| 341 | IF((TAEROS+TAUCLD+TAURAY).le.0.) COSBV_1pt(J,K,NT)=0. |
---|
| 342 | |
---|
| 343 | c print*,'WBV',J,K,NT,TAEROSCAT,TAURAY,QSCTC*XNCLD(J) |
---|
| 344 | c print*,'WBV',J,K,NT,TAEROS,TAUGAS,TAURAY,TAUCLD |
---|
| 345 | c print*,Z(j),J,K,NT,TAUV(1,j,K,NT),WBARV(1,j,K,NT),COSBV(1,j,K,NT) |
---|
| 346 | |
---|
| 347 | 909 CONTINUE |
---|
| 348 | TAUGVD_1pt(J,K)=TAUGVD_1pt(J,K)+TAUGV_1pt(K) |
---|
| 349 | 100 CONTINUE |
---|
| 350 | ioptv=1 |
---|
| 351 | |
---|
| 352 | c HERE END OF THE LOOPS ******* |
---|
| 353 | c****************************** |
---|
| 354 | |
---|
| 355 | C TOTAL EXTINCTION OPTICAL DEPTHS |
---|
| 356 | DO 119 K=1,NSPECV |
---|
| 357 | C LOOP OVER NTERMS |
---|
| 358 | DO 119 NT=1,NTERM(K) |
---|
| 359 | TAUV_1pt(1,K,NT)=0.0 |
---|
| 360 | DO 119 J=1,NLAYER |
---|
| 361 | TAUV_1pt(J+1,K,NT)=TAUV_1pt(J,K,NT)+DTAUV_1pt(J,K,NT) |
---|
| 362 | 119 CONTINUE |
---|
| 363 | |
---|
| 364 | c print*,'SETUP' |
---|
| 365 | c do i=1,NSPECV |
---|
| 366 | c print*,WLNV(i) |
---|
| 367 | c do j=1,NLAYER+1 |
---|
| 368 | c print*,Z(j),TAUV(1,j,i,1),WBARV(1,j,i,1),COSBV(1,j,i,1) |
---|
| 369 | c enddo |
---|
| 370 | c enddo |
---|
| 371 | c |
---|
| 372 | c IF (IPRINT .GT. 1) THEN |
---|
| 373 | c NT=1 |
---|
| 374 | c IF (2 .GT. 1) THEN |
---|
| 375 | c WRITE (6,120) |
---|
| 376 | c 120 FORMAT(///' OPTICAL CONSTANTS IN THE VISIBLE (@EQUATOR) ') |
---|
| 377 | c WRITE(6,*) 'latitude:',ig |
---|
| 378 | c DO 200 K=1,NSPECV |
---|
| 379 | c WRITE (6,190) |
---|
| 380 | c WRITE (6,210)K,WLNV(K),WNOV(K),BWNV(K) |
---|
| 381 | c & ,BWNV(K)+DWNV(K),DWNV(K) |
---|
| 382 | c WRITE (6,230)REALV(K),XIMGV(K) |
---|
| 383 | c DO 195 J=1,NLAYER,NLAYER |
---|
| 384 | C RECALCULATE FOR PRINT OUT ONLY, ONLY FIRST NTERM AT ig=12 (EQUATOR) |
---|
| 385 | c WRITE (6,220)XNUMB(J), WBARV_1pt(J,K,NT),COSBV_1pt(J,K,NT) |
---|
| 386 | c & ,DTAUV_1pt(J,K,NT),TAUV_1pt(J,K,NT) |
---|
| 387 | c 195 CONTINUE |
---|
| 388 | c WRITE (6,240) TAUV_1pt(NLEVEL,K,NT) |
---|
| 389 | c 200 CONTINUE |
---|
| 390 | c END IF |
---|
| 391 | |
---|
| 392 | c 210 FORMAT(1X,I3,F10.3,F10.2,F10.2,'-',F8.2,F10.3) |
---|
| 393 | c 190 FORMAT(1X//' SNUM MICRONS WAVENU INTERVAL DELTA-WN') |
---|
| 394 | c 230 FORMAT(1X,'NREAL(LAYER)= ',1PE10.3,' NIMG(LAYER)= ',E10.3/ |
---|
| 395 | c &' #AEROSOLS WBAR COSBAR DTAU TAU' |
---|
| 396 | c & ,9X,'RAY GAS AEROSOL') |
---|
| 397 | c 220 FORMAT(8(1X,F9.3)) |
---|
| 398 | c 240 FORMAT(41X,F9.3) |
---|
| 399 | |
---|
| 400 | if (IPRINT.eq.1) stop |
---|
| 401 | |
---|
| 402 | RETURN |
---|
| 403 | END |
---|