[1] | 1 | ! $Id: newmicro.F 1337 2010-04-02 11:31:05Z fairhead $ |
---|
| 2 | ! |
---|
| 3 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
| 4 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
| 5 | . pch, pcl, pcm, pct, pctlwp, |
---|
| 6 | s xflwp, xfiwp, xflwc, xfiwc, |
---|
| 7 | e ok_aie, |
---|
| 8 | e mass_solu_aero, mass_solu_aero_pi, |
---|
| 9 | e bl95_b0, bl95_b1, |
---|
| 10 | s cldtaupi, re, fl, reliq, reice) |
---|
| 11 | |
---|
| 12 | USE dimphy |
---|
| 13 | USE phys_local_var_mod, only: scdnc,cldncl,reffclwtop,lcc, |
---|
| 14 | . reffclws,reffclwc,cldnvi,lcc3d, |
---|
| 15 | . lcc3dcon,lcc3dstra |
---|
| 16 | USE phys_state_var_mod, only: rnebcon,clwcon |
---|
| 17 | IMPLICIT none |
---|
| 18 | c====================================================================== |
---|
| 19 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 20 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 21 | c====================================================================== |
---|
| 22 | c Arguments: |
---|
| 23 | c t-------input-R-temperature |
---|
| 24 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 25 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 26 | c |
---|
| 27 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
| 28 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
---|
| 29 | c mass_solu_aero_pi--input-R-dito, pre-industrial value |
---|
| 30 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
| 31 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
| 32 | c |
---|
| 33 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 34 | c needed for the diagnostics of the aerosol indirect |
---|
| 35 | c radiative forcing (see radlwsw) |
---|
| 36 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 37 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 38 | c the averaging of the output. fl is the fraction of liquid |
---|
| 39 | c water clouds within a grid cell |
---|
| 40 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 41 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 42 | c====================================================================== |
---|
| 43 | C |
---|
| 44 | #include "YOMCST.h" |
---|
| 45 | c |
---|
| 46 | cym#include "dimensions.h" |
---|
| 47 | cym#include "dimphy.h" |
---|
| 48 | #include "nuage.h" |
---|
| 49 | cIM cf. CR: include pour NOVLP et ZEPSEC |
---|
| 50 | #include "radepsi.h" |
---|
| 51 | #include "radopt.h" |
---|
| 52 | c choix de l'hypothese de recouvrememnt nuageuse |
---|
| 53 | LOGICAL RANDOM,MAXIMUM_RANDOM,MAXIMUM,FIRST |
---|
| 54 | parameter (RANDOM=.FALSE., MAXIMUM_RANDOM=.TRUE., MAXIMUM=.FALSE.) |
---|
| 55 | c Hypoyhese de recouvrement : MAXIMUM_RANDOM |
---|
| 56 | INTEGER flag_max |
---|
| 57 | REAL phase3d(klon, klev),dh(klon, klev),pdel(klon, klev), |
---|
| 58 | . zrho(klon, klev) |
---|
| 59 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
| 60 | REAL thres_tau,thres_neb |
---|
| 61 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
---|
| 62 | REAL t_tmp |
---|
| 63 | REAL gravit |
---|
| 64 | PARAMETER (gravit=9.80616) !m/s2 |
---|
| 65 | REAL pqlwpcon(klon, klev), pqlwpstra(klon, klev) |
---|
| 66 | c |
---|
| 67 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 68 | REAL t(klon,klev) |
---|
| 69 | c |
---|
| 70 | REAL pclc(klon,klev) |
---|
| 71 | REAL pqlwp(klon,klev) |
---|
| 72 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
| 73 | c |
---|
| 74 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 75 | c |
---|
| 76 | LOGICAL lo |
---|
| 77 | c |
---|
| 78 | REAL cetahb, cetamb |
---|
| 79 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 80 | C |
---|
| 81 | INTEGER i, k |
---|
| 82 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
| 83 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
| 84 | cIM: 091003 rajout |
---|
| 85 | REAL xflwp(klon), xfiwp(klon) |
---|
| 86 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
| 87 | c |
---|
| 88 | REAL radius, rad_chaud |
---|
| 89 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
| 90 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 91 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 92 | REAL coef, coef_froi, coef_chau |
---|
| 93 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
| 94 | REAL seuil_neb |
---|
| 95 | PARAMETER (seuil_neb=0.001) |
---|
| 96 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 97 | PARAMETER (nexpo=6) |
---|
| 98 | ccc PARAMETER (nexpo=1) |
---|
| 99 | |
---|
| 100 | c -- sb: |
---|
| 101 | logical ok_newmicro |
---|
| 102 | c parameter (ok_newmicro=.FALSE.) |
---|
| 103 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
| 104 | real rel, tc, rei, zfiwp(klon) |
---|
| 105 | real k_liq, k_ice0, k_ice, DF |
---|
| 106 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
| 107 | parameter (DF=1.66) ! diffusivity factor |
---|
| 108 | c sb -- |
---|
| 109 | cjq for the aerosol indirect effect |
---|
| 110 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 111 | cjq |
---|
| 112 | LOGICAL ok_aie ! Apply AIE or not? |
---|
| 113 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
---|
| 114 | |
---|
| 115 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
| 116 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
| 117 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 118 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 119 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 120 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 121 | |
---|
| 122 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
| 123 | |
---|
| 124 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 125 | |
---|
| 126 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
| 127 | cjq-end |
---|
| 128 | cIM cf. CR:parametres supplementaires |
---|
| 129 | REAL zclear(klon) |
---|
| 130 | REAL zcloud(klon) |
---|
| 131 | |
---|
| 132 | c ************************** |
---|
| 133 | c * * |
---|
| 134 | c * DEBUT PARTIE OPTIMISEE * |
---|
| 135 | c * * |
---|
| 136 | c ************************** |
---|
| 137 | |
---|
| 138 | REAL diff_paprs(klon, klev), zfice1, zfice2(klon, klev) |
---|
| 139 | REAL rad_chaud_tab(klon, klev), zflwp_var, zfiwp_var |
---|
| 140 | |
---|
| 141 | ! Abderrahmane oct 2009 |
---|
| 142 | Real reliq(klon, klev), reice(klon, klev) |
---|
| 143 | |
---|
| 144 | c |
---|
| 145 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 146 | c |
---|
| 147 | c IM inversion des DO |
---|
| 148 | xflwp = 0.d0 |
---|
| 149 | xfiwp = 0.d0 |
---|
| 150 | xflwc = 0.d0 |
---|
| 151 | xfiwc = 0.d0 |
---|
| 152 | |
---|
| 153 | ! Initialisation |
---|
| 154 | reliq=0. |
---|
| 155 | reice=0. |
---|
| 156 | |
---|
| 157 | DO k = 1, klev |
---|
| 158 | DO i = 1, klon |
---|
| 159 | diff_paprs(i,k) = (paprs(i,k)-paprs(i,k+1))/RG |
---|
| 160 | ENDDO |
---|
| 161 | ENDDO |
---|
| 162 | |
---|
| 163 | IF (ok_newmicro) THEN |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | DO k = 1, klev |
---|
| 167 | DO i = 1, klon |
---|
| 168 | c zfice2(i,k) = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 169 | zfice2(i,k) = 1.0 - (t(i,k)-t_glace_min) / |
---|
| 170 | & (t_glace_max-t_glace_min) |
---|
| 171 | zfice2(i,k) = MIN(MAX(zfice2(i,k),0.0),1.0) |
---|
| 172 | c IM Total Liquid/Ice water content |
---|
| 173 | xflwc(i,k) = (1.-zfice2(i,k))*pqlwp(i,k) |
---|
| 174 | xfiwc(i,k) = zfice2(i,k)*pqlwp(i,k) |
---|
| 175 | c IM In-Cloud Liquid/Ice water content |
---|
| 176 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
| 177 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
| 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | |
---|
| 181 | IF (ok_aie) THEN |
---|
| 182 | DO k = 1, klev |
---|
| 183 | DO i = 1, klon |
---|
| 184 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 185 | ! |
---|
| 186 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
| 187 | & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
| 188 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 189 | ! to be within [20, 1000 cm^3] |
---|
| 190 | ! |
---|
| 191 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
| 192 | ! |
---|
| 193 | ! |
---|
| 194 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
| 195 | & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) |
---|
| 196 | & *1.e6 !-m-3 |
---|
| 197 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
| 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | DO k = 1, klev |
---|
| 201 | DO i = 1, klon |
---|
| 202 | ! rad_chaud_tab(i,k) = |
---|
| 203 | ! & MAX(1.1e6 |
---|
| 204 | ! & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 205 | ! & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.),5.) |
---|
| 206 | rad_chaud_tab(i,k) = |
---|
| 207 | & 1.1 |
---|
| 208 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 209 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
| 210 | rad_chaud_tab(i,k) = MAX(rad_chaud_tab(i,k) * 1e6, 5.) |
---|
| 211 | ENDDO |
---|
| 212 | ENDDO |
---|
| 213 | ELSE |
---|
| 214 | DO k = 1, MIN(3,klev) |
---|
| 215 | DO i = 1, klon |
---|
| 216 | rad_chaud_tab(i,k) = rad_chau2 |
---|
| 217 | ENDDO |
---|
| 218 | ENDDO |
---|
| 219 | DO k = MIN(3,klev)+1, klev |
---|
| 220 | DO i = 1, klon |
---|
| 221 | rad_chaud_tab(i,k) = rad_chau1 |
---|
| 222 | ENDDO |
---|
| 223 | ENDDO |
---|
| 224 | |
---|
| 225 | ENDIF |
---|
| 226 | |
---|
| 227 | DO k = 1, klev |
---|
| 228 | ! IF(.not.ok_aie) THEN |
---|
| 229 | rad_chaud = rad_chau1 |
---|
| 230 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 231 | ! ENDIF |
---|
| 232 | DO i = 1, klon |
---|
| 233 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
| 234 | |
---|
| 235 | c -- effective cloud droplet radius (microns): |
---|
| 236 | |
---|
| 237 | c for liquid water clouds: |
---|
| 238 | ! For output diagnostics |
---|
| 239 | ! |
---|
| 240 | ! Cloud droplet effective radius [um] |
---|
| 241 | ! |
---|
| 242 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 243 | ! clouds in the grid cell) to avoid problems in the |
---|
| 244 | ! averaging of the output. |
---|
| 245 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 246 | ! effective radius as re/fl |
---|
| 247 | ! |
---|
| 248 | |
---|
| 249 | fl(i,k) = seuil_neb*(1.-zfice2(i,k)) |
---|
| 250 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
| 251 | |
---|
| 252 | rel = 0. |
---|
| 253 | rei = 0. |
---|
| 254 | pclc(i,k) = 0.0 |
---|
| 255 | pcltau(i,k) = 0.0 |
---|
| 256 | pclemi(i,k) = 0.0 |
---|
| 257 | cldtaupi(i,k) = 0.0 |
---|
| 258 | ELSE |
---|
| 259 | |
---|
| 260 | c -- liquid/ice cloud water paths: |
---|
| 261 | |
---|
| 262 | zflwp_var= 1000.*(1.-zfice2(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
| 263 | & *diff_paprs(i,k) |
---|
| 264 | zfiwp_var= 1000.*zfice2(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
| 265 | & *diff_paprs(i,k) |
---|
| 266 | |
---|
| 267 | c -- effective cloud droplet radius (microns): |
---|
| 268 | |
---|
| 269 | c for liquid water clouds: |
---|
| 270 | |
---|
| 271 | IF (ok_aie) THEN |
---|
| 272 | radius = |
---|
| 273 | & 1.1 |
---|
| 274 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 275 | & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
| 276 | radius = MAX(radius*1e6, 5.) |
---|
| 277 | |
---|
| 278 | tc = t(i,k)-273.15 |
---|
| 279 | rei = 0.71*tc + 61.29 |
---|
| 280 | if (tc.le.-81.4) rei = 3.5 |
---|
| 281 | if (zflwp_var.eq.0.) radius = 1. |
---|
| 282 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
| 283 | cldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius |
---|
| 284 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
| 285 | |
---|
| 286 | ENDIF ! ok_aie |
---|
| 287 | ! For output diagnostics |
---|
| 288 | ! |
---|
| 289 | ! Cloud droplet effective radius [um] |
---|
| 290 | ! |
---|
| 291 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 292 | ! clouds in the grid cell) to avoid problems in the |
---|
| 293 | ! averaging of the output. |
---|
| 294 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 295 | ! effective radius as re/fl |
---|
| 296 | ! |
---|
| 297 | |
---|
| 298 | fl(i,k) = pclc(i,k)*(1.-zfice2(i,k)) |
---|
| 299 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
| 300 | |
---|
| 301 | rel = rad_chaud_tab(i,k) |
---|
| 302 | c for ice clouds: as a function of the ambiant temperature |
---|
| 303 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
| 304 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 305 | c consistent with observations of Heymsfield et al. 1986]: |
---|
| 306 | tc = t(i,k)-273.15 |
---|
| 307 | rei = 0.71*tc + 61.29 |
---|
| 308 | if (tc.le.-81.4) rei = 3.5 |
---|
| 309 | c -- cloud optical thickness : |
---|
| 310 | |
---|
| 311 | c [for liquid clouds, traditional formula, |
---|
| 312 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 313 | |
---|
| 314 | if (zflwp_var.eq.0.) rel = 1. |
---|
| 315 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
| 316 | pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) |
---|
| 317 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
| 318 | c -- cloud infrared emissivity: |
---|
| 319 | |
---|
| 320 | c [the broadband infrared absorption coefficient is parameterized |
---|
| 321 | c as a function of the effective cld droplet radius] |
---|
| 322 | |
---|
| 323 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 324 | k_ice = k_ice0 + 1.0/rei |
---|
| 325 | |
---|
| 326 | pclemi(i,k) = 1.0 |
---|
| 327 | & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) |
---|
| 328 | |
---|
| 329 | ENDIF |
---|
| 330 | reliq(i,k)=rel |
---|
| 331 | reice(i,k)=rei |
---|
| 332 | ! if (i.eq.1) then |
---|
| 333 | ! print*,'Dans newmicro rel, rei :',rel, rei |
---|
| 334 | ! print*,'Dans newmicro reliq, reice :', |
---|
| 335 | ! $ reliq(i,k),reice(i,k) |
---|
| 336 | ! endif |
---|
| 337 | |
---|
| 338 | ENDDO |
---|
| 339 | ENDDO |
---|
| 340 | |
---|
| 341 | DO k = 1, klev |
---|
| 342 | DO i = 1, klon |
---|
| 343 | xflwp(i) = xflwp(i)+ xflwc(i,k) * diff_paprs(i,k) |
---|
| 344 | xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * diff_paprs(i,k) |
---|
| 345 | ENDDO |
---|
| 346 | ENDDO |
---|
| 347 | |
---|
| 348 | ELSE |
---|
| 349 | DO k = 1, klev |
---|
| 350 | rad_chaud = rad_chau1 |
---|
| 351 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 352 | DO i = 1, klon |
---|
| 353 | |
---|
| 354 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
| 355 | |
---|
| 356 | pclc(i,k) = 0.0 |
---|
| 357 | pcltau(i,k) = 0.0 |
---|
| 358 | pclemi(i,k) = 0.0 |
---|
| 359 | cldtaupi(i,k) = 0.0 |
---|
| 360 | |
---|
| 361 | ELSE |
---|
| 362 | |
---|
| 363 | zflwp_var = 1000.*pqlwp(i,k)*diff_paprs(i,k) |
---|
| 364 | & /pclc(i,k) |
---|
| 365 | |
---|
| 366 | zfice1 = MIN( |
---|
| 367 | & MAX( 1.0 - (t(i,k)-t_glace_min) / |
---|
| 368 | & (t_glace_max-t_glace_min),0.0),1.0)**nexpo |
---|
| 369 | |
---|
| 370 | radius = rad_chaud * (1.-zfice1) + rad_froid * zfice1 |
---|
| 371 | coef = coef_chau * (1.-zfice1) + coef_froi * zfice1 |
---|
| 372 | |
---|
| 373 | pcltau(i,k) = 3.0 * zflwp_var / (2.0 * radius) |
---|
| 374 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp_var) |
---|
| 375 | |
---|
| 376 | ENDIF |
---|
| 377 | |
---|
| 378 | ENDDO |
---|
| 379 | ENDDO |
---|
| 380 | ENDIF |
---|
| 381 | |
---|
| 382 | IF (.NOT.ok_aie) THEN |
---|
| 383 | DO k = 1, klev |
---|
| 384 | DO i = 1, klon |
---|
| 385 | cldtaupi(i,k)=pcltau(i,k) |
---|
| 386 | ENDDO |
---|
| 387 | ENDDO |
---|
| 388 | ENDIF |
---|
| 389 | |
---|
| 390 | ccc DO k = 1, klev |
---|
| 391 | ccc DO i = 1, klon |
---|
| 392 | ccc t(i,k) = t(i,k) |
---|
| 393 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 394 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 395 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 396 | ccc . /(rg*pclc(i,k)) |
---|
| 397 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 398 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 399 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 400 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 401 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 402 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 403 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 404 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 405 | ccc ENDDO |
---|
| 406 | ccc ENDDO |
---|
| 407 | ccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 408 | ccccc DO k = 1, klev |
---|
| 409 | ccccc DO i = 1, klon |
---|
| 410 | ccccc pclc(i,k) = 0.0 |
---|
| 411 | ccccc pcltau(i,k) = 0.0 |
---|
| 412 | ccccc pclemi(i,k) = 0.0 |
---|
| 413 | ccccc ENDDO |
---|
| 414 | ccccc ENDDO |
---|
| 415 | C |
---|
| 416 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 417 | C |
---|
| 418 | c IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
| 419 | c initialisations |
---|
| 420 | DO i=1,klon |
---|
| 421 | zclear(i)=1. |
---|
| 422 | zcloud(i)=0. |
---|
| 423 | pch(i)=1.0 |
---|
| 424 | pcm(i) = 1.0 |
---|
| 425 | pcl(i) = 1.0 |
---|
| 426 | pctlwp(i) = 0.0 |
---|
| 427 | ENDDO |
---|
| 428 | C |
---|
| 429 | cIM cf CR DO k=1,klev |
---|
| 430 | DO k = klev, 1, -1 |
---|
| 431 | DO i = 1, klon |
---|
| 432 | pctlwp(i) = pctlwp(i) |
---|
| 433 | & + pqlwp(i,k)*diff_paprs(i,k) |
---|
| 434 | ENDDO |
---|
| 435 | ENDDO |
---|
| 436 | c IM cf. CR |
---|
| 437 | IF (NOVLP.EQ.1) THEN |
---|
| 438 | DO k = klev, 1, -1 |
---|
| 439 | DO i = 1, klon |
---|
| 440 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 441 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
| 442 | pct(i)=1.-zclear(i) |
---|
| 443 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
| 444 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 445 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
| 446 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 447 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
| 448 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 449 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
| 450 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
| 451 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 452 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
| 453 | endif |
---|
| 454 | zcloud(i)=pclc(i,k) |
---|
| 455 | ENDDO |
---|
| 456 | ENDDO |
---|
| 457 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 458 | DO k = klev, 1, -1 |
---|
| 459 | DO i = 1, klon |
---|
| 460 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
---|
| 461 | pct(i)=zcloud(i) |
---|
| 462 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
| 463 | pch(i) = MIN(pclc(i,k),pch(i)) |
---|
| 464 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 465 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
| 466 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
---|
| 467 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
| 468 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
---|
| 469 | endif |
---|
| 470 | ENDDO |
---|
| 471 | ENDDO |
---|
| 472 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 473 | DO k = klev, 1, -1 |
---|
| 474 | DO i = 1, klon |
---|
| 475 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
---|
| 476 | pct(i)=1-zclear(i) |
---|
| 477 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
| 478 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 479 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 480 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
| 481 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 482 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
| 483 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 484 | endif |
---|
| 485 | ENDDO |
---|
| 486 | ENDDO |
---|
| 487 | ENDIF |
---|
| 488 | |
---|
| 489 | C |
---|
| 490 | DO i = 1, klon |
---|
| 491 | c IM cf. CR pct(i)=1.-pct(i) |
---|
| 492 | pch(i)=1.-pch(i) |
---|
| 493 | pcm(i)=1.-pcm(i) |
---|
| 494 | pcl(i)=1.-pcl(i) |
---|
| 495 | ENDDO |
---|
| 496 | |
---|
| 497 | c ======================================================== |
---|
| 498 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
| 499 | c ======================================================== |
---|
| 500 | !! change by Nicolas Yan (LSCE) |
---|
| 501 | !! Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
| 502 | !! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
| 503 | !! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
| 504 | !! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
| 505 | !! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
| 506 | IF (ok_newmicro) THEN |
---|
| 507 | IF (ok_aie) THEN |
---|
| 508 | DO k = 1, klev |
---|
| 509 | DO i = 1, klon |
---|
| 510 | phase3d(i,k)=1-zfice2(i,k) |
---|
| 511 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
| 512 | lcc3d(i,k)=seuil_neb*phase3d(i,k) |
---|
| 513 | ELSE |
---|
| 514 | lcc3d(i,k)=pclc(i,k)*phase3d(i,k) |
---|
| 515 | ENDIF |
---|
| 516 | scdnc(i,k)=lcc3d(i,k)*cdnc(i,k) ! m-3 |
---|
| 517 | ENDDO |
---|
| 518 | ENDDO |
---|
| 519 | |
---|
| 520 | DO i=1,klon |
---|
| 521 | lcc(i)=0. |
---|
| 522 | reffclwtop(i)=0. |
---|
| 523 | cldncl(i)=0. |
---|
| 524 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i) = 1. |
---|
| 525 | IF(MAXIMUM) tcc(i) = 0. |
---|
| 526 | ENDDO |
---|
| 527 | |
---|
| 528 | FIRST=.TRUE. |
---|
| 529 | |
---|
| 530 | DO i=1,klon |
---|
| 531 | DO k=klev-1,1,-1 !From TOA down |
---|
| 532 | |
---|
| 533 | |
---|
| 534 | ! Test, if the cloud optical depth exceeds the necessary |
---|
| 535 | ! threshold: |
---|
| 536 | |
---|
| 537 | IF (pcltau(i,k).GT.thres_tau .AND. pclc(i,k).GT.thres_neb) |
---|
| 538 | . THEN |
---|
| 539 | ! To calculate the right Temperature at cloud top, |
---|
| 540 | ! interpolate it between layers: |
---|
| 541 | t_tmp = t(i,k) + |
---|
| 542 | . (paprs(i,k+1)-pplay(i,k))/(pplay(i,k+1)-pplay(i,k)) |
---|
| 543 | . * ( t(i,k+1) - t(i,k) ) |
---|
| 544 | |
---|
| 545 | IF(MAXIMUM) THEN |
---|
| 546 | IF(FIRST) THEN |
---|
| 547 | write(*,*)'Hypothese de recouvrement: MAXIMUM' |
---|
| 548 | FIRST=.FALSE. |
---|
| 549 | ENDIF |
---|
| 550 | flag_max= -1. |
---|
| 551 | ftmp(i) = MAX(tcc(i),pclc(i,k)) |
---|
| 552 | ENDIF |
---|
| 553 | |
---|
| 554 | IF(RANDOM) THEN |
---|
| 555 | IF(FIRST) THEN |
---|
| 556 | write(*,*)'Hypothese de recouvrement: RANDOM' |
---|
| 557 | FIRST=.FALSE. |
---|
| 558 | ENDIF |
---|
| 559 | flag_max= 1. |
---|
| 560 | ftmp(i) = tcc(i) * (1-pclc(i,k)) |
---|
| 561 | ENDIF |
---|
| 562 | |
---|
| 563 | IF(MAXIMUM_RANDOM) THEN |
---|
| 564 | IF(FIRST) THEN |
---|
| 565 | write(*,*)'Hypothese de recouvrement: MAXIMUM_ |
---|
| 566 | . RANDOM' |
---|
| 567 | FIRST=.FALSE. |
---|
| 568 | ENDIF |
---|
| 569 | flag_max= 1. |
---|
| 570 | ftmp(i) = tcc(i) * |
---|
| 571 | . (1. - MAX(pclc(i,k),pclc(i,k+1))) / |
---|
| 572 | . (1. - MIN(pclc(i,k+1),1.-thres_neb)) |
---|
| 573 | ENDIF |
---|
| 574 | c Effective radius of cloud droplet at top of cloud (m) |
---|
| 575 | reffclwtop(i) = reffclwtop(i) + rad_chaud_tab(i,k) * |
---|
| 576 | . 1.0E-06 * phase3d(i,k) * ( tcc(i) - ftmp(i))*flag_max |
---|
| 577 | c CDNC at top of cloud (m-3) |
---|
| 578 | cldncl(i) = cldncl(i) + cdnc(i,k) * phase3d(i,k) * |
---|
| 579 | . (tcc(i) - ftmp(i))*flag_max |
---|
| 580 | c Liquid Cloud Content at top of cloud |
---|
| 581 | lcc(i) = lcc(i) + phase3d(i,k) * (tcc(i)-ftmp(i))* |
---|
| 582 | . flag_max |
---|
| 583 | c Total Cloud Content at top of cloud |
---|
| 584 | tcc(i)=ftmp(i) |
---|
| 585 | |
---|
| 586 | ENDIF ! is there a visible, not-too-small cloud? |
---|
| 587 | ENDDO ! loop over k |
---|
| 588 | |
---|
| 589 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i)=1.-tcc(i) |
---|
| 590 | ENDDO ! loop over i |
---|
| 591 | |
---|
| 592 | !! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC REFFCLWS) |
---|
| 593 | DO i = 1, klon |
---|
| 594 | DO k = 1, klev |
---|
| 595 | pqlwpcon(i,k)=rnebcon(i,k)*clwcon(i,k) ! fraction eau liquide convective |
---|
| 596 | pqlwpstra(i,k)=pclc(i,k)*phase3d(i,k)-pqlwpcon(i,k) ! fraction eau liquide stratiforme |
---|
| 597 | IF (pqlwpstra(i,k) .LE. 0.0) pqlwpstra(i,k)=0.0 |
---|
| 598 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
| 599 | reffclwc(i,k)=1.1 |
---|
| 600 | & *((pqlwpcon(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 601 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
| 602 | reffclwc(i,k) = MAX(reffclwc(i,k) * 1e6, 5.) |
---|
| 603 | |
---|
| 604 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
| 605 | IF ((pclc(i,k)-rnebcon(i,k)) .LE. seuil_neb) THEN ! tout sous la forme convective |
---|
| 606 | reffclws(i,k)=0.0 |
---|
| 607 | lcc3dstra(i,k)= 0.0 |
---|
| 608 | ELSE |
---|
| 609 | reffclws(i,k) = (pclc(i,k)*phase3d(i,k)* |
---|
| 610 | & rad_chaud_tab(i,k)- |
---|
| 611 | & pqlwpcon(i,k)*reffclwc(i,k)) |
---|
| 612 | IF(reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
---|
| 613 | lcc3dstra(i,k)=pqlwpstra(i,k) |
---|
| 614 | ENDIF |
---|
| 615 | !Convertion from um to m |
---|
| 616 | IF(rnebcon(i,k). LE. seuil_neb) THEN |
---|
| 617 | reffclwc(i,k) = reffclwc(i,k)*seuil_neb*clwcon(i,k) |
---|
| 618 | & *1.0E-06 |
---|
| 619 | lcc3dcon(i,k)= seuil_neb*clwcon(i,k) |
---|
| 620 | ELSE |
---|
| 621 | reffclwc(i,k) = reffclwc(i,k)*pqlwpcon(i,k) |
---|
| 622 | & *1.0E-06 |
---|
| 623 | lcc3dcon(i,k) = pqlwpcon(i,k) |
---|
| 624 | ENDIF |
---|
| 625 | |
---|
| 626 | reffclws(i,k) = reffclws(i,k)*1.0E-06 |
---|
| 627 | |
---|
| 628 | ENDDO !klev |
---|
| 629 | ENDDO !klon |
---|
| 630 | |
---|
| 631 | !! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
| 632 | DO k = 1, klev |
---|
| 633 | DO i = 1, klon |
---|
| 634 | pdel(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
| 635 | zrho(i,k)=pplay(i,k)/t(i,k)/RD ! kg/m3 |
---|
| 636 | dh(i,k)=pdel(i,k)/(gravit*zrho(i,k)) ! hauteur de chaque boite (m) |
---|
| 637 | ENDDO |
---|
| 638 | ENDDO |
---|
| 639 | c |
---|
| 640 | DO i = 1, klon |
---|
| 641 | cldnvi(i)=0. |
---|
| 642 | lcc_integrat(i)=0. |
---|
| 643 | height(i)=0. |
---|
| 644 | DO k = 1, klev |
---|
| 645 | cldnvi(i)=cldnvi(i)+cdnc(i,k)*lcc3d(i,k)*dh(i,k) |
---|
| 646 | lcc_integrat(i)=lcc_integrat(i)+lcc3d(i,k)*dh(i,k) |
---|
| 647 | height(i)=height(i)+dh(i,k) |
---|
| 648 | ENDDO ! klev |
---|
| 649 | lcc_integrat(i)=lcc_integrat(i)/height(i) |
---|
| 650 | IF (lcc_integrat(i) .LE. 1.0E-03) THEN |
---|
| 651 | cldnvi(i)=cldnvi(i)*lcc(i)/seuil_neb |
---|
| 652 | ELSE |
---|
| 653 | cldnvi(i)=cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
| 654 | ENDIF |
---|
| 655 | ENDDO ! klon |
---|
| 656 | |
---|
| 657 | DO i = 1, klon |
---|
| 658 | DO k = 1, klev |
---|
| 659 | IF (scdnc(i,k) .LE. 0.0) scdnc(i,k)=0.0 |
---|
| 660 | IF (reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
---|
| 661 | IF (reffclwc(i,k) .LE. 0.0) reffclwc(i,k)=0.0 |
---|
| 662 | IF (lcc3d(i,k) .LE. 0.0) lcc3d(i,k)=0.0 |
---|
| 663 | IF (lcc3dcon(i,k) .LE. 0.0) lcc3dcon(i,k)=0.0 |
---|
| 664 | IF (lcc3dstra(i,k) .LE. 0.0) lcc3dstra(i,k)=0.0 |
---|
| 665 | ENDDO |
---|
| 666 | IF (reffclwtop(i) .LE. 0.0) reffclwtop(i)=0.0 |
---|
| 667 | IF (cldncl(i) .LE. 0.0) cldncl(i)=0.0 |
---|
| 668 | IF (cldnvi(i) .LE. 0.0) cldnvi(i)=0.0 |
---|
| 669 | IF (lcc(i) .LE. 0.0) lcc(i)=0.0 |
---|
| 670 | ENDDO |
---|
| 671 | |
---|
| 672 | ENDIF !ok_aie |
---|
| 673 | ENDIF !ok newmicro |
---|
| 674 | c |
---|
| 675 | C |
---|
| 676 | RETURN |
---|
| 677 | END |
---|