[1] | 1 | ! $Id$ |
---|
| 2 | ! |
---|
| 3 | SUBROUTINE readaerosol_interp(id_aero, itap, pdtphys, r_day, first, pplay, paprs, t_seri, mass_out, pi_mass_out, load_src) |
---|
| 4 | ! |
---|
| 5 | ! This routine will return the mass concentration at actual day(mass_out) and |
---|
| 6 | ! the pre-industrial values(pi_mass_out) for aerosol corresponding to "id_aero". |
---|
| 7 | ! The mass concentrations for all aerosols are saved in this routine but each |
---|
| 8 | ! call to this routine only treats the aerosol "id_aero". |
---|
| 9 | ! |
---|
| 10 | ! 1) Read in data for the whole year, only at first time step |
---|
| 11 | ! 2) Interpolate to the actual day, only at new day |
---|
| 12 | ! 3) Interpolate to the model vertical grid (target grid), only at new day |
---|
| 13 | ! 4) Test for negative mass values |
---|
| 14 | |
---|
| 15 | USE ioipsl |
---|
| 16 | USE dimphy, ONLY : klev,klon |
---|
| 17 | USE mod_phys_lmdz_para, ONLY : mpi_rank |
---|
| 18 | USE readaerosol_mod |
---|
| 19 | USE aero_mod, ONLY : naero_spc, name_aero |
---|
| 20 | USE write_field_phy |
---|
| 21 | USE phys_cal_mod |
---|
| 22 | |
---|
| 23 | IMPLICIT NONE |
---|
| 24 | |
---|
| 25 | INCLUDE "YOMCST.h" |
---|
| 26 | INCLUDE "chem.h" |
---|
| 27 | INCLUDE "temps.h" |
---|
| 28 | INCLUDE "clesphys.h" |
---|
| 29 | INCLUDE "iniprint.h" |
---|
| 30 | INCLUDE "dimensions.h" |
---|
| 31 | INCLUDE "comvert.h" |
---|
| 32 | ! |
---|
| 33 | ! Input: |
---|
| 34 | !**************************************************************************************** |
---|
| 35 | INTEGER, INTENT(IN) :: id_aero! Identity number for the aerosol to treat |
---|
| 36 | INTEGER, INTENT(IN) :: itap ! Physic step count |
---|
| 37 | REAL, INTENT(IN) :: pdtphys! Physic day step |
---|
| 38 | REAL, INTENT(IN) :: r_day ! Day of integration |
---|
| 39 | LOGICAL, INTENT(IN) :: first ! First model timestep |
---|
| 40 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! pression at model mid-layers |
---|
| 41 | REAL, DIMENSION(klon,klev+1),INTENT(IN):: paprs ! pression between model layers |
---|
| 42 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t_seri ! air temperature |
---|
| 43 | ! |
---|
| 44 | ! Output: |
---|
| 45 | !**************************************************************************************** |
---|
| 46 | REAL, INTENT(OUT) :: mass_out(klon,klev) ! Mass of aerosol (monthly mean data,from file) [ug AIBCM/m3] |
---|
| 47 | REAL, INTENT(OUT) :: pi_mass_out(klon,klev) ! Mass of preindustrial aerosol (monthly mean data,from file) [ug AIBCM/m3] |
---|
| 48 | REAL, INTENT(OUT) :: load_src(klon) ! Load of aerosol (monthly mean data,from file) [kg/m3] |
---|
| 49 | ! |
---|
| 50 | ! Local Variables: |
---|
| 51 | !**************************************************************************************** |
---|
| 52 | INTEGER :: i, k, ierr |
---|
| 53 | INTEGER :: iday, iyr, lmt_pas |
---|
| 54 | ! INTEGER :: im, day1, day2, im2 |
---|
| 55 | INTEGER :: im, im2 |
---|
| 56 | REAL :: day1, day2 |
---|
| 57 | INTEGER :: pi_klev_src ! Only for testing purpose |
---|
| 58 | INTEGER, SAVE :: klev_src ! Number of vertical levles in source field |
---|
| 59 | !$OMP THREADPRIVATE(klev_src) |
---|
| 60 | |
---|
| 61 | REAL :: zrho ! Air density [kg/m3] |
---|
| 62 | REAL :: volm ! Volyme de melange [kg/kg] |
---|
| 63 | REAL, DIMENSION(klon) :: psurf_day, pi_psurf_day |
---|
| 64 | REAL, DIMENSION(klon) :: pi_load_src ! Mass load at source grid |
---|
| 65 | REAL, DIMENSION(klon) :: load_tgt, load_tgt_test |
---|
| 66 | REAL, DIMENSION(klon,klev) :: delp ! pressure difference in each model layer |
---|
| 67 | |
---|
| 68 | REAL, ALLOCATABLE, DIMENSION(:,:) :: pplay_src ! pression mid-layer at source levels |
---|
| 69 | REAL, ALLOCATABLE, DIMENSION(:,:) :: tmp1, tmp2 ! Temporary variables |
---|
| 70 | REAL, ALLOCATABLE, DIMENSION(:,:,:,:), SAVE :: var_year ! VAR in right dimension for the total year |
---|
| 71 | REAL, ALLOCATABLE, DIMENSION(:,:,:,:), SAVE :: pi_var_year ! pre-industrial VAR, -"- |
---|
| 72 | !$OMP THREADPRIVATE(var_year,pi_var_year) |
---|
| 73 | REAL, ALLOCATABLE, DIMENSION(:,:,:),SAVE :: var_day ! VAR interpolated to the actual day and model grid |
---|
| 74 | REAL, ALLOCATABLE, DIMENSION(:,:,:),SAVE :: pi_var_day ! pre-industrial VAR, -"- |
---|
| 75 | !$OMP THREADPRIVATE(var_day,pi_var_day) |
---|
| 76 | REAL, ALLOCATABLE, DIMENSION(:,:,:), SAVE :: psurf_year, pi_psurf_year ! surface pressure for the total year |
---|
| 77 | !$OMP THREADPRIVATE(psurf_year, pi_psurf_year) |
---|
| 78 | REAL, ALLOCATABLE, DIMENSION(:,:,:), SAVE :: load_year, pi_load_year ! load in the column for the total year |
---|
| 79 | !$OMP THREADPRIVATE(load_year, pi_load_year) |
---|
| 80 | |
---|
| 81 | REAL, DIMENSION(:,:,:), POINTER :: pt_tmp ! Pointer allocated in readaerosol |
---|
| 82 | REAL, POINTER, DIMENSION(:), SAVE :: pt_ap, pt_b ! Pointer for describing the vertical levels |
---|
| 83 | !$OMP THREADPRIVATE(pt_ap, pt_b) |
---|
| 84 | INTEGER, SAVE :: nbr_tsteps ! number of time steps in file read |
---|
| 85 | REAL, DIMENSION(14), SAVE :: month_len, month_start, month_mid |
---|
| 86 | !$OMP THREADPRIVATE(nbr_tsteps, month_len, month_start, month_mid) |
---|
| 87 | REAL :: jDay |
---|
| 88 | |
---|
| 89 | LOGICAL :: lnewday ! Indicates if first time step at a new day |
---|
| 90 | LOGICAL :: OLDNEWDAY |
---|
| 91 | LOGICAL,SAVE :: vert_interp ! Indicates if vertical interpolation will be done |
---|
| 92 | LOGICAL,SAVE :: debug=.FALSE.! Debugging in this subroutine |
---|
| 93 | !$OMP THREADPRIVATE(vert_interp, debug) |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | !**************************************************************************************** |
---|
| 97 | ! Initialization |
---|
| 98 | ! |
---|
| 99 | !**************************************************************************************** |
---|
| 100 | |
---|
| 101 | ! Calculation to find if it is a new day |
---|
| 102 | |
---|
| 103 | IF(mpi_rank == 0 .AND. debug )then |
---|
| 104 | PRINT*,'CONTROL PANEL REGARDING TIME STEPING' |
---|
| 105 | ENDIF |
---|
| 106 | |
---|
| 107 | ! Use phys_cal_mod |
---|
| 108 | iday= day_cur |
---|
| 109 | iyr = year_cur |
---|
| 110 | im = mth_cur |
---|
| 111 | |
---|
| 112 | ! iday = INT(r_day) |
---|
| 113 | ! iyr = iday/360 |
---|
| 114 | ! iday = iday-iyr*360 ! day of the actual year |
---|
| 115 | ! iyr = iyr + annee_ref ! year of the run |
---|
| 116 | ! im = iday/30 +1 ! the actual month |
---|
| 117 | CALL ymds2ju(iyr, im, iday, 0., jDay) |
---|
| 118 | ! CALL ymds2ju(iyr, im, iday-(im-1)*30, 0., jDay) |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | IF(MOD(itap-1,NINT(86400./pdtphys)) == 0)THEN |
---|
| 122 | lnewday=.TRUE. |
---|
| 123 | ELSE |
---|
| 124 | lnewday=.FALSE. |
---|
| 125 | ENDIF |
---|
| 126 | |
---|
| 127 | IF(mpi_rank == 0 .AND. debug)then |
---|
| 128 | ! 0.02 is about 0.5/24, namly less than half an hour |
---|
| 129 | OLDNEWDAY = (r_day-REAL(iday) < 0.02) |
---|
| 130 | ! Once per day, update aerosol fields |
---|
| 131 | lmt_pas = NINT(86400./pdtphys) |
---|
| 132 | PRINT*,'r_day-REAL(iday) =',r_day-REAL(iday) |
---|
| 133 | PRINT*,'itap =',itap |
---|
| 134 | PRINT*,'pdtphys =',pdtphys |
---|
| 135 | PRINT*,'lmt_pas =',lmt_pas |
---|
| 136 | PRINT*,'iday =',iday |
---|
| 137 | PRINT*,'r_day =',r_day |
---|
| 138 | PRINT*,'day_cur =',day_cur |
---|
| 139 | PRINT*,'mth_cur =',mth_cur |
---|
| 140 | PRINT*,'year_cur =',year_cur |
---|
| 141 | PRINT*,'NINT(86400./pdtphys) =',NINT(86400./pdtphys) |
---|
| 142 | PRINT*,'MOD(0,1) =',MOD(0,1) |
---|
| 143 | PRINT*,'lnewday =',lnewday |
---|
| 144 | PRINT*,'OLDNEWDAY =',OLDNEWDAY |
---|
| 145 | ENDIF |
---|
| 146 | |
---|
| 147 | IF (.NOT. ALLOCATED(var_day)) THEN |
---|
| 148 | ALLOCATE( var_day(klon, klev, naero_spc), stat=ierr) |
---|
| 149 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 1',1) |
---|
| 150 | ALLOCATE( pi_var_day(klon, klev, naero_spc), stat=ierr) |
---|
| 151 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 2',1) |
---|
| 152 | |
---|
| 153 | ALLOCATE( psurf_year(klon, 12, naero_spc), pi_psurf_year(klon, 12, naero_spc), stat=ierr) |
---|
| 154 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 3',1) |
---|
| 155 | |
---|
| 156 | ALLOCATE( load_year(klon, 12, naero_spc), pi_load_year(klon, 12, naero_spc), stat=ierr) |
---|
| 157 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 4',1) |
---|
| 158 | |
---|
| 159 | lnewday=.TRUE. |
---|
| 160 | |
---|
| 161 | NULLIFY(pt_ap) |
---|
| 162 | NULLIFY(pt_b) |
---|
| 163 | END IF |
---|
| 164 | |
---|
| 165 | !**************************************************************************************** |
---|
| 166 | ! 1) Read in data : corresponding to the actual year and preindustrial data. |
---|
| 167 | ! Only for the first day of the year. |
---|
| 168 | ! |
---|
| 169 | !**************************************************************************************** |
---|
| 170 | IF ( (first .OR. iday==0) .AND. lnewday ) THEN |
---|
| 171 | NULLIFY(pt_tmp) |
---|
| 172 | |
---|
| 173 | ! Reading values corresponding to the closest year taking into count the choice of aer_type. |
---|
| 174 | ! For aer_type=scenario interpolation between 2 data sets is done in readaerosol. |
---|
| 175 | CALL readaerosol(name_aero(id_aero), aer_type, iyr, klev_src, pt_ap, pt_b, pt_tmp, & |
---|
| 176 | psurf_year(:,:,id_aero), load_year(:,:,id_aero)) |
---|
| 177 | IF (.NOT. ALLOCATED(var_year)) THEN |
---|
| 178 | ALLOCATE(var_year(klon, klev_src, 12, naero_spc), stat=ierr) |
---|
| 179 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 5',1) |
---|
| 180 | END IF |
---|
| 181 | var_year(:,:,:,id_aero) = pt_tmp(:,:,:) |
---|
| 182 | |
---|
| 183 | ! Reading values corresponding to the preindustrial concentrations. |
---|
| 184 | CALL readaerosol(name_aero(id_aero), 'preind', iyr, pi_klev_src, pt_ap, pt_b, pt_tmp, & |
---|
| 185 | pi_psurf_year(:,:,id_aero), pi_load_year(:,:,id_aero)) |
---|
| 186 | |
---|
| 187 | ! klev_src must be the same in both files. |
---|
| 188 | ! Also supposing pt_ap and pt_b to be the same in the 2 files without testing. |
---|
| 189 | IF (pi_klev_src /= klev_src) THEN |
---|
| 190 | WRITE(lunout,*) 'Error! All forcing files for the same aerosol must have the same vertical dimension' |
---|
| 191 | WRITE(lunout,*) 'Aerosol : ', name_aero(id_aero) |
---|
| 192 | CALL abort_gcm('readaerosol_interp','Differnt vertical axes in aerosol forcing files',1) |
---|
| 193 | END IF |
---|
| 194 | |
---|
| 195 | IF (.NOT. ALLOCATED(pi_var_year)) THEN |
---|
| 196 | ALLOCATE(pi_var_year(klon, klev_src, 12, naero_spc), stat=ierr) |
---|
| 197 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 6',1) |
---|
| 198 | END IF |
---|
| 199 | pi_var_year(:,:,:,id_aero) = pt_tmp(:,:,:) |
---|
| 200 | |
---|
| 201 | IF (debug) THEN |
---|
| 202 | CALL writefield_phy('var_year_jan',var_year(:,:,1,id_aero),klev_src) |
---|
| 203 | CALL writefield_phy('var_year_dec',var_year(:,:,12,id_aero),klev_src) |
---|
| 204 | CALL writefield_phy('psurf_src',psurf_year(:,:,id_aero),1) |
---|
| 205 | CALL writefield_phy('pi_psurf_src',pi_psurf_year(:,:,id_aero),1) |
---|
| 206 | CALL writefield_phy('load_year_src',load_year(:,:,id_aero),1) |
---|
| 207 | CALL writefield_phy('pi_load_year_src',pi_load_year(:,:,id_aero),1) |
---|
| 208 | END IF |
---|
| 209 | |
---|
| 210 | ! Pointer no more useful, deallocate. |
---|
| 211 | DEALLOCATE(pt_tmp) |
---|
| 212 | |
---|
| 213 | ! Test if vertical interpolation will be needed. |
---|
| 214 | IF (psurf_year(1,1,id_aero)==not_valid .OR. pi_psurf_year(1,1,id_aero)==not_valid ) THEN |
---|
| 215 | ! Pressure=not_valid indicates old file format, see module readaerosol |
---|
| 216 | vert_interp = .FALSE. |
---|
| 217 | |
---|
| 218 | ! If old file format, both psurf_year and pi_psurf_year must be not_valid |
---|
| 219 | IF ( psurf_year(1,1,id_aero) /= pi_psurf_year(1,1,id_aero) ) THEN |
---|
| 220 | WRITE(lunout,*) 'Warning! All forcing files for the same aerosol must have the same structure' |
---|
| 221 | CALL abort_gcm('readaerosol_interp', 'The aerosol files have not the same format',1) |
---|
| 222 | END IF |
---|
| 223 | |
---|
| 224 | IF (klev /= klev_src) THEN |
---|
| 225 | WRITE(lunout,*) 'Old format of aerosol file do not allowed vertical interpolation' |
---|
| 226 | CALL abort_gcm('readaerosol_interp', 'Old aerosol file not possible',1) |
---|
| 227 | END IF |
---|
| 228 | |
---|
| 229 | ELSE |
---|
| 230 | vert_interp = .TRUE. |
---|
| 231 | END IF |
---|
| 232 | |
---|
| 233 | ! Calendar initialisation |
---|
| 234 | ! |
---|
| 235 | DO i = 2, 13 |
---|
| 236 | month_len(i) = REAL(ioget_mon_len(year_cur, i-1)) |
---|
| 237 | CALL ymds2ju(year_cur, i-1, 1, 0.0, month_start(i)) |
---|
| 238 | ENDDO |
---|
| 239 | month_len(1) = REAL(ioget_mon_len(year_cur-1, 12)) |
---|
| 240 | CALL ymds2ju(year_cur-1, 12, 1, 0.0, month_start(1)) |
---|
| 241 | month_len(14) = REAL(ioget_mon_len(year_cur+1, 1)) |
---|
| 242 | CALL ymds2ju(year_cur+1, 1, 1, 0.0, month_start(14)) |
---|
| 243 | month_mid(:) = month_start (:) + month_len(:)/2. |
---|
| 244 | |
---|
| 245 | if (debug) then |
---|
| 246 | write(lunout,*)' month_len = ',month_len |
---|
| 247 | write(lunout,*)' month_mid = ',month_mid |
---|
| 248 | endif |
---|
| 249 | |
---|
| 250 | END IF ! IF ( (first .OR. iday==0) .AND. lnewday ) THEN |
---|
| 251 | |
---|
| 252 | !**************************************************************************************** |
---|
| 253 | ! - 2) Interpolate to the actual day. |
---|
| 254 | ! - 3) Interpolate to the model vertical grid. |
---|
| 255 | ! |
---|
| 256 | !**************************************************************************************** |
---|
| 257 | |
---|
| 258 | IF (lnewday) THEN ! only if new day |
---|
| 259 | !**************************************************************************************** |
---|
| 260 | ! 2) Interpolate to the actual day |
---|
| 261 | ! |
---|
| 262 | !**************************************************************************************** |
---|
| 263 | ! Find which months and days to use for time interpolation |
---|
| 264 | nbr_tsteps = 12 |
---|
| 265 | IF (nbr_tsteps == 12) then |
---|
| 266 | IF (jDay < month_mid(im+1)) THEN |
---|
| 267 | im2=im-1 |
---|
| 268 | day2 = month_mid(im2+1) |
---|
| 269 | day1 = month_mid(im+1) |
---|
| 270 | IF (im2 <= 0) THEN |
---|
| 271 | ! the month is january, thus the month before december |
---|
| 272 | im2=12 |
---|
| 273 | END IF |
---|
| 274 | ELSE |
---|
| 275 | ! the second half of the month |
---|
| 276 | im2=im+1 |
---|
| 277 | day2 = month_mid(im+1) |
---|
| 278 | day1 = month_mid(im2+1) |
---|
| 279 | IF (im2 > 12) THEN |
---|
| 280 | ! the month is december, the following thus january |
---|
| 281 | im2=1 |
---|
| 282 | ENDIF |
---|
| 283 | END IF |
---|
| 284 | ELSE IF (nbr_tsteps == 14) then |
---|
| 285 | im = im + 1 |
---|
| 286 | IF (jDay < month_mid(im)) THEN |
---|
| 287 | ! in the first half of the month use month before and actual month |
---|
| 288 | im2=im-1 |
---|
| 289 | day2 = month_mid(im2) |
---|
| 290 | day1 = month_mid(im) |
---|
| 291 | ELSE |
---|
| 292 | ! the second half of the month |
---|
| 293 | im2=im+1 |
---|
| 294 | day2 = month_mid(im) |
---|
| 295 | day1 = month_mid(im2) |
---|
| 296 | END IF |
---|
| 297 | ELSE |
---|
| 298 | CALL abort_gcm('readaerosol_interp', 'number of months undefined',1) |
---|
| 299 | ENDIF |
---|
| 300 | if (debug) then |
---|
| 301 | write(lunout,*)' jDay, day1, day2, im, im2 = ', jDay, day1, day2, im, im2 |
---|
| 302 | endif |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | ! Time interpolation, still on vertical source grid |
---|
| 306 | ALLOCATE(tmp1(klon,klev_src), tmp2(klon,klev_src),stat=ierr) |
---|
| 307 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 7',1) |
---|
| 308 | |
---|
| 309 | ALLOCATE(pplay_src(klon,klev_src), stat=ierr) |
---|
| 310 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 8',1) |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | DO k=1,klev_src |
---|
| 314 | DO i=1,klon |
---|
| 315 | tmp1(i,k) = & |
---|
| 316 | var_year(i,k,im2,id_aero) - (jDay-day2)/(day1-day2) * & |
---|
| 317 | (var_year(i,k,im2,id_aero) - var_year(i,k,im,id_aero)) |
---|
| 318 | |
---|
| 319 | tmp2(i,k) = & |
---|
| 320 | pi_var_year(i,k,im2,id_aero) - (jDay-day2)/(day1-day2) * & |
---|
| 321 | (pi_var_year(i,k,im2,id_aero) - pi_var_year(i,k,im,id_aero)) |
---|
| 322 | END DO |
---|
| 323 | END DO |
---|
| 324 | |
---|
| 325 | ! Time interpolation for pressure at surface, still on vertical source grid |
---|
| 326 | DO i=1,klon |
---|
| 327 | psurf_day(i) = & |
---|
| 328 | psurf_year(i,im2,id_aero) - (jDay-day2)/(day1-day2) * & |
---|
| 329 | (psurf_year(i,im2,id_aero) - psurf_year(i,im,id_aero)) |
---|
| 330 | |
---|
| 331 | pi_psurf_day(i) = & |
---|
| 332 | pi_psurf_year(i,im2,id_aero) - (jDay-day2)/(day1-day2) * & |
---|
| 333 | (pi_psurf_year(i,im2,id_aero) - pi_psurf_year(i,im,id_aero)) |
---|
| 334 | END DO |
---|
| 335 | |
---|
| 336 | ! Time interpolation for the load, still on vertical source grid |
---|
| 337 | DO i=1,klon |
---|
| 338 | load_src(i) = & |
---|
| 339 | load_year(i,im2,id_aero) - (jDay-day2)/(day1-day2) * & |
---|
| 340 | (load_year(i,im2,id_aero) - load_year(i,im,id_aero)) |
---|
| 341 | |
---|
| 342 | pi_load_src(i) = & |
---|
| 343 | pi_load_year(i,im2,id_aero) - (jDay-day2)/(day1-day2) * & |
---|
| 344 | (pi_load_year(i,im2,id_aero) - pi_load_year(i,im,id_aero)) |
---|
| 345 | END DO |
---|
| 346 | |
---|
| 347 | !**************************************************************************************** |
---|
| 348 | ! 3) Interpolate to the model vertical grid (target grid) |
---|
| 349 | ! |
---|
| 350 | !**************************************************************************************** |
---|
| 351 | |
---|
| 352 | IF (vert_interp) THEN |
---|
| 353 | |
---|
| 354 | ! - Interpolate variable tmp1 (on source grid) to var_day (on target grid) |
---|
| 355 | !******************************************************************************** |
---|
| 356 | ! a) calculate pression at vertical levels for the source grid using the |
---|
| 357 | ! hybrid-sigma coordinates ap and b and the surface pressure, variables from file. |
---|
| 358 | DO k = 1, klev_src |
---|
| 359 | DO i = 1, klon |
---|
| 360 | pplay_src(i,k)= pt_ap(k) + pt_b(k)*psurf_day(i) |
---|
| 361 | END DO |
---|
| 362 | END DO |
---|
| 363 | |
---|
| 364 | IF (debug) THEN |
---|
| 365 | CALL writefield_phy('psurf_day_src',psurf_day(:),1) |
---|
| 366 | CALL writefield_phy('pplay_src',pplay_src(:,:),klev_src) |
---|
| 367 | CALL writefield_phy('pplay',pplay(:,:),klev) |
---|
| 368 | CALL writefield_phy('day_src',tmp1,klev_src) |
---|
| 369 | CALL writefield_phy('pi_day_src',tmp2,klev_src) |
---|
| 370 | END IF |
---|
| 371 | |
---|
| 372 | ! b) vertical interpolation on pressure leveles |
---|
| 373 | CALL pres2lev(tmp1(:,:), var_day(:,:,id_aero), klev_src, klev, pplay_src, pplay, & |
---|
| 374 | 1, klon, .FALSE.) |
---|
| 375 | |
---|
| 376 | IF (debug) CALL writefield_phy('day_tgt',var_day(:,:,id_aero),klev) |
---|
| 377 | |
---|
| 378 | ! c) adjust to conserve total aerosol mass load in the vertical pillar |
---|
| 379 | ! Calculate the load in the actual pillar and compare with the load |
---|
| 380 | ! read from aerosol file. |
---|
| 381 | |
---|
| 382 | ! Find the pressure difference in each model layer |
---|
| 383 | DO k = 1, klev |
---|
| 384 | DO i = 1, klon |
---|
| 385 | delp(i,k) = paprs(i,k) - paprs (i,k+1) |
---|
| 386 | END DO |
---|
| 387 | END DO |
---|
| 388 | |
---|
| 389 | ! Find the mass load in the actual pillar, on target grid |
---|
| 390 | load_tgt(:) = 0. |
---|
| 391 | DO k= 1, klev |
---|
| 392 | DO i = 1, klon |
---|
| 393 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
| 394 | volm = var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
| 395 | load_tgt(i) = load_tgt(i) + 1/RG * volm *delp(i,k) |
---|
| 396 | END DO |
---|
| 397 | END DO |
---|
| 398 | |
---|
| 399 | ! Adjust, uniform |
---|
| 400 | DO k = 1, klev |
---|
| 401 | DO i = 1, klon |
---|
| 402 | var_day(i,k,id_aero) = var_day(i,k,id_aero)*load_src(i)/load_tgt(i) |
---|
| 403 | END DO |
---|
| 404 | END DO |
---|
| 405 | |
---|
| 406 | IF (debug) THEN |
---|
| 407 | load_tgt_test(:) = 0. |
---|
| 408 | DO k= 1, klev |
---|
| 409 | DO i = 1, klon |
---|
| 410 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
| 411 | volm = var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
| 412 | load_tgt_test(i) = load_tgt_test(i) + 1/RG * volm*delp(i,k) |
---|
| 413 | END DO |
---|
| 414 | END DO |
---|
| 415 | |
---|
| 416 | CALL writefield_phy('day_tgt2',var_day(:,:,id_aero),klev) |
---|
| 417 | CALL writefield_phy('load_tgt',load_tgt(:),1) |
---|
| 418 | CALL writefield_phy('load_tgt_test',load_tgt_test(:),1) |
---|
| 419 | CALL writefield_phy('load_src',load_src(:),1) |
---|
| 420 | END IF |
---|
| 421 | |
---|
| 422 | ! - Interpolate variable tmp2 (source grid) to pi_var_day (target grid) |
---|
| 423 | !******************************************************************************** |
---|
| 424 | ! a) calculate pression at vertical levels at source grid |
---|
| 425 | DO k = 1, klev_src |
---|
| 426 | DO i = 1, klon |
---|
| 427 | pplay_src(i,k)= pt_ap(k) + pt_b(k)*pi_psurf_day(i) |
---|
| 428 | END DO |
---|
| 429 | END DO |
---|
| 430 | |
---|
| 431 | IF (debug) THEN |
---|
| 432 | CALL writefield_phy('pi_psurf_day_src',pi_psurf_day(:),1) |
---|
| 433 | CALL writefield_phy('pi_pplay_src',pplay_src(:,:),klev_src) |
---|
| 434 | END IF |
---|
| 435 | |
---|
| 436 | ! b) vertical interpolation on pressure leveles |
---|
| 437 | CALL pres2lev(tmp2(:,:), pi_var_day(:,:,id_aero), klev_src, klev, pplay_src, pplay, & |
---|
| 438 | 1, klon, .FALSE.) |
---|
| 439 | |
---|
| 440 | IF (debug) CALL writefield_phy('pi_day_tgt',pi_var_day(:,:,id_aero),klev) |
---|
| 441 | |
---|
| 442 | ! c) adjust to conserve total aerosol mass load in the vertical pillar |
---|
| 443 | ! Calculate the load in the actual pillar and compare with the load |
---|
| 444 | ! read from aerosol file. |
---|
| 445 | |
---|
| 446 | ! Find the load in the actual pillar, on target grid |
---|
| 447 | load_tgt(:) = 0. |
---|
| 448 | DO k = 1, klev |
---|
| 449 | DO i = 1, klon |
---|
| 450 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
| 451 | volm = pi_var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
| 452 | load_tgt(i) = load_tgt(i) + 1/RG * volm * delp(i,k) |
---|
| 453 | END DO |
---|
| 454 | END DO |
---|
| 455 | |
---|
| 456 | DO k = 1, klev |
---|
| 457 | DO i = 1, klon |
---|
| 458 | pi_var_day(i,k,id_aero) = pi_var_day(i,k,id_aero)*pi_load_src(i)/load_tgt(i) |
---|
| 459 | END DO |
---|
| 460 | END DO |
---|
| 461 | |
---|
| 462 | IF (debug) THEN |
---|
| 463 | load_tgt_test(:) = 0. |
---|
| 464 | DO k = 1, klev |
---|
| 465 | DO i = 1, klon |
---|
| 466 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
| 467 | volm = pi_var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
| 468 | load_tgt_test(i) = load_tgt_test(i) + 1/RG * volm * delp(i,k) |
---|
| 469 | END DO |
---|
| 470 | END DO |
---|
| 471 | CALL writefield_phy('pi_day_tgt2',pi_var_day(:,:,id_aero),klev) |
---|
| 472 | CALL writefield_phy('pi_load_tgt',load_tgt(:),1) |
---|
| 473 | CALL writefield_phy('pi_load_tgt_test',load_tgt_test(:),1) |
---|
| 474 | CALL writefield_phy('pi_load_src',pi_load_src(:),1) |
---|
| 475 | END IF |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | ELSE ! No vertical interpolation done |
---|
| 479 | |
---|
| 480 | var_day(:,:,id_aero) = tmp1(:,:) |
---|
| 481 | pi_var_day(:,:,id_aero) = tmp2(:,:) |
---|
| 482 | |
---|
| 483 | END IF ! vert_interp |
---|
| 484 | |
---|
| 485 | |
---|
| 486 | ! Deallocation |
---|
| 487 | DEALLOCATE(tmp1, tmp2, pplay_src, stat=ierr) |
---|
| 488 | |
---|
| 489 | !**************************************************************************************** |
---|
| 490 | ! 4) Test for negative mass values |
---|
| 491 | ! |
---|
| 492 | !**************************************************************************************** |
---|
| 493 | IF (MINVAL(var_day(:,:,id_aero)) < 0.) THEN |
---|
| 494 | DO k=1,klev |
---|
| 495 | DO i=1,klon |
---|
| 496 | ! Test for var_day |
---|
| 497 | IF (var_day(i,k,id_aero) < 0.) THEN |
---|
| 498 | IF (jDay-day2 < 0.) WRITE(lunout,*) 'jDay-day2=',jDay-day2 |
---|
| 499 | IF (var_year(i,k,im2,id_aero) - var_year(i,k,im,id_aero) < 0.) THEN |
---|
| 500 | WRITE(lunout,*) trim(name_aero(id_aero)),'(i,k,im2)-', & |
---|
| 501 | trim(name_aero(id_aero)),'(i,k,im)=', & |
---|
| 502 | var_year(i,k,im2,id_aero) - var_year(i,k,im,id_aero) |
---|
| 503 | END IF |
---|
| 504 | WRITE(lunout,*) 'stop for aerosol : ',name_aero(id_aero) |
---|
| 505 | WRITE(lunout,*) 'day1, day2, jDay = ', day1, day2, jDay |
---|
| 506 | CALL abort_gcm('readaerosol_interp','Error in interpolation 1',1) |
---|
| 507 | END IF |
---|
| 508 | END DO |
---|
| 509 | END DO |
---|
| 510 | END IF |
---|
| 511 | |
---|
| 512 | IF (MINVAL(pi_var_day(:,:,id_aero)) < 0. ) THEN |
---|
| 513 | DO k=1, klev |
---|
| 514 | DO i=1,klon |
---|
| 515 | ! Test for pi_var_day |
---|
| 516 | IF (pi_var_day(i,k,id_aero) < 0.) THEN |
---|
| 517 | IF (jDay-day2 < 0.) WRITE(lunout,*) 'jDay-day2=',jDay-day2 |
---|
| 518 | IF (pi_var_year(i,k,im2,id_aero) - pi_var_year(i,k,im,id_aero) < 0.) THEN |
---|
| 519 | WRITE(lunout,*) trim(name_aero(id_aero)),'(i,k,im2)-', & |
---|
| 520 | trim(name_aero(id_aero)),'(i,k,im)=', & |
---|
| 521 | pi_var_year(i,k,im2,id_aero) - pi_var_year(i,k,im,id_aero) |
---|
| 522 | END IF |
---|
| 523 | |
---|
| 524 | WRITE(lunout,*) 'stop for aerosol : ',name_aero(id_aero) |
---|
| 525 | CALL abort_gcm('readaerosol_interp','Error in interpolation 2',1) |
---|
| 526 | END IF |
---|
| 527 | END DO |
---|
| 528 | END DO |
---|
| 529 | END IF |
---|
| 530 | |
---|
| 531 | END IF ! lnewday |
---|
| 532 | |
---|
| 533 | !**************************************************************************************** |
---|
| 534 | ! Copy output from saved variables |
---|
| 535 | ! |
---|
| 536 | !**************************************************************************************** |
---|
| 537 | |
---|
| 538 | mass_out(:,:) = var_day(:,:,id_aero) |
---|
| 539 | pi_mass_out(:,:) = pi_var_day(:,:,id_aero) |
---|
| 540 | |
---|
| 541 | END SUBROUTINE readaerosol_interp |
---|