[1] | 1 | ! |
---|
| 2 | ! $Id: cv3_routines.F 1403 2010-07-01 09:02:53Z fairhead $ |
---|
| 3 | ! |
---|
| 4 | c |
---|
| 5 | c |
---|
| 6 | SUBROUTINE cv3_param(nd,delt) |
---|
| 7 | implicit none |
---|
| 8 | |
---|
| 9 | c------------------------------------------------------------ |
---|
| 10 | c Set parameters for convectL for iflag_con = 3 |
---|
| 11 | c------------------------------------------------------------ |
---|
| 12 | |
---|
| 13 | C |
---|
| 14 | C *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
---|
| 15 | C *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
---|
| 16 | C *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
---|
| 17 | C *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
---|
| 18 | C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 19 | C *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 20 | C *** OF CLOUD *** |
---|
| 21 | C |
---|
| 22 | C [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
---|
| 23 | C *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 24 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 25 | C *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
---|
| 26 | C *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
---|
| 27 | C |
---|
| 28 | C *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
---|
| 29 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 30 | C *** IT MUST BE LESS THAN 0 *** |
---|
| 31 | |
---|
| 32 | #include "cv3param.h" |
---|
| 33 | #include "conema3.h" |
---|
| 34 | |
---|
| 35 | integer nd |
---|
| 36 | real delt ! timestep (seconds) |
---|
| 37 | |
---|
| 38 | CHARACTER (LEN=20) :: modname='cv3_param' |
---|
| 39 | CHARACTER (LEN=80) :: abort_message |
---|
| 40 | |
---|
| 41 | c noff: integer limit for convection (nd-noff) |
---|
| 42 | c minorig: First level of convection |
---|
| 43 | |
---|
| 44 | c -- limit levels for convection: |
---|
| 45 | |
---|
| 46 | noff = 1 |
---|
| 47 | minorig = 1 |
---|
| 48 | nl=nd-noff |
---|
| 49 | nlp=nl+1 |
---|
| 50 | nlm=nl-1 |
---|
| 51 | |
---|
| 52 | c -- "microphysical" parameters: |
---|
| 53 | sigdz=0.01 |
---|
| 54 | c sigd=0.003 |
---|
| 55 | c sigd = 0.01 |
---|
| 56 | cCR:test sur la fraction des descentes precipitantes |
---|
| 57 | spfac = 0.15 |
---|
| 58 | pbcrit = 150.0 |
---|
| 59 | ptcrit = 500.0 |
---|
| 60 | cIM lu dans physiq.def via conf_phys.F90 epmax = 0.993 |
---|
| 61 | |
---|
| 62 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
---|
| 63 | |
---|
| 64 | c -- misc: |
---|
| 65 | |
---|
| 66 | dtovsh = -0.2 ! dT for overshoot |
---|
| 67 | dpbase = -40. ! definition cloud base (400m above LCL) |
---|
| 68 | ccc dttrig = 5. ! (loose) condition for triggering |
---|
| 69 | dttrig = 10. ! (loose) condition for triggering |
---|
| 70 | |
---|
| 71 | c -- rate of approach to quasi-equilibrium: |
---|
| 72 | |
---|
| 73 | dtcrit = -2.0 |
---|
| 74 | c dtcrit = -5.0 |
---|
| 75 | c tau = 3000. |
---|
| 76 | tau = 1800. |
---|
| 77 | cc tau=8000. |
---|
| 78 | beta = 1.0 - delt/tau |
---|
| 79 | alpha1 = 1.5e-3 |
---|
| 80 | alpha = alpha1 * delt/tau |
---|
| 81 | c increase alpha to compensate W decrease: |
---|
| 82 | alpha = alpha*1.5 |
---|
| 83 | |
---|
| 84 | c -- interface cloud parameterization: |
---|
| 85 | |
---|
| 86 | delta=0.01 ! cld |
---|
| 87 | |
---|
| 88 | c -- interface with boundary-layer (gust factor): (sb) |
---|
| 89 | |
---|
| 90 | betad=10.0 ! original value (from convect 4.3) |
---|
| 91 | |
---|
| 92 | return |
---|
| 93 | end |
---|
| 94 | |
---|
| 95 | SUBROUTINE cv3_prelim(len,nd,ndp1,t,q,p,ph |
---|
| 96 | : ,lv,cpn,tv,gz,h,hm,th) |
---|
| 97 | implicit none |
---|
| 98 | |
---|
| 99 | !===================================================================== |
---|
| 100 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
| 101 | ! "ori": from convect4.3 (vectorized) |
---|
| 102 | ! "convect3": to be exactly consistent with convect3 |
---|
| 103 | !===================================================================== |
---|
| 104 | |
---|
| 105 | c inputs: |
---|
| 106 | integer len, nd, ndp1 |
---|
| 107 | real t(len,nd), q(len,nd), p(len,nd), ph(len,ndp1) |
---|
| 108 | |
---|
| 109 | c outputs: |
---|
| 110 | real lv(len,nd), cpn(len,nd), tv(len,nd) |
---|
| 111 | real gz(len,nd), h(len,nd), hm(len,nd) |
---|
| 112 | real th(len,nd) |
---|
| 113 | |
---|
| 114 | c local variables: |
---|
| 115 | integer k, i |
---|
| 116 | real rdcp |
---|
| 117 | real tvx,tvy ! convect3 |
---|
| 118 | real cpx(len,nd) |
---|
| 119 | |
---|
| 120 | #include "cvthermo.h" |
---|
| 121 | #include "cv3param.h" |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | c ori do 110 k=1,nlp |
---|
| 125 | ! abderr do 110 k=1,nl ! convect3 |
---|
| 126 | do 110 k=1,nlp |
---|
| 127 | |
---|
| 128 | do 100 i=1,len |
---|
| 129 | cdebug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
| 130 | lv(i,k)= lv0-clmcpv*(t(i,k)-273.15) |
---|
| 131 | cpn(i,k)=cpd*(1.0-q(i,k))+cpv*q(i,k) |
---|
| 132 | cpx(i,k)=cpd*(1.0-q(i,k))+cl*q(i,k) |
---|
| 133 | c ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
| 134 | tv(i,k)=t(i,k)*(1.0+q(i,k)/eps-q(i,k)) |
---|
| 135 | rdcp=(rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i,k) |
---|
| 136 | th(i,k)=t(i,k)*(1000.0/p(i,k))**rdcp |
---|
| 137 | 100 continue |
---|
| 138 | 110 continue |
---|
| 139 | c |
---|
| 140 | c gz = phi at the full levels (same as p). |
---|
| 141 | c |
---|
| 142 | do 120 i=1,len |
---|
| 143 | gz(i,1)=0.0 |
---|
| 144 | 120 continue |
---|
| 145 | c ori do 140 k=2,nlp |
---|
| 146 | do 140 k=2,nl ! convect3 |
---|
| 147 | do 130 i=1,len |
---|
| 148 | tvx=t(i,k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
---|
| 149 | tvy=t(i,k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
---|
| 150 | gz(i,k)=gz(i,k-1)+0.5*rrd*(tvx+tvy) !convect3 |
---|
| 151 | & *(p(i,k-1)-p(i,k))/ph(i,k) !convect3 |
---|
| 152 | c |
---|
| 153 | cc print *,' gz(',k,')',gz(i,k),' tvx',tvx,' tvy ',tvy |
---|
| 154 | c |
---|
| 155 | c ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
| 156 | c ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
| 157 | 130 continue |
---|
| 158 | 140 continue |
---|
| 159 | c |
---|
| 160 | c h = phi + cpT (dry static energy). |
---|
| 161 | c hm = phi + cp(T-Tbase)+Lq |
---|
| 162 | c |
---|
| 163 | c ori do 170 k=1,nlp |
---|
| 164 | do 170 k=1,nl ! convect3 |
---|
| 165 | do 160 i=1,len |
---|
| 166 | h(i,k)=gz(i,k)+cpn(i,k)*t(i,k) |
---|
| 167 | hm(i,k)=gz(i,k)+cpx(i,k)*(t(i,k)-t(i,1))+lv(i,k)*q(i,k) |
---|
| 168 | 160 continue |
---|
| 169 | 170 continue |
---|
| 170 | |
---|
| 171 | return |
---|
| 172 | end |
---|
| 173 | |
---|
| 174 | SUBROUTINE cv3_feed(len,nd,t,q,u,v,p,ph,hm,gz |
---|
| 175 | : ,p1feed,p2feed,wght |
---|
| 176 | : ,wghti,tnk,thnk,qnk,qsnk,unk,vnk |
---|
| 177 | : ,cpnk,hnk,nk,icb,icbmax,iflag,gznk,plcl) |
---|
| 178 | implicit none |
---|
| 179 | |
---|
| 180 | C================================================================ |
---|
| 181 | C Purpose: CONVECTIVE FEED |
---|
| 182 | C |
---|
| 183 | C Main differences with cv_feed: |
---|
| 184 | C - ph added in input |
---|
| 185 | C - here, nk(i)=minorig |
---|
| 186 | C - icb defined differently (plcl compared with ph instead of p) |
---|
| 187 | C |
---|
| 188 | C Main differences with convect3: |
---|
| 189 | C - we do not compute dplcldt and dplcldr of CLIFT anymore |
---|
| 190 | C - values iflag different (but tests identical) |
---|
| 191 | C - A,B explicitely defined (!...) |
---|
| 192 | C================================================================ |
---|
| 193 | |
---|
| 194 | #include "cv3param.h" |
---|
| 195 | #include "cvthermo.h" |
---|
| 196 | |
---|
| 197 | c inputs: |
---|
| 198 | integer len, nd |
---|
| 199 | real t(len,nd), q(len,nd), p(len,nd) |
---|
| 200 | real u(len,nd), v(len,nd) |
---|
| 201 | real hm(len,nd), gz(len,nd) |
---|
| 202 | real ph(len,nd+1) |
---|
| 203 | real p1feed(len) |
---|
| 204 | c, wght(len) |
---|
| 205 | real wght(nd) |
---|
| 206 | c input-output |
---|
| 207 | real p2feed(len) |
---|
| 208 | c outputs: |
---|
| 209 | integer iflag(len), nk(len), icb(len), icbmax |
---|
| 210 | c real wghti(len) |
---|
| 211 | real wghti(len,nd) |
---|
| 212 | real tnk(len), thnk(len), qnk(len), qsnk(len) |
---|
| 213 | real unk(len), vnk(len) |
---|
| 214 | real cpnk(len), hnk(len), gznk(len) |
---|
| 215 | real plcl(len) |
---|
| 216 | |
---|
| 217 | c local variables: |
---|
| 218 | integer i, k, iter, niter |
---|
| 219 | integer ihmin(len) |
---|
| 220 | real work(len) |
---|
| 221 | real pup(len),plo(len),pfeed(len) |
---|
| 222 | real plclup(len),plcllo(len),plclfeed(len) |
---|
| 223 | real posit(len) |
---|
| 224 | logical nocond(len) |
---|
| 225 | ! |
---|
| 226 | !------------------------------------------------------------------- |
---|
| 227 | ! --- Origin level of ascending parcels for convect3: |
---|
| 228 | !------------------------------------------------------------------- |
---|
| 229 | |
---|
| 230 | do 220 i=1,len |
---|
| 231 | nk(i)=minorig |
---|
| 232 | gznk(i)=gz(i,nk(i)) |
---|
| 233 | 220 continue |
---|
| 234 | ! |
---|
| 235 | !------------------------------------------------------------------- |
---|
| 236 | ! --- Adjust feeding layer thickness so that lifting up to the top of |
---|
| 237 | ! --- the feeding layer does not induce condensation (i.e. so that |
---|
| 238 | ! --- plcl < p2feed). |
---|
| 239 | ! --- Method : iterative secant method. |
---|
| 240 | !------------------------------------------------------------------- |
---|
| 241 | ! |
---|
| 242 | c 1- First bracketing of the solution : ph(nk+1), p2feed |
---|
| 243 | c |
---|
| 244 | c 1.a- LCL associated to p2feed |
---|
| 245 | do i = 1,len |
---|
| 246 | pup(i) = p2feed(i) |
---|
| 247 | enddo |
---|
| 248 | call cv3_vertmix(len,nd,iflag,p1feed,pup,p,ph |
---|
| 249 | i ,t,q,u,v,wght |
---|
| 250 | o ,wghti,nk,tnk,thnk,qnk,qsnk,unk,vnk,plclup) |
---|
| 251 | c 1.b- LCL associated to ph(nk+1) |
---|
| 252 | do i = 1,len |
---|
| 253 | plo(i) = ph(i,nk(i)+1) |
---|
| 254 | enddo |
---|
| 255 | call cv3_vertmix(len,nd,iflag,p1feed,plo,p,ph |
---|
| 256 | i ,t,q,u,v,wght |
---|
| 257 | o ,wghti,nk,tnk,thnk,qnk,qsnk,unk,vnk,plcllo) |
---|
| 258 | c 2- Iterations |
---|
| 259 | niter = 5 |
---|
| 260 | do iter = 1,niter |
---|
| 261 | do i = 1,len |
---|
| 262 | plcllo(i) = min(plo(i),plcllo(i)) |
---|
| 263 | plclup(i) = max(pup(i),plclup(i)) |
---|
| 264 | nocond(i) = plclup(i).le.pup(i) |
---|
| 265 | enddo |
---|
| 266 | do i = 1,len |
---|
| 267 | if(nocond(i)) then |
---|
| 268 | pfeed(i)=pup(i) |
---|
| 269 | else |
---|
| 270 | pfeed(i) = (pup(i)*(plo(i)-plcllo(i))+ |
---|
| 271 | : plo(i)*(plclup(i)-pup(i)))/ |
---|
| 272 | : (plo(i)-plcllo(i)+plclup(i)-pup(i)) |
---|
| 273 | endif |
---|
| 274 | enddo |
---|
| 275 | call cv3_vertmix(len,nd,iflag,p1feed,pfeed,p,ph |
---|
| 276 | i ,t,q,u,v,wght |
---|
| 277 | o ,wghti,nk,tnk,thnk,qnk,qsnk,unk,vnk,plclfeed) |
---|
| 278 | do i = 1,len |
---|
| 279 | posit(i) = (sign(1.,plclfeed(i)-pfeed(i))+1.)*0.5 |
---|
| 280 | if (plclfeed(i) .eq. pfeed(i)) posit(i) = 1. |
---|
| 281 | c- posit = 1 when lcl is below top of feeding layer (plclfeed>pfeed) |
---|
| 282 | c- => pup=pfeed |
---|
| 283 | c- posit = 0 when lcl is above top of feeding layer (plclfeed<pfeed) |
---|
| 284 | c- => plo=pfeed |
---|
| 285 | pup(i) = posit(i)*pfeed(i) + (1.-posit(i))*pup(i) |
---|
| 286 | plo(i) = (1.-posit(i))*pfeed(i) + posit(i)*plo(i) |
---|
| 287 | plclup(i) = posit(i)*plclfeed(i) + (1.-posit(i))*plclup(i) |
---|
| 288 | plcllo(i) = (1.-posit(i))*plclfeed(i) + posit(i)*plcllo(i) |
---|
| 289 | enddo |
---|
| 290 | enddo ! iter |
---|
| 291 | do i = 1,len |
---|
| 292 | p2feed(i) = pfeed(i) |
---|
| 293 | plcl(i) = plclfeed(i) |
---|
| 294 | enddo |
---|
| 295 | ! |
---|
| 296 | do 175 i=1,len |
---|
| 297 | cpnk(i)=cpd*(1.0-qnk(i))+cpv*qnk(i) |
---|
| 298 | hnk(i)=gz(i,1)+cpnk(i)*tnk(i) |
---|
| 299 | 175 continue |
---|
| 300 | ! |
---|
| 301 | !------------------------------------------------------------------- |
---|
| 302 | ! --- Check whether parcel level temperature and specific humidity |
---|
| 303 | ! --- are reasonable |
---|
| 304 | !------------------------------------------------------------------- |
---|
| 305 | do 250 i=1,len |
---|
| 306 | if( ( ( tnk(i).lt.250.0 ) |
---|
| 307 | & .or.( qnk(i).le.0.0 ) ) |
---|
| 308 | & .and. |
---|
| 309 | & ( iflag(i).eq.0) ) iflag(i)=7 |
---|
| 310 | 250 continue |
---|
| 311 | c |
---|
| 312 | !------------------------------------------------------------------- |
---|
| 313 | ! --- Calculate first level above lcl (=icb) |
---|
| 314 | !------------------------------------------------------------------- |
---|
| 315 | |
---|
| 316 | c@ do 270 i=1,len |
---|
| 317 | c@ icb(i)=nlm |
---|
| 318 | c@ 270 continue |
---|
| 319 | c@c |
---|
| 320 | c@ do 290 k=minorig,nl |
---|
| 321 | c@ do 280 i=1,len |
---|
| 322 | c@ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
| 323 | c@ & icb(i)=min(icb(i),k) |
---|
| 324 | c@ 280 continue |
---|
| 325 | c@ 290 continue |
---|
| 326 | c@c |
---|
| 327 | c@ do 300 i=1,len |
---|
| 328 | c@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 329 | c@ 300 continue |
---|
| 330 | |
---|
| 331 | do 270 i=1,len |
---|
| 332 | icb(i)=nlm |
---|
| 333 | 270 continue |
---|
| 334 | c |
---|
| 335 | c la modification consiste a comparer plcl a ph et non a p: |
---|
| 336 | c icb est defini par : ph(icb)<plcl<ph(icb-1) |
---|
| 337 | c@ do 290 k=minorig,nl |
---|
| 338 | do 290 k=3,nl-1 ! modif pour que icb soit sup/egal a 2 |
---|
| 339 | do 280 i=1,len |
---|
| 340 | if( ph(i,k).lt.plcl(i) ) icb(i)=min(icb(i),k) |
---|
| 341 | 280 continue |
---|
| 342 | 290 continue |
---|
| 343 | c |
---|
| 344 | |
---|
| 345 | c print*,'icb dans cv3_feed ' |
---|
| 346 | c write(*,'(64i2)') icb(2:len-1) |
---|
| 347 | c call dump2d(64,43,'plcl dans cv3_feed ',plcl(2:len-1)) |
---|
| 348 | |
---|
| 349 | do 300 i=1,len |
---|
| 350 | c@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 351 | if((icb(i).eq.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 352 | 300 continue |
---|
| 353 | |
---|
| 354 | do 400 i=1,len |
---|
| 355 | icb(i) = icb(i)-1 ! icb sup ou egal a 2 |
---|
| 356 | 400 continue |
---|
| 357 | c |
---|
| 358 | c Compute icbmax. |
---|
| 359 | c |
---|
| 360 | icbmax=2 |
---|
| 361 | do 310 i=1,len |
---|
| 362 | c! icbmax=max(icbmax,icb(i)) |
---|
| 363 | if (iflag(i).lt.7) icbmax=max(icbmax,icb(i)) ! sb Jun7th02 |
---|
| 364 | 310 continue |
---|
| 365 | |
---|
| 366 | return |
---|
| 367 | end |
---|
| 368 | |
---|
| 369 | SUBROUTINE cv3_undilute1(len,nd,t,qs,gz,plcl,p,icb,tnk,qnk,gznk |
---|
| 370 | : ,tp,tvp,clw,icbs) |
---|
| 371 | implicit none |
---|
| 372 | |
---|
| 373 | !---------------------------------------------------------------- |
---|
| 374 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
---|
| 375 | ! |
---|
| 376 | ! Differences with convect4: |
---|
| 377 | ! - specify plcl in input |
---|
| 378 | ! - icbs is the first level above LCL (may differ from icb) |
---|
| 379 | ! - in the iterations, used x(icbs) instead x(icb) |
---|
| 380 | ! - many minor differences in the iterations |
---|
| 381 | ! - tvp is computed in only one time |
---|
| 382 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
---|
| 383 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
---|
| 384 | !---------------------------------------------------------------- |
---|
| 385 | |
---|
| 386 | #include "cvthermo.h" |
---|
| 387 | #include "cv3param.h" |
---|
| 388 | |
---|
| 389 | c inputs: |
---|
| 390 | integer len, nd |
---|
| 391 | integer icb(len) |
---|
| 392 | real t(len,nd), qs(len,nd), gz(len,nd) |
---|
| 393 | real tnk(len), qnk(len), gznk(len) |
---|
| 394 | real p(len,nd) |
---|
| 395 | real plcl(len) ! convect3 |
---|
| 396 | |
---|
| 397 | c outputs: |
---|
| 398 | real tp(len,nd), tvp(len,nd), clw(len,nd) |
---|
| 399 | |
---|
| 400 | c local variables: |
---|
| 401 | integer i, k |
---|
| 402 | integer icb1(len), icbs(len), icbsmax2 ! convect3 |
---|
| 403 | real tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
| 404 | real ah0(len), cpp(len) |
---|
| 405 | real ticb(len), gzicb(len) |
---|
| 406 | real qsicb(len) ! convect3 |
---|
| 407 | real cpinv(len) ! convect3 |
---|
| 408 | |
---|
| 409 | !------------------------------------------------------------------- |
---|
| 410 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
| 411 | ! --- the actual temperature, and the adiabatic |
---|
| 412 | ! --- liquid water content. The procedure is to solve the equation. |
---|
| 413 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 414 | !------------------------------------------------------------------- |
---|
| 415 | |
---|
| 416 | c |
---|
| 417 | c *** Calculate certain parcel quantities, including static energy *** |
---|
| 418 | c |
---|
| 419 | do 330 i=1,len |
---|
| 420 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
| 421 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
| 422 | cpp(i)=cpd*(1.-qnk(i))+qnk(i)*cpv |
---|
| 423 | cpinv(i)=1./cpp(i) |
---|
| 424 | 330 continue |
---|
| 425 | c |
---|
| 426 | c *** Calculate lifted parcel quantities below cloud base *** |
---|
| 427 | c |
---|
| 428 | do i=1,len !convect3 |
---|
| 429 | icb1(i)=MAX(icb(i),2) !convect3 |
---|
| 430 | icb1(i)=MIN(icb(i),nl) !convect3 |
---|
| 431 | c if icb is below LCL, start loop at ICB+1: |
---|
| 432 | c (icbs est le premier niveau au-dessus du LCL) |
---|
| 433 | icbs(i)=icb1(i) !convect3 |
---|
| 434 | if (plcl(i).lt.p(i,icb1(i))) then |
---|
| 435 | icbs(i)=MIN(icbs(i)+1,nl) !convect3 |
---|
| 436 | endif |
---|
| 437 | enddo !convect3 |
---|
| 438 | |
---|
| 439 | do i=1,len !convect3 |
---|
| 440 | ticb(i)=t(i,icbs(i)) !convect3 |
---|
| 441 | gzicb(i)=gz(i,icbs(i)) !convect3 |
---|
| 442 | qsicb(i)=qs(i,icbs(i)) !convect3 |
---|
| 443 | enddo !convect3 |
---|
| 444 | |
---|
| 445 | c |
---|
| 446 | c Re-compute icbsmax (icbsmax2): !convect3 |
---|
| 447 | c !convect3 |
---|
| 448 | icbsmax2=2 !convect3 |
---|
| 449 | do 310 i=1,len !convect3 |
---|
| 450 | icbsmax2=max(icbsmax2,icbs(i)) !convect3 |
---|
| 451 | 310 continue !convect3 |
---|
| 452 | |
---|
| 453 | c initialization outputs: |
---|
| 454 | |
---|
| 455 | do k=1,icbsmax2 ! convect3 |
---|
| 456 | do i=1,len ! convect3 |
---|
| 457 | tp(i,k) = 0.0 ! convect3 |
---|
| 458 | tvp(i,k) = 0.0 ! convect3 |
---|
| 459 | clw(i,k) = 0.0 ! convect3 |
---|
| 460 | enddo ! convect3 |
---|
| 461 | enddo ! convect3 |
---|
| 462 | |
---|
| 463 | c tp and tvp below cloud base: |
---|
| 464 | |
---|
| 465 | do 350 k=minorig,icbsmax2-1 |
---|
| 466 | do 340 i=1,len |
---|
| 467 | tp(i,k)=tnk(i)-(gz(i,k)-gznk(i))*cpinv(i) |
---|
| 468 | tvp(i,k)=tp(i,k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
---|
| 469 | 340 continue |
---|
| 470 | 350 continue |
---|
| 471 | c |
---|
| 472 | c *** Find lifted parcel quantities above cloud base *** |
---|
| 473 | c |
---|
| 474 | do 360 i=1,len |
---|
| 475 | tg=ticb(i) |
---|
| 476 | c ori qg=qs(i,icb(i)) |
---|
| 477 | qg=qsicb(i) ! convect3 |
---|
| 478 | cdebug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 479 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 480 | c |
---|
| 481 | c First iteration. |
---|
| 482 | c |
---|
| 483 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 484 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
| 485 | : +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
| 486 | s=1./s |
---|
| 487 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 488 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 489 | tg=tg+s*(ah0(i)-ahg) |
---|
| 490 | c ori tg=max(tg,35.0) |
---|
| 491 | cdebug tc=tg-t0 |
---|
| 492 | tc=tg-273.15 |
---|
| 493 | denom=243.5+tc |
---|
| 494 | denom=MAX(denom,1.0) ! convect3 |
---|
| 495 | c ori if(tc.ge.0.0)then |
---|
| 496 | es=6.112*exp(17.67*tc/denom) |
---|
| 497 | c ori else |
---|
| 498 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 499 | c ori endif |
---|
| 500 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 501 | qg=eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
| 502 | c |
---|
| 503 | c Second iteration. |
---|
| 504 | c |
---|
| 505 | |
---|
| 506 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 507 | c ori s=1./s |
---|
| 508 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 509 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 510 | tg=tg+s*(ah0(i)-ahg) |
---|
| 511 | c ori tg=max(tg,35.0) |
---|
| 512 | cdebug tc=tg-t0 |
---|
| 513 | tc=tg-273.15 |
---|
| 514 | denom=243.5+tc |
---|
| 515 | denom=MAX(denom,1.0) ! convect3 |
---|
| 516 | c ori if(tc.ge.0.0)then |
---|
| 517 | es=6.112*exp(17.67*tc/denom) |
---|
| 518 | c ori else |
---|
| 519 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 520 | c ori end if |
---|
| 521 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 522 | qg=eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
| 523 | |
---|
| 524 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 525 | |
---|
| 526 | c ori c approximation here: |
---|
| 527 | c ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 528 | c ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
| 529 | |
---|
| 530 | c convect3: no approximation: |
---|
| 531 | tp(i,icbs(i))=(ah0(i)-gz(i,icbs(i))-alv*qg) |
---|
| 532 | : /(cpd+(cl-cpd)*qnk(i)) |
---|
| 533 | |
---|
| 534 | c ori clw(i,icb(i))=qnk(i)-qg |
---|
| 535 | c ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 536 | clw(i,icbs(i))=qnk(i)-qg |
---|
| 537 | clw(i,icbs(i))=max(0.0,clw(i,icbs(i))) |
---|
| 538 | |
---|
| 539 | rg=qg/(1.-qnk(i)) |
---|
| 540 | c ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 541 | c convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 542 | tvp(i,icbs(i))=tp(i,icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
---|
| 543 | |
---|
| 544 | 360 continue |
---|
| 545 | c |
---|
| 546 | c ori do 380 k=minorig,icbsmax2 |
---|
| 547 | c ori do 370 i=1,len |
---|
| 548 | c ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
| 549 | c ori 370 continue |
---|
| 550 | c ori 380 continue |
---|
| 551 | c |
---|
| 552 | |
---|
| 553 | c -- The following is only for convect3: |
---|
| 554 | c |
---|
| 555 | c * icbs is the first level above the LCL: |
---|
| 556 | c if plcl<p(icb), then icbs=icb+1 |
---|
| 557 | c if plcl>p(icb), then icbs=icb |
---|
| 558 | c |
---|
| 559 | c * the routine above computes tvp from minorig to icbs (included). |
---|
| 560 | c |
---|
| 561 | c * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
---|
| 562 | c must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
---|
| 563 | c |
---|
| 564 | c * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
---|
| 565 | c (tvp at other levels will be computed in cv3_undilute2.F) |
---|
| 566 | c |
---|
| 567 | |
---|
| 568 | do i=1,len |
---|
| 569 | ticb(i)=t(i,icb(i)+1) |
---|
| 570 | gzicb(i)=gz(i,icb(i)+1) |
---|
| 571 | qsicb(i)=qs(i,icb(i)+1) |
---|
| 572 | enddo |
---|
| 573 | |
---|
| 574 | do 460 i=1,len |
---|
| 575 | tg=ticb(i) |
---|
| 576 | qg=qsicb(i) ! convect3 |
---|
| 577 | cdebug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 578 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 579 | c |
---|
| 580 | c First iteration. |
---|
| 581 | c |
---|
| 582 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 583 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
| 584 | : +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
| 585 | s=1./s |
---|
| 586 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 587 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 588 | tg=tg+s*(ah0(i)-ahg) |
---|
| 589 | c ori tg=max(tg,35.0) |
---|
| 590 | cdebug tc=tg-t0 |
---|
| 591 | tc=tg-273.15 |
---|
| 592 | denom=243.5+tc |
---|
| 593 | denom=MAX(denom,1.0) ! convect3 |
---|
| 594 | c ori if(tc.ge.0.0)then |
---|
| 595 | es=6.112*exp(17.67*tc/denom) |
---|
| 596 | c ori else |
---|
| 597 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 598 | c ori endif |
---|
| 599 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 600 | qg=eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
| 601 | c |
---|
| 602 | c Second iteration. |
---|
| 603 | c |
---|
| 604 | |
---|
| 605 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 606 | c ori s=1./s |
---|
| 607 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 608 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 609 | tg=tg+s*(ah0(i)-ahg) |
---|
| 610 | c ori tg=max(tg,35.0) |
---|
| 611 | cdebug tc=tg-t0 |
---|
| 612 | tc=tg-273.15 |
---|
| 613 | denom=243.5+tc |
---|
| 614 | denom=MAX(denom,1.0) ! convect3 |
---|
| 615 | c ori if(tc.ge.0.0)then |
---|
| 616 | es=6.112*exp(17.67*tc/denom) |
---|
| 617 | c ori else |
---|
| 618 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 619 | c ori end if |
---|
| 620 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 621 | qg=eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
| 622 | |
---|
| 623 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 624 | |
---|
| 625 | c ori c approximation here: |
---|
| 626 | c ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 627 | c ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
| 628 | |
---|
| 629 | c convect3: no approximation: |
---|
| 630 | tp(i,icb(i)+1)=(ah0(i)-gz(i,icb(i)+1)-alv*qg) |
---|
| 631 | : /(cpd+(cl-cpd)*qnk(i)) |
---|
| 632 | |
---|
| 633 | c ori clw(i,icb(i))=qnk(i)-qg |
---|
| 634 | c ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 635 | clw(i,icb(i)+1)=qnk(i)-qg |
---|
| 636 | clw(i,icb(i)+1)=max(0.0,clw(i,icb(i)+1)) |
---|
| 637 | |
---|
| 638 | rg=qg/(1.-qnk(i)) |
---|
| 639 | c ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 640 | c convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 641 | tvp(i,icb(i)+1)=tp(i,icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
---|
| 642 | |
---|
| 643 | 460 continue |
---|
| 644 | |
---|
| 645 | return |
---|
| 646 | end |
---|
| 647 | |
---|
| 648 | SUBROUTINE cv3_trigger(len,nd,icb,plcl,p,th,tv,tvp,thnk, |
---|
| 649 | o pbase,buoybase,iflag,sig,w0) |
---|
| 650 | implicit none |
---|
| 651 | |
---|
| 652 | !------------------------------------------------------------------- |
---|
| 653 | ! --- TRIGGERING |
---|
| 654 | ! |
---|
| 655 | ! - computes the cloud base |
---|
| 656 | ! - triggering (crude in this version) |
---|
| 657 | ! - relaxation of sig and w0 when no convection |
---|
| 658 | ! |
---|
| 659 | ! Caution1: if no convection, we set iflag=4 |
---|
| 660 | ! (it used to be 0 in convect3) |
---|
| 661 | ! |
---|
| 662 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
---|
| 663 | ! through icb only! |
---|
| 664 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
---|
| 665 | !------------------------------------------------------------------- |
---|
| 666 | |
---|
| 667 | #include "cv3param.h" |
---|
| 668 | |
---|
| 669 | c input: |
---|
| 670 | integer len, nd |
---|
| 671 | integer icb(len) |
---|
| 672 | real plcl(len), p(len,nd) |
---|
| 673 | real th(len,nd), tv(len,nd), tvp(len,nd) |
---|
| 674 | real thnk(len) |
---|
| 675 | |
---|
| 676 | c output: |
---|
| 677 | real pbase(len), buoybase(len) |
---|
| 678 | |
---|
| 679 | c input AND output: |
---|
| 680 | integer iflag(len) |
---|
| 681 | real sig(len,nd), w0(len,nd) |
---|
| 682 | |
---|
| 683 | c local variables: |
---|
| 684 | integer i,k |
---|
| 685 | real tvpbase, tvbase, tdif, ath, ath1 |
---|
| 686 | |
---|
| 687 | c |
---|
| 688 | c *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
---|
| 689 | c |
---|
| 690 | do 100 i=1,len |
---|
| 691 | pbase(i) = plcl(i) + dpbase |
---|
| 692 | tvpbase = tvp(i,icb(i))*(pbase(i)-p(i,icb(i)+1)) |
---|
| 693 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 694 | : + tvp(i,icb(i)+1)*(p(i,icb(i))-pbase(i)) |
---|
| 695 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 696 | tvbase = tv(i,icb(i))*(pbase(i)-p(i,icb(i)+1)) |
---|
| 697 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 698 | : + tv(i,icb(i)+1)*(p(i,icb(i))-pbase(i)) |
---|
| 699 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 700 | buoybase(i) = tvpbase - tvbase |
---|
| 701 | 100 continue |
---|
| 702 | |
---|
| 703 | c |
---|
| 704 | c *** make sure that column is dry adiabatic between the surface *** |
---|
| 705 | c *** and cloud base, and that lifted air is positively buoyant *** |
---|
| 706 | c *** at cloud base *** |
---|
| 707 | c *** if not, return to calling program after resetting *** |
---|
| 708 | c *** sig(i) and w0(i) *** |
---|
| 709 | c |
---|
| 710 | |
---|
| 711 | c oct3 do 200 i=1,len |
---|
| 712 | c oct3 |
---|
| 713 | c oct3 tdif = buoybase(i) |
---|
| 714 | c oct3 ath1 = th(i,1) |
---|
| 715 | c oct3 ath = th(i,icb(i)-1) - dttrig |
---|
| 716 | c oct3 |
---|
| 717 | c oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
| 718 | c oct3 do 60 k=1,nl |
---|
| 719 | c oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
| 720 | c oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
| 721 | c oct3 w0(i,k) = beta*w0(i,k) |
---|
| 722 | c oct3 60 continue |
---|
| 723 | c oct3 iflag(i)=4 ! pour version vectorisee |
---|
| 724 | c oct3c convect3 iflag(i)=0 |
---|
| 725 | c oct3cccc return |
---|
| 726 | c oct3 endif |
---|
| 727 | c oct3 |
---|
| 728 | c oct3200 continue |
---|
| 729 | |
---|
| 730 | c -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
---|
| 731 | |
---|
| 732 | do 60 k=1,nl |
---|
| 733 | do 200 i=1,len |
---|
| 734 | |
---|
| 735 | tdif = buoybase(i) |
---|
| 736 | ath1 = thnk(i) |
---|
| 737 | ath = th(i,icb(i)-1) - dttrig |
---|
| 738 | |
---|
| 739 | if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
| 740 | sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
| 741 | sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
| 742 | w0(i,k) = beta*w0(i,k) |
---|
| 743 | iflag(i)=4 ! pour version vectorisee |
---|
| 744 | c convect3 iflag(i)=0 |
---|
| 745 | endif |
---|
| 746 | |
---|
| 747 | 200 continue |
---|
| 748 | 60 continue |
---|
| 749 | |
---|
| 750 | c fin oct3 -- |
---|
| 751 | |
---|
| 752 | return |
---|
| 753 | end |
---|
| 754 | |
---|
| 755 | SUBROUTINE cv3_compress( len,nloc,ncum,nd,ntra |
---|
| 756 | : ,iflag1,nk1,icb1,icbs1 |
---|
| 757 | : ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 |
---|
| 758 | : ,t1,q1,qs1,u1,v1,gz1,th1 |
---|
| 759 | : ,tra1 |
---|
| 760 | : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 |
---|
| 761 | : ,sig1,w01 |
---|
| 762 | o ,iflag,nk,icb,icbs |
---|
| 763 | o ,plcl,tnk,qnk,gznk,pbase,buoybase |
---|
| 764 | o ,t,q,qs,u,v,gz,th |
---|
| 765 | o ,tra |
---|
| 766 | o ,h,lv,cpn,p,ph,tv,tp,tvp,clw |
---|
| 767 | o ,sig,w0 ) |
---|
| 768 | implicit none |
---|
| 769 | |
---|
| 770 | #include "cv3param.h" |
---|
| 771 | include 'iniprint.h' |
---|
| 772 | |
---|
| 773 | c inputs: |
---|
| 774 | integer len,ncum,nd,ntra,nloc |
---|
| 775 | integer iflag1(len),nk1(len),icb1(len),icbs1(len) |
---|
| 776 | real plcl1(len),tnk1(len),qnk1(len),gznk1(len) |
---|
| 777 | real pbase1(len),buoybase1(len) |
---|
| 778 | real t1(len,nd),q1(len,nd),qs1(len,nd),u1(len,nd),v1(len,nd) |
---|
| 779 | real gz1(len,nd),h1(len,nd),lv1(len,nd),cpn1(len,nd) |
---|
| 780 | real p1(len,nd),ph1(len,nd+1),tv1(len,nd),tp1(len,nd) |
---|
| 781 | real tvp1(len,nd),clw1(len,nd) |
---|
| 782 | real th1(len,nd) |
---|
| 783 | real sig1(len,nd), w01(len,nd) |
---|
| 784 | real tra1(len,nd,ntra) |
---|
| 785 | |
---|
| 786 | c outputs: |
---|
| 787 | c en fait, on a nloc=len pour l'instant (cf cv_driver) |
---|
| 788 | integer iflag(nloc),nk(nloc),icb(nloc),icbs(nloc) |
---|
| 789 | real plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc) |
---|
| 790 | real pbase(nloc),buoybase(nloc) |
---|
| 791 | real t(nloc,nd),q(nloc,nd),qs(nloc,nd),u(nloc,nd),v(nloc,nd) |
---|
| 792 | real gz(nloc,nd),h(nloc,nd),lv(nloc,nd),cpn(nloc,nd) |
---|
| 793 | real p(nloc,nd),ph(nloc,nd+1),tv(nloc,nd),tp(nloc,nd) |
---|
| 794 | real tvp(nloc,nd),clw(nloc,nd) |
---|
| 795 | real th(nloc,nd) |
---|
| 796 | real sig(nloc,nd), w0(nloc,nd) |
---|
| 797 | real tra(nloc,nd,ntra) |
---|
| 798 | |
---|
| 799 | c local variables: |
---|
| 800 | integer i,k,nn,j |
---|
| 801 | |
---|
| 802 | CHARACTER (LEN=20) :: modname='cv3_compress' |
---|
| 803 | CHARACTER (LEN=80) :: abort_message |
---|
| 804 | |
---|
| 805 | do 110 k=1,nl+1 |
---|
| 806 | nn=0 |
---|
| 807 | do 100 i=1,len |
---|
| 808 | if(iflag1(i).eq.0)then |
---|
| 809 | nn=nn+1 |
---|
| 810 | sig(nn,k)=sig1(i,k) |
---|
| 811 | w0(nn,k)=w01(i,k) |
---|
| 812 | t(nn,k)=t1(i,k) |
---|
| 813 | q(nn,k)=q1(i,k) |
---|
| 814 | qs(nn,k)=qs1(i,k) |
---|
| 815 | u(nn,k)=u1(i,k) |
---|
| 816 | v(nn,k)=v1(i,k) |
---|
| 817 | gz(nn,k)=gz1(i,k) |
---|
| 818 | h(nn,k)=h1(i,k) |
---|
| 819 | lv(nn,k)=lv1(i,k) |
---|
| 820 | cpn(nn,k)=cpn1(i,k) |
---|
| 821 | p(nn,k)=p1(i,k) |
---|
| 822 | ph(nn,k)=ph1(i,k) |
---|
| 823 | tv(nn,k)=tv1(i,k) |
---|
| 824 | tp(nn,k)=tp1(i,k) |
---|
| 825 | tvp(nn,k)=tvp1(i,k) |
---|
| 826 | clw(nn,k)=clw1(i,k) |
---|
| 827 | th(nn,k)=th1(i,k) |
---|
| 828 | endif |
---|
| 829 | 100 continue |
---|
| 830 | 110 continue |
---|
| 831 | |
---|
| 832 | do 121 j=1,ntra |
---|
| 833 | ccccc do 111 k=1,nl+1 |
---|
| 834 | do 111 k=1,nd |
---|
| 835 | nn=0 |
---|
| 836 | do 101 i=1,len |
---|
| 837 | if(iflag1(i).eq.0)then |
---|
| 838 | nn=nn+1 |
---|
| 839 | tra(nn,k,j)=tra1(i,k,j) |
---|
| 840 | endif |
---|
| 841 | 101 continue |
---|
| 842 | 111 continue |
---|
| 843 | 121 continue |
---|
| 844 | |
---|
| 845 | if (nn.ne.ncum) then |
---|
| 846 | write(lunout,*)'strange! nn not equal to ncum: ',nn,ncum |
---|
| 847 | abort_message = '' |
---|
| 848 | CALL abort_gcm (modname,abort_message,1) |
---|
| 849 | endif |
---|
| 850 | |
---|
| 851 | nn=0 |
---|
| 852 | do 150 i=1,len |
---|
| 853 | if(iflag1(i).eq.0)then |
---|
| 854 | nn=nn+1 |
---|
| 855 | pbase(nn)=pbase1(i) |
---|
| 856 | buoybase(nn)=buoybase1(i) |
---|
| 857 | plcl(nn)=plcl1(i) |
---|
| 858 | tnk(nn)=tnk1(i) |
---|
| 859 | qnk(nn)=qnk1(i) |
---|
| 860 | gznk(nn)=gznk1(i) |
---|
| 861 | nk(nn)=nk1(i) |
---|
| 862 | icb(nn)=icb1(i) |
---|
| 863 | icbs(nn)=icbs1(i) |
---|
| 864 | iflag(nn)=iflag1(i) |
---|
| 865 | endif |
---|
| 866 | 150 continue |
---|
| 867 | |
---|
| 868 | return |
---|
| 869 | end |
---|
| 870 | |
---|
| 871 | SUBROUTINE cv3_undilute2(nloc,ncum,nd,icb,icbs,nk |
---|
| 872 | : ,tnk,qnk,gznk,hnk,t,q,qs,gz |
---|
| 873 | : ,p,h,tv,lv,pbase,buoybase,plcl |
---|
| 874 | o ,inb,tp,tvp,clw,hp,ep,sigp,buoy) |
---|
| 875 | implicit none |
---|
| 876 | |
---|
| 877 | C--------------------------------------------------------------------- |
---|
| 878 | C Purpose: |
---|
| 879 | C FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 880 | C & |
---|
| 881 | C COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
| 882 | C FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 883 | C & |
---|
| 884 | C FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
| 885 | C |
---|
| 886 | C Main differences convect3/convect4: |
---|
| 887 | C - icbs (input) is the first level above LCL (may differ from icb) |
---|
| 888 | C - many minor differences in the iterations |
---|
| 889 | C - condensed water not removed from tvp in convect3 |
---|
| 890 | C - vertical profile of buoyancy computed here (use of buoybase) |
---|
| 891 | C - the determination of inb is different |
---|
| 892 | C - no inb1, only inb in output |
---|
| 893 | C--------------------------------------------------------------------- |
---|
| 894 | |
---|
| 895 | #include "cvthermo.h" |
---|
| 896 | #include "cv3param.h" |
---|
| 897 | #include "conema3.h" |
---|
| 898 | |
---|
| 899 | c inputs: |
---|
| 900 | integer ncum, nd, nloc |
---|
| 901 | integer icb(nloc), icbs(nloc), nk(nloc) |
---|
| 902 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd), gz(nloc,nd) |
---|
| 903 | real p(nloc,nd) |
---|
| 904 | real tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 905 | real hnk(nloc) |
---|
| 906 | real lv(nloc,nd), tv(nloc,nd), h(nloc,nd) |
---|
| 907 | real pbase(nloc), buoybase(nloc), plcl(nloc) |
---|
| 908 | |
---|
| 909 | c outputs: |
---|
| 910 | integer inb(nloc) |
---|
| 911 | real tp(nloc,nd), tvp(nloc,nd), clw(nloc,nd) |
---|
| 912 | real ep(nloc,nd), sigp(nloc,nd), hp(nloc,nd) |
---|
| 913 | real buoy(nloc,nd) |
---|
| 914 | |
---|
| 915 | c local variables: |
---|
| 916 | integer i, k |
---|
| 917 | real tg,qg,ahg,alv,s,tc,es,denom,rg,tca,elacrit |
---|
| 918 | real by, defrac, pden |
---|
| 919 | real ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
| 920 | logical lcape(nloc) |
---|
| 921 | integer iposit(nloc) |
---|
| 922 | |
---|
| 923 | !===================================================================== |
---|
| 924 | ! --- SOME INITIALIZATIONS |
---|
| 925 | !===================================================================== |
---|
| 926 | |
---|
| 927 | do 170 k=1,nl |
---|
| 928 | do 160 i=1,ncum |
---|
| 929 | ep(i,k)=0.0 |
---|
| 930 | sigp(i,k)=spfac |
---|
| 931 | 160 continue |
---|
| 932 | 170 continue |
---|
| 933 | |
---|
| 934 | !===================================================================== |
---|
| 935 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 936 | !===================================================================== |
---|
| 937 | c |
---|
| 938 | c --- The procedure is to solve the equation. |
---|
| 939 | c cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 940 | c |
---|
| 941 | c *** Calculate certain parcel quantities, including static energy *** |
---|
| 942 | c |
---|
| 943 | c |
---|
| 944 | do 240 i=1,ncum |
---|
| 945 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
| 946 | cdebug & +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
| 947 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
| 948 | 240 continue |
---|
| 949 | c |
---|
| 950 | c |
---|
| 951 | c *** Find lifted parcel quantities above cloud base *** |
---|
| 952 | c |
---|
| 953 | c |
---|
| 954 | do 300 k=minorig+1,nl |
---|
| 955 | do 290 i=1,ncum |
---|
| 956 | c ori if(k.ge.(icb(i)+1))then |
---|
| 957 | if(k.ge.(icbs(i)+1))then ! convect3 |
---|
| 958 | tg=t(i,k) |
---|
| 959 | qg=qs(i,k) |
---|
| 960 | cdebug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 961 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
| 962 | c |
---|
| 963 | c First iteration. |
---|
| 964 | c |
---|
| 965 | c ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 966 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
| 967 | : +alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
---|
| 968 | s=1./s |
---|
| 969 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 970 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gz(i,k) ! convect3 |
---|
| 971 | tg=tg+s*(ah0(i)-ahg) |
---|
| 972 | c ori tg=max(tg,35.0) |
---|
| 973 | cdebug tc=tg-t0 |
---|
| 974 | tc=tg-273.15 |
---|
| 975 | denom=243.5+tc |
---|
| 976 | denom=MAX(denom,1.0) ! convect3 |
---|
| 977 | c ori if(tc.ge.0.0)then |
---|
| 978 | es=6.112*exp(17.67*tc/denom) |
---|
| 979 | c ori else |
---|
| 980 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 981 | c ori endif |
---|
| 982 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 983 | c |
---|
| 984 | c Second iteration. |
---|
| 985 | c |
---|
| 986 | c ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 987 | c ori s=1./s |
---|
| 988 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 989 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gz(i,k) ! convect3 |
---|
| 990 | tg=tg+s*(ah0(i)-ahg) |
---|
| 991 | c ori tg=max(tg,35.0) |
---|
| 992 | cdebug tc=tg-t0 |
---|
| 993 | tc=tg-273.15 |
---|
| 994 | denom=243.5+tc |
---|
| 995 | denom=MAX(denom,1.0) ! convect3 |
---|
| 996 | c ori if(tc.ge.0.0)then |
---|
| 997 | es=6.112*exp(17.67*tc/denom) |
---|
| 998 | c ori else |
---|
| 999 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 1000 | c ori endif |
---|
| 1001 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 1002 | c |
---|
| 1003 | cdebug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 1004 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
| 1005 | c print*,'cpd dans convect2 ',cpd |
---|
| 1006 | c print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 1007 | c print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
| 1008 | |
---|
| 1009 | c ori c approximation here: |
---|
| 1010 | c ori tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
| 1011 | |
---|
| 1012 | c convect3: no approximation: |
---|
| 1013 | tp(i,k)=(ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
| 1014 | |
---|
| 1015 | clw(i,k)=qnk(i)-qg |
---|
| 1016 | clw(i,k)=max(0.0,clw(i,k)) |
---|
| 1017 | rg=qg/(1.-qnk(i)) |
---|
| 1018 | c ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
| 1019 | c convect3: (qg utilise au lieu du vrai mixing ratio rg): |
---|
| 1020 | tvp(i,k)=tp(i,k)*(1.+qg/eps-qnk(i)) ! whole thing |
---|
| 1021 | endif |
---|
| 1022 | 290 continue |
---|
| 1023 | 300 continue |
---|
| 1024 | c |
---|
| 1025 | !===================================================================== |
---|
| 1026 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 1027 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 1028 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 1029 | !===================================================================== |
---|
| 1030 | c |
---|
| 1031 | c ori do 320 k=minorig+1,nl |
---|
| 1032 | do 320 k=1,nl ! convect3 |
---|
| 1033 | do 310 i=1,ncum |
---|
| 1034 | pden=ptcrit-pbcrit |
---|
| 1035 | ep(i,k)=(plcl(i)-p(i,k)-pbcrit)/pden*epmax |
---|
| 1036 | ep(i,k)=amax1(ep(i,k),0.0) |
---|
| 1037 | ep(i,k)=amin1(ep(i,k),epmax) |
---|
| 1038 | sigp(i,k)=spfac |
---|
| 1039 | c ori if(k.ge.(nk(i)+1))then |
---|
| 1040 | c ori tca=tp(i,k)-t0 |
---|
| 1041 | c ori if(tca.ge.0.0)then |
---|
| 1042 | c ori elacrit=elcrit |
---|
| 1043 | c ori else |
---|
| 1044 | c ori elacrit=elcrit*(1.0-tca/tlcrit) |
---|
| 1045 | c ori endif |
---|
| 1046 | c ori elacrit=max(elacrit,0.0) |
---|
| 1047 | c ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
| 1048 | c ori ep(i,k)=max(ep(i,k),0.0 ) |
---|
| 1049 | c ori ep(i,k)=min(ep(i,k),1.0 ) |
---|
| 1050 | c ori sigp(i,k)=sigs |
---|
| 1051 | c ori endif |
---|
| 1052 | 310 continue |
---|
| 1053 | 320 continue |
---|
| 1054 | c |
---|
| 1055 | !===================================================================== |
---|
| 1056 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 1057 | ! --- VIRTUAL TEMPERATURE |
---|
| 1058 | !===================================================================== |
---|
| 1059 | c |
---|
| 1060 | c dans convect3, tvp est calcule en une seule fois, et sans retirer |
---|
| 1061 | c l'eau condensee (~> reversible CAPE) |
---|
| 1062 | c |
---|
| 1063 | c ori do 340 k=minorig+1,nl |
---|
| 1064 | c ori do 330 i=1,ncum |
---|
| 1065 | c ori if(k.ge.(icb(i)+1))then |
---|
| 1066 | c ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 1067 | c oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 1068 | c oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 1069 | c ori endif |
---|
| 1070 | c ori 330 continue |
---|
| 1071 | c ori 340 continue |
---|
| 1072 | |
---|
| 1073 | c ori do 350 i=1,ncum |
---|
| 1074 | c ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
| 1075 | c ori 350 continue |
---|
| 1076 | |
---|
| 1077 | do 350 i=1,ncum ! convect3 |
---|
| 1078 | tp(i,nlp)=tp(i,nl) ! convect3 |
---|
| 1079 | 350 continue ! convect3 |
---|
| 1080 | c |
---|
| 1081 | c===================================================================== |
---|
| 1082 | c --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
---|
| 1083 | c===================================================================== |
---|
| 1084 | |
---|
| 1085 | c-- this is for convect3 only: |
---|
| 1086 | |
---|
| 1087 | c first estimate of buoyancy: |
---|
| 1088 | |
---|
| 1089 | do 500 i=1,ncum |
---|
| 1090 | do 501 k=1,nl |
---|
| 1091 | buoy(i,k)=tvp(i,k)-tv(i,k) |
---|
| 1092 | 501 continue |
---|
| 1093 | 500 continue |
---|
| 1094 | |
---|
| 1095 | c set buoyancy=buoybase for all levels below base |
---|
| 1096 | c for safety, set buoy(icb)=buoybase |
---|
| 1097 | |
---|
| 1098 | do 505 i=1,ncum |
---|
| 1099 | do 506 k=1,nl |
---|
| 1100 | if((k.ge.icb(i)).and.(k.le.nl).and.(p(i,k).ge.pbase(i)))then |
---|
| 1101 | buoy(i,k)=buoybase(i) |
---|
| 1102 | endif |
---|
| 1103 | 506 continue |
---|
| 1104 | c buoy(icb(i),k)=buoybase(i) |
---|
| 1105 | buoy(i,icb(i))=buoybase(i) |
---|
| 1106 | 505 continue |
---|
| 1107 | |
---|
| 1108 | c-- end convect3 |
---|
| 1109 | |
---|
| 1110 | c===================================================================== |
---|
| 1111 | c --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
---|
| 1112 | c --- LEVEL OF NEUTRAL BUOYANCY |
---|
| 1113 | c===================================================================== |
---|
| 1114 | c |
---|
| 1115 | c-- this is for convect3 only: |
---|
| 1116 | |
---|
| 1117 | do 510 i=1,ncum |
---|
| 1118 | inb(i)=nl-1 |
---|
| 1119 | iposit(i) = nl |
---|
| 1120 | 510 continue |
---|
| 1121 | |
---|
| 1122 | c |
---|
| 1123 | c-- iposit(i) = first level, above icb, with positive buoyancy |
---|
| 1124 | do k = 1,nl-1 |
---|
| 1125 | do i = 1,ncum |
---|
| 1126 | if (k .ge. icb(i) .and. buoy(i,k) .gt. 0.) then |
---|
| 1127 | iposit(i) = min(iposit(i),k) |
---|
| 1128 | endif |
---|
| 1129 | enddo |
---|
| 1130 | enddo |
---|
| 1131 | |
---|
| 1132 | do i = 1,ncum |
---|
| 1133 | if (iposit(i) .eq. nl) then |
---|
| 1134 | iposit(i) = icb(i) |
---|
| 1135 | endif |
---|
| 1136 | enddo |
---|
| 1137 | |
---|
| 1138 | do 530 i=1,ncum |
---|
| 1139 | do 535 k=1,nl-1 |
---|
| 1140 | if ((k.ge.iposit(i)).and.(buoy(i,k).lt.dtovsh)) then |
---|
| 1141 | inb(i)=MIN(inb(i),k) |
---|
| 1142 | endif |
---|
| 1143 | 535 continue |
---|
| 1144 | 530 continue |
---|
| 1145 | |
---|
| 1146 | c-- end convect3 |
---|
| 1147 | |
---|
| 1148 | c ori do 510 i=1,ncum |
---|
| 1149 | c ori cape(i)=0.0 |
---|
| 1150 | c ori capem(i)=0.0 |
---|
| 1151 | c ori inb(i)=icb(i)+1 |
---|
| 1152 | c ori inb1(i)=inb(i) |
---|
| 1153 | c ori 510 continue |
---|
| 1154 | c |
---|
| 1155 | c Originial Code |
---|
| 1156 | c |
---|
| 1157 | c do 530 k=minorig+1,nl-1 |
---|
| 1158 | c do 520 i=1,ncum |
---|
| 1159 | c if(k.ge.(icb(i)+1))then |
---|
| 1160 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1161 | c byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1162 | c cape(i)=cape(i)+by |
---|
| 1163 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1164 | c if(cape(i).gt.0.0)then |
---|
| 1165 | c inb(i)=k+1 |
---|
| 1166 | c capem(i)=cape(i) |
---|
| 1167 | c endif |
---|
| 1168 | c endif |
---|
| 1169 | c520 continue |
---|
| 1170 | c530 continue |
---|
| 1171 | c do 540 i=1,ncum |
---|
| 1172 | c byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 1173 | c cape(i)=capem(i)+byp |
---|
| 1174 | c defrac=capem(i)-cape(i) |
---|
| 1175 | c defrac=max(defrac,0.001) |
---|
| 1176 | c frac(i)=-cape(i)/defrac |
---|
| 1177 | c frac(i)=min(frac(i),1.0) |
---|
| 1178 | c frac(i)=max(frac(i),0.0) |
---|
| 1179 | c540 continue |
---|
| 1180 | c |
---|
| 1181 | c K Emanuel fix |
---|
| 1182 | c |
---|
| 1183 | c call zilch(byp,ncum) |
---|
| 1184 | c do 530 k=minorig+1,nl-1 |
---|
| 1185 | c do 520 i=1,ncum |
---|
| 1186 | c if(k.ge.(icb(i)+1))then |
---|
| 1187 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1188 | c cape(i)=cape(i)+by |
---|
| 1189 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1190 | c if(cape(i).gt.0.0)then |
---|
| 1191 | c inb(i)=k+1 |
---|
| 1192 | c capem(i)=cape(i) |
---|
| 1193 | c byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1194 | c endif |
---|
| 1195 | c endif |
---|
| 1196 | c520 continue |
---|
| 1197 | c530 continue |
---|
| 1198 | c do 540 i=1,ncum |
---|
| 1199 | c inb(i)=max(inb(i),inb1(i)) |
---|
| 1200 | c cape(i)=capem(i)+byp(i) |
---|
| 1201 | c defrac=capem(i)-cape(i) |
---|
| 1202 | c defrac=max(defrac,0.001) |
---|
| 1203 | c frac(i)=-cape(i)/defrac |
---|
| 1204 | c frac(i)=min(frac(i),1.0) |
---|
| 1205 | c frac(i)=max(frac(i),0.0) |
---|
| 1206 | c540 continue |
---|
| 1207 | c |
---|
| 1208 | c J Teixeira fix |
---|
| 1209 | c |
---|
| 1210 | c ori call zilch(byp,ncum) |
---|
| 1211 | c ori do 515 i=1,ncum |
---|
| 1212 | c ori lcape(i)=.true. |
---|
| 1213 | c ori 515 continue |
---|
| 1214 | c ori do 530 k=minorig+1,nl-1 |
---|
| 1215 | c ori do 520 i=1,ncum |
---|
| 1216 | c ori if(cape(i).lt.0.0)lcape(i)=.false. |
---|
| 1217 | c ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
| 1218 | c ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1219 | c ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1220 | c ori cape(i)=cape(i)+by |
---|
| 1221 | c ori if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1222 | c ori if(cape(i).gt.0.0)then |
---|
| 1223 | c ori inb(i)=k+1 |
---|
| 1224 | c ori capem(i)=cape(i) |
---|
| 1225 | c ori endif |
---|
| 1226 | c ori endif |
---|
| 1227 | c ori 520 continue |
---|
| 1228 | c ori 530 continue |
---|
| 1229 | c ori do 540 i=1,ncum |
---|
| 1230 | c ori cape(i)=capem(i)+byp(i) |
---|
| 1231 | c ori defrac=capem(i)-cape(i) |
---|
| 1232 | c ori defrac=max(defrac,0.001) |
---|
| 1233 | c ori frac(i)=-cape(i)/defrac |
---|
| 1234 | c ori frac(i)=min(frac(i),1.0) |
---|
| 1235 | c ori frac(i)=max(frac(i),0.0) |
---|
| 1236 | c ori 540 continue |
---|
| 1237 | c |
---|
| 1238 | c===================================================================== |
---|
| 1239 | c --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 1240 | c===================================================================== |
---|
| 1241 | c |
---|
| 1242 | do k = 1,nd |
---|
| 1243 | do i=1,ncum |
---|
| 1244 | hp(i,k)=h(i,k) |
---|
| 1245 | enddo |
---|
| 1246 | enddo |
---|
| 1247 | |
---|
| 1248 | do 600 k=minorig+1,nl |
---|
| 1249 | do 590 i=1,ncum |
---|
| 1250 | if((k.ge.icb(i)).and.(k.le.inb(i)))then |
---|
| 1251 | hp(i,k)=hnk(i)+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
---|
| 1252 | endif |
---|
| 1253 | 590 continue |
---|
| 1254 | 600 continue |
---|
| 1255 | |
---|
| 1256 | return |
---|
| 1257 | end |
---|
| 1258 | |
---|
| 1259 | SUBROUTINE cv3_closure(nloc,ncum,nd,icb,inb |
---|
| 1260 | : ,pbase,p,ph,tv,buoy |
---|
| 1261 | o ,sig,w0,cape,m,iflag) |
---|
| 1262 | implicit none |
---|
| 1263 | |
---|
| 1264 | !=================================================================== |
---|
| 1265 | ! --- CLOSURE OF CONVECT3 |
---|
| 1266 | ! |
---|
| 1267 | ! vectorization: S. Bony |
---|
| 1268 | !=================================================================== |
---|
| 1269 | |
---|
| 1270 | #include "cvthermo.h" |
---|
| 1271 | #include "cv3param.h" |
---|
| 1272 | |
---|
| 1273 | c input: |
---|
| 1274 | integer ncum, nd, nloc |
---|
| 1275 | integer icb(nloc), inb(nloc) |
---|
| 1276 | real pbase(nloc) |
---|
| 1277 | real p(nloc,nd), ph(nloc,nd+1) |
---|
| 1278 | real tv(nloc,nd), buoy(nloc,nd) |
---|
| 1279 | |
---|
| 1280 | c input/output: |
---|
| 1281 | real sig(nloc,nd), w0(nloc,nd) |
---|
| 1282 | integer iflag(nloc) |
---|
| 1283 | |
---|
| 1284 | c output: |
---|
| 1285 | real cape(nloc) |
---|
| 1286 | real m(nloc,nd) |
---|
| 1287 | |
---|
| 1288 | c local variables: |
---|
| 1289 | integer i, j, k, icbmax |
---|
| 1290 | real deltap, fac, w, amu |
---|
| 1291 | real dtmin(nloc,nd), sigold(nloc,nd) |
---|
| 1292 | real cbmflast(nloc) |
---|
| 1293 | |
---|
| 1294 | |
---|
| 1295 | c ------------------------------------------------------- |
---|
| 1296 | c -- Initialization |
---|
| 1297 | c ------------------------------------------------------- |
---|
| 1298 | |
---|
| 1299 | do k=1,nl |
---|
| 1300 | do i=1,ncum |
---|
| 1301 | m(i,k)=0.0 |
---|
| 1302 | enddo |
---|
| 1303 | enddo |
---|
| 1304 | |
---|
| 1305 | c ------------------------------------------------------- |
---|
| 1306 | c -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 1307 | c ------------------------------------------------------- |
---|
| 1308 | |
---|
| 1309 | c update sig and w0 above LNB: |
---|
| 1310 | |
---|
| 1311 | do 100 k=1,nl-1 |
---|
| 1312 | do 110 i=1,ncum |
---|
| 1313 | if ((inb(i).lt.(nl-1)).and.(k.ge.(inb(i)+1)))then |
---|
| 1314 | sig(i,k)=beta*sig(i,k) |
---|
| 1315 | : +2.*alpha*buoy(i,inb(i))*ABS(buoy(i,inb(i))) |
---|
| 1316 | sig(i,k)=AMAX1(sig(i,k),0.0) |
---|
| 1317 | w0(i,k)=beta*w0(i,k) |
---|
| 1318 | endif |
---|
| 1319 | 110 continue |
---|
| 1320 | 100 continue |
---|
| 1321 | |
---|
| 1322 | c compute icbmax: |
---|
| 1323 | |
---|
| 1324 | icbmax=2 |
---|
| 1325 | do 200 i=1,ncum |
---|
| 1326 | icbmax=MAX(icbmax,icb(i)) |
---|
| 1327 | 200 continue |
---|
| 1328 | |
---|
| 1329 | c update sig and w0 below cloud base: |
---|
| 1330 | |
---|
| 1331 | do 300 k=1,icbmax |
---|
| 1332 | do 310 i=1,ncum |
---|
| 1333 | if (k.le.icb(i))then |
---|
| 1334 | sig(i,k)=beta*sig(i,k)-2.*alpha*buoy(i,icb(i))*buoy(i,icb(i)) |
---|
| 1335 | sig(i,k)=amax1(sig(i,k),0.0) |
---|
| 1336 | w0(i,k)=beta*w0(i,k) |
---|
| 1337 | endif |
---|
| 1338 | 310 continue |
---|
| 1339 | 300 continue |
---|
| 1340 | |
---|
| 1341 | c! if(inb.lt.(nl-1))then |
---|
| 1342 | c! do 85 i=inb+1,nl-1 |
---|
| 1343 | c! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
---|
| 1344 | c! 1 abs(buoy(inb)) |
---|
| 1345 | c! sig(i)=amax1(sig(i),0.0) |
---|
| 1346 | c! w0(i)=beta*w0(i) |
---|
| 1347 | c! 85 continue |
---|
| 1348 | c! end if |
---|
| 1349 | |
---|
| 1350 | c! do 87 i=1,icb |
---|
| 1351 | c! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
---|
| 1352 | c! sig(i)=amax1(sig(i),0.0) |
---|
| 1353 | c! w0(i)=beta*w0(i) |
---|
| 1354 | c! 87 continue |
---|
| 1355 | |
---|
| 1356 | c ------------------------------------------------------------- |
---|
| 1357 | c -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 1358 | c -- and after 10 time steps of no convection |
---|
| 1359 | c ------------------------------------------------------------- |
---|
| 1360 | |
---|
| 1361 | do 400 k=1,nl-1 |
---|
| 1362 | do 410 i=1,ncum |
---|
| 1363 | if (sig(i,nd).lt.1.5.or.sig(i,nd).gt.12.0)then |
---|
| 1364 | sig(i,k)=0.0 |
---|
| 1365 | w0(i,k)=0.0 |
---|
| 1366 | endif |
---|
| 1367 | 410 continue |
---|
| 1368 | 400 continue |
---|
| 1369 | |
---|
| 1370 | c ------------------------------------------------------------- |
---|
| 1371 | c -- Calculate convective available potential energy (cape), |
---|
| 1372 | c -- vertical velocity (w), fractional area covered by |
---|
| 1373 | c -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 1374 | c ------------------------------------------------------------- |
---|
| 1375 | |
---|
| 1376 | do 500 i=1,ncum |
---|
| 1377 | cape(i)=0.0 |
---|
| 1378 | 500 continue |
---|
| 1379 | |
---|
| 1380 | c compute dtmin (minimum buoyancy between ICB and given level k): |
---|
| 1381 | |
---|
| 1382 | do i=1,ncum |
---|
| 1383 | do k=1,nl |
---|
| 1384 | dtmin(i,k)=100.0 |
---|
| 1385 | enddo |
---|
| 1386 | enddo |
---|
| 1387 | |
---|
| 1388 | do 550 i=1,ncum |
---|
| 1389 | do 560 k=1,nl |
---|
| 1390 | do 570 j=minorig,nl |
---|
| 1391 | if ( (k.ge.(icb(i)+1)).and.(k.le.inb(i)).and. |
---|
| 1392 | : (j.ge.icb(i)).and.(j.le.(k-1)) )then |
---|
| 1393 | dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
| 1394 | endif |
---|
| 1395 | 570 continue |
---|
| 1396 | 560 continue |
---|
| 1397 | 550 continue |
---|
| 1398 | |
---|
| 1399 | c the interval on which cape is computed starts at pbase : |
---|
| 1400 | |
---|
| 1401 | do 600 k=1,nl |
---|
| 1402 | do 610 i=1,ncum |
---|
| 1403 | |
---|
| 1404 | if ((k.ge.(icb(i)+1)).and.(k.le.inb(i))) then |
---|
| 1405 | |
---|
| 1406 | deltap = MIN(pbase(i),ph(i,k-1))-MIN(pbase(i),ph(i,k)) |
---|
| 1407 | cape(i)=cape(i)+rrd*buoy(i,k-1)*deltap/p(i,k-1) |
---|
| 1408 | cape(i)=AMAX1(0.0,cape(i)) |
---|
| 1409 | sigold(i,k)=sig(i,k) |
---|
| 1410 | |
---|
| 1411 | c dtmin(i,k)=100.0 |
---|
| 1412 | c do 97 j=icb(i),k-1 ! mauvaise vectorisation |
---|
| 1413 | c dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
| 1414 | c 97 continue |
---|
| 1415 | |
---|
| 1416 | sig(i,k)=beta*sig(i,k)+alpha*dtmin(i,k)*ABS(dtmin(i,k)) |
---|
| 1417 | sig(i,k)=amax1(sig(i,k),0.0) |
---|
| 1418 | sig(i,k)=amin1(sig(i,k),0.01) |
---|
| 1419 | fac=AMIN1(((dtcrit-dtmin(i,k))/dtcrit),1.0) |
---|
| 1420 | w=(1.-beta)*fac*SQRT(cape(i))+beta*w0(i,k) |
---|
| 1421 | amu=0.5*(sig(i,k)+sigold(i,k))*w |
---|
| 1422 | m(i,k)=amu*0.007*p(i,k)*(ph(i,k)-ph(i,k+1))/tv(i,k) |
---|
| 1423 | w0(i,k)=w |
---|
| 1424 | endif |
---|
| 1425 | |
---|
| 1426 | 610 continue |
---|
| 1427 | 600 continue |
---|
| 1428 | |
---|
| 1429 | do 700 i=1,ncum |
---|
| 1430 | w0(i,icb(i))=0.5*w0(i,icb(i)+1) |
---|
| 1431 | m(i,icb(i))=0.5*m(i,icb(i)+1) |
---|
| 1432 | : *(ph(i,icb(i))-ph(i,icb(i)+1)) |
---|
| 1433 | : /(ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
---|
| 1434 | sig(i,icb(i))=sig(i,icb(i)+1) |
---|
| 1435 | sig(i,icb(i)-1)=sig(i,icb(i)) |
---|
| 1436 | 700 continue |
---|
| 1437 | c |
---|
| 1438 | cccc 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
| 1439 | cccc cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
| 1440 | cccc the final mass flux (cbmflast) is greater than the target mass flux |
---|
| 1441 | cccc (cbmf) ??). |
---|
| 1442 | ccc |
---|
| 1443 | cc do i = 1,ncum |
---|
| 1444 | cc cbmflast(i) = 0. |
---|
| 1445 | cc enddo |
---|
| 1446 | ccc |
---|
| 1447 | cc do k= 1,nl |
---|
| 1448 | cc do i = 1,ncum |
---|
| 1449 | cc IF (k .ge. icb(i) .and. k .le. inb(i)) THEN |
---|
| 1450 | cc cbmflast(i) = cbmflast(i)+M(i,k) |
---|
| 1451 | cc ENDIF |
---|
| 1452 | cc enddo |
---|
| 1453 | cc enddo |
---|
| 1454 | ccc |
---|
| 1455 | cc do i = 1,ncum |
---|
| 1456 | cc IF (cbmflast(i) .lt. 1.e-6) THEN |
---|
| 1457 | cc iflag(i) = 3 |
---|
| 1458 | cc ENDIF |
---|
| 1459 | cc enddo |
---|
| 1460 | ccc |
---|
| 1461 | cc do k= 1,nl |
---|
| 1462 | cc do i = 1,ncum |
---|
| 1463 | cc IF (iflag(i) .ge. 3) THEN |
---|
| 1464 | cc M(i,k) = 0. |
---|
| 1465 | cc sig(i,k) = 0. |
---|
| 1466 | cc w0(i,k) = 0. |
---|
| 1467 | cc ENDIF |
---|
| 1468 | cc enddo |
---|
| 1469 | cc enddo |
---|
| 1470 | ccc |
---|
| 1471 | c! cape=0.0 |
---|
| 1472 | c! do 98 i=icb+1,inb |
---|
| 1473 | c! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
---|
| 1474 | c! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1475 | c! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1476 | c! dlnp=deltap/p(i-1) |
---|
| 1477 | c! cape=amax1(0.0,cape) |
---|
| 1478 | c! sigold=sig(i) |
---|
| 1479 | |
---|
| 1480 | c! dtmin=100.0 |
---|
| 1481 | c! do 97 j=icb,i-1 |
---|
| 1482 | c! dtmin=amin1(dtmin,buoy(j)) |
---|
| 1483 | c! 97 continue |
---|
| 1484 | |
---|
| 1485 | c! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
---|
| 1486 | c! sig(i)=amax1(sig(i),0.0) |
---|
| 1487 | c! sig(i)=amin1(sig(i),0.01) |
---|
| 1488 | c! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
---|
| 1489 | c! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
---|
| 1490 | c! amu=0.5*(sig(i)+sigold)*w |
---|
| 1491 | c! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
---|
| 1492 | c! w0(i)=w |
---|
| 1493 | c! 98 continue |
---|
| 1494 | c! w0(icb)=0.5*w0(icb+1) |
---|
| 1495 | c! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
---|
| 1496 | c! sig(icb)=sig(icb+1) |
---|
| 1497 | c! sig(icb-1)=sig(icb) |
---|
| 1498 | |
---|
| 1499 | return |
---|
| 1500 | end |
---|
| 1501 | |
---|
| 1502 | SUBROUTINE cv3_mixing(nloc,ncum,nd,na,ntra,icb,nk,inb |
---|
| 1503 | : ,ph,t,rr,rs,u,v,tra,h,lv,qnk |
---|
| 1504 | : ,unk,vnk,hp,tv,tvp,ep,clw,m,sig |
---|
| 1505 | : ,ment,qent,uent,vent,nent,sij,elij,ments,qents,traent) |
---|
| 1506 | implicit none |
---|
| 1507 | |
---|
| 1508 | !--------------------------------------------------------------------- |
---|
| 1509 | ! a faire: |
---|
| 1510 | ! - vectorisation de la partie normalisation des flux (do 789...) |
---|
| 1511 | !--------------------------------------------------------------------- |
---|
| 1512 | |
---|
| 1513 | #include "cvthermo.h" |
---|
| 1514 | #include "cv3param.h" |
---|
| 1515 | |
---|
| 1516 | c inputs: |
---|
| 1517 | integer ncum, nd, na, ntra, nloc |
---|
| 1518 | integer icb(nloc), inb(nloc), nk(nloc) |
---|
| 1519 | real sig(nloc,nd) |
---|
| 1520 | real qnk(nloc),unk(nloc),vnk(nloc) |
---|
| 1521 | real ph(nloc,nd+1) |
---|
| 1522 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd) |
---|
| 1523 | real u(nloc,nd), v(nloc,nd) |
---|
| 1524 | real tra(nloc,nd,ntra) ! input of convect3 |
---|
| 1525 | real lv(nloc,na), h(nloc,na), hp(nloc,na) |
---|
| 1526 | real tv(nloc,na), tvp(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
| 1527 | real m(nloc,na) ! input of convect3 |
---|
| 1528 | |
---|
| 1529 | c outputs: |
---|
| 1530 | real ment(nloc,na,na), qent(nloc,na,na) |
---|
| 1531 | real uent(nloc,na,na), vent(nloc,na,na) |
---|
| 1532 | real sij(nloc,na,na), elij(nloc,na,na) |
---|
| 1533 | real traent(nloc,nd,nd,ntra) |
---|
| 1534 | real ments(nloc,nd,nd), qents(nloc,nd,nd) |
---|
| 1535 | real sigij(nloc,nd,nd) |
---|
| 1536 | integer nent(nloc,nd) |
---|
| 1537 | |
---|
| 1538 | c local variables: |
---|
| 1539 | integer i, j, k, il, im, jm |
---|
| 1540 | integer num1, num2 |
---|
| 1541 | real rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
| 1542 | real alt, smid, sjmin, sjmax, delp, delm |
---|
| 1543 | real asij(nloc), smax(nloc), scrit(nloc) |
---|
| 1544 | real asum(nloc,nd),bsum(nloc,nd),csum(nloc,nd) |
---|
| 1545 | real wgh |
---|
| 1546 | real zm(nloc,na) |
---|
| 1547 | logical lwork(nloc) |
---|
| 1548 | |
---|
| 1549 | c===================================================================== |
---|
| 1550 | c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 1551 | c===================================================================== |
---|
| 1552 | |
---|
| 1553 | c ori do 360 i=1,ncum*nlp |
---|
| 1554 | do 361 j=1,nl |
---|
| 1555 | do 360 i=1,ncum |
---|
| 1556 | nent(i,j)=0 |
---|
| 1557 | c in convect3, m is computed in cv3_closure |
---|
| 1558 | c ori m(i,1)=0.0 |
---|
| 1559 | 360 continue |
---|
| 1560 | 361 continue |
---|
| 1561 | |
---|
| 1562 | c ori do 400 k=1,nlp |
---|
| 1563 | c ori do 390 j=1,nlp |
---|
| 1564 | do 400 j=1,nl |
---|
| 1565 | do 390 k=1,nl |
---|
| 1566 | do 385 i=1,ncum |
---|
| 1567 | qent(i,k,j)=rr(i,j) |
---|
| 1568 | uent(i,k,j)=u(i,j) |
---|
| 1569 | vent(i,k,j)=v(i,j) |
---|
| 1570 | elij(i,k,j)=0.0 |
---|
| 1571 | cym ment(i,k,j)=0.0 |
---|
| 1572 | cym sij(i,k,j)=0.0 |
---|
| 1573 | 385 continue |
---|
| 1574 | 390 continue |
---|
| 1575 | 400 continue |
---|
| 1576 | |
---|
| 1577 | cym |
---|
| 1578 | ment(1:ncum,1:nd,1:nd)=0.0 |
---|
| 1579 | sij(1:ncum,1:nd,1:nd)=0.0 |
---|
| 1580 | |
---|
| 1581 | do k=1,ntra |
---|
| 1582 | do j=1,nd ! instead nlp |
---|
| 1583 | do i=1,nd ! instead nlp |
---|
| 1584 | do il=1,ncum |
---|
| 1585 | traent(il,i,j,k)=tra(il,j,k) |
---|
| 1586 | enddo |
---|
| 1587 | enddo |
---|
| 1588 | enddo |
---|
| 1589 | enddo |
---|
| 1590 | zm(:,:)=0. |
---|
| 1591 | |
---|
| 1592 | c===================================================================== |
---|
| 1593 | c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 1594 | c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 1595 | c --- FRACTION (sij) |
---|
| 1596 | c===================================================================== |
---|
| 1597 | |
---|
| 1598 | do 750 i=minorig+1, nl |
---|
| 1599 | |
---|
| 1600 | do 710 j=minorig,nl |
---|
| 1601 | do 700 il=1,ncum |
---|
| 1602 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 1603 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
| 1604 | |
---|
| 1605 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 1606 | bf2=1.+lv(il,j)*lv(il,j)*rs(il,j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
| 1607 | anum=h(il,j)-hp(il,i)+(cpv-cpd)*t(il,j)*(rti-rr(il,j)) |
---|
| 1608 | denom=h(il,i)-hp(il,i)+(cpd-cpv)*(rr(il,i)-rti)*t(il,j) |
---|
| 1609 | dei=denom |
---|
| 1610 | if(abs(dei).lt.0.01)dei=0.01 |
---|
| 1611 | sij(il,i,j)=anum/dei |
---|
| 1612 | sij(il,i,i)=1.0 |
---|
| 1613 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
| 1614 | altem=altem/bf2 |
---|
| 1615 | cwat=clw(il,j)*(1.-ep(il,j)) |
---|
| 1616 | stemp=sij(il,i,j) |
---|
| 1617 | if((stemp.lt.0.0.or.stemp.gt.1.0.or.altem.gt.cwat) |
---|
| 1618 | : .and.j.gt.i)then |
---|
| 1619 | anum=anum-lv(il,j)*(rti-rs(il,j)-cwat*bf2) |
---|
| 1620 | denom=denom+lv(il,j)*(rr(il,i)-rti) |
---|
| 1621 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 1622 | sij(il,i,j)=anum/denom |
---|
| 1623 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
| 1624 | altem=altem-(bf2-1.)*cwat |
---|
| 1625 | end if |
---|
| 1626 | if(sij(il,i,j).gt.0.0.and.sij(il,i,j).lt.0.95)then |
---|
| 1627 | qent(il,i,j)=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti |
---|
| 1628 | uent(il,i,j)=sij(il,i,j)*u(il,i)+(1.-sij(il,i,j))*unk(il) |
---|
| 1629 | vent(il,i,j)=sij(il,i,j)*v(il,i)+(1.-sij(il,i,j))*vnk(il) |
---|
| 1630 | c!!! do k=1,ntra |
---|
| 1631 | c!!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1632 | c!!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1633 | c!!! end do |
---|
| 1634 | elij(il,i,j)=altem |
---|
| 1635 | elij(il,i,j)=amax1(0.0,elij(il,i,j)) |
---|
| 1636 | ment(il,i,j)=m(il,i)/(1.-sij(il,i,j)) |
---|
| 1637 | nent(il,i)=nent(il,i)+1 |
---|
| 1638 | end if |
---|
| 1639 | sij(il,i,j)=amax1(0.0,sij(il,i,j)) |
---|
| 1640 | sij(il,i,j)=amin1(1.0,sij(il,i,j)) |
---|
| 1641 | endif ! new |
---|
| 1642 | 700 continue |
---|
| 1643 | 710 continue |
---|
| 1644 | |
---|
| 1645 | do k=1,ntra |
---|
| 1646 | do j=minorig,nl |
---|
| 1647 | do il=1,ncum |
---|
| 1648 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 1649 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
| 1650 | traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1651 | : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1652 | endif |
---|
| 1653 | enddo |
---|
| 1654 | enddo |
---|
| 1655 | enddo |
---|
| 1656 | |
---|
| 1657 | c |
---|
| 1658 | c *** if no air can entrain at level i assume that updraft detrains *** |
---|
| 1659 | c *** at that level and calculate detrained air flux and properties *** |
---|
| 1660 | c |
---|
| 1661 | |
---|
| 1662 | c@ do 170 i=icb(il),inb(il) |
---|
| 1663 | |
---|
| 1664 | do 740 il=1,ncum |
---|
| 1665 | if ((i.ge.icb(il)).and.(i.le.inb(il)).and.(nent(il,i).eq.0)) then |
---|
| 1666 | c@ if(nent(il,i).eq.0)then |
---|
| 1667 | ment(il,i,i)=m(il,i) |
---|
| 1668 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 1669 | uent(il,i,i)=unk(il) |
---|
| 1670 | vent(il,i,i)=vnk(il) |
---|
| 1671 | elij(il,i,i)=clw(il,i) |
---|
| 1672 | cMAF sij(il,i,i)=1.0 |
---|
| 1673 | sij(il,i,i)=0.0 |
---|
| 1674 | end if |
---|
| 1675 | 740 continue |
---|
| 1676 | 750 continue |
---|
| 1677 | |
---|
| 1678 | do j=1,ntra |
---|
| 1679 | do i=minorig+1,nl |
---|
| 1680 | do il=1,ncum |
---|
| 1681 | if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
---|
| 1682 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1683 | endif |
---|
| 1684 | enddo |
---|
| 1685 | enddo |
---|
| 1686 | enddo |
---|
| 1687 | |
---|
| 1688 | do 100 j=minorig,nl |
---|
| 1689 | do 101 i=minorig,nl |
---|
| 1690 | do 102 il=1,ncum |
---|
| 1691 | if ((j.ge.(icb(il)-1)).and.(j.le.inb(il)) |
---|
| 1692 | : .and.(i.ge.icb(il)).and.(i.le.inb(il)))then |
---|
| 1693 | sigij(il,i,j)=sij(il,i,j) |
---|
| 1694 | endif |
---|
| 1695 | 102 continue |
---|
| 1696 | 101 continue |
---|
| 1697 | 100 continue |
---|
| 1698 | c@ enddo |
---|
| 1699 | |
---|
| 1700 | c@170 continue |
---|
| 1701 | |
---|
| 1702 | c===================================================================== |
---|
| 1703 | c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 1704 | c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 1705 | c===================================================================== |
---|
| 1706 | |
---|
| 1707 | call zilch(asum,nloc*nd) |
---|
| 1708 | call zilch(csum,nloc*nd) |
---|
| 1709 | call zilch(csum,nloc*nd) |
---|
| 1710 | |
---|
| 1711 | do il=1,ncum |
---|
| 1712 | lwork(il) = .FALSE. |
---|
| 1713 | enddo |
---|
| 1714 | |
---|
| 1715 | DO 789 i=minorig+1,nl |
---|
| 1716 | |
---|
| 1717 | num1=0 |
---|
| 1718 | do il=1,ncum |
---|
| 1719 | if ( i.ge.icb(il) .and. i.le.inb(il) ) num1=num1+1 |
---|
| 1720 | enddo |
---|
| 1721 | if (num1.le.0) goto 789 |
---|
| 1722 | |
---|
| 1723 | |
---|
| 1724 | do 781 il=1,ncum |
---|
| 1725 | if ( i.ge.icb(il) .and. i.le.inb(il) ) then |
---|
| 1726 | lwork(il)=(nent(il,i).ne.0) |
---|
| 1727 | qp=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 1728 | anum=h(il,i)-hp(il,i)-lv(il,i)*(qp-rs(il,i)) |
---|
| 1729 | : +(cpv-cpd)*t(il,i)*(qp-rr(il,i)) |
---|
| 1730 | denom=h(il,i)-hp(il,i)+lv(il,i)*(rr(il,i)-qp) |
---|
| 1731 | : +(cpd-cpv)*t(il,i)*(rr(il,i)-qp) |
---|
| 1732 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 1733 | scrit(il)=anum/denom |
---|
| 1734 | alt=qp-rs(il,i)+scrit(il)*(rr(il,i)-qp) |
---|
| 1735 | if(scrit(il).le.0.0.or.alt.le.0.0)scrit(il)=1.0 |
---|
| 1736 | smax(il)=0.0 |
---|
| 1737 | asij(il)=0.0 |
---|
| 1738 | endif |
---|
| 1739 | 781 continue |
---|
| 1740 | |
---|
| 1741 | do 175 j=nl,minorig,-1 |
---|
| 1742 | |
---|
| 1743 | num2=0 |
---|
| 1744 | do il=1,ncum |
---|
| 1745 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 1746 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 1747 | : .and. lwork(il) ) num2=num2+1 |
---|
| 1748 | enddo |
---|
| 1749 | if (num2.le.0) goto 175 |
---|
| 1750 | |
---|
| 1751 | do 782 il=1,ncum |
---|
| 1752 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 1753 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 1754 | : .and. lwork(il) ) then |
---|
| 1755 | |
---|
| 1756 | if(sij(il,i,j).gt.1.0e-16.and.sij(il,i,j).lt.0.95)then |
---|
| 1757 | wgh=1.0 |
---|
| 1758 | if(j.gt.i)then |
---|
| 1759 | sjmax=amax1(sij(il,i,j+1),smax(il)) |
---|
| 1760 | sjmax=amin1(sjmax,scrit(il)) |
---|
| 1761 | smax(il)=amax1(sij(il,i,j),smax(il)) |
---|
| 1762 | sjmin=amax1(sij(il,i,j-1),smax(il)) |
---|
| 1763 | sjmin=amin1(sjmin,scrit(il)) |
---|
| 1764 | if(sij(il,i,j).lt.(smax(il)-1.0e-16))wgh=0.0 |
---|
| 1765 | smid=amin1(sij(il,i,j),scrit(il)) |
---|
| 1766 | else |
---|
| 1767 | sjmax=amax1(sij(il,i,j+1),scrit(il)) |
---|
| 1768 | smid=amax1(sij(il,i,j),scrit(il)) |
---|
| 1769 | sjmin=0.0 |
---|
| 1770 | if(j.gt.1)sjmin=sij(il,i,j-1) |
---|
| 1771 | sjmin=amax1(sjmin,scrit(il)) |
---|
| 1772 | endif |
---|
| 1773 | delp=abs(sjmax-smid) |
---|
| 1774 | delm=abs(sjmin-smid) |
---|
| 1775 | asij(il)=asij(il)+wgh*(delp+delm) |
---|
| 1776 | ment(il,i,j)=ment(il,i,j)*(delp+delm)*wgh |
---|
| 1777 | endif |
---|
| 1778 | endif |
---|
| 1779 | 782 continue |
---|
| 1780 | |
---|
| 1781 | 175 continue |
---|
| 1782 | |
---|
| 1783 | do il=1,ncum |
---|
| 1784 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
| 1785 | asij(il)=amax1(1.0e-16,asij(il)) |
---|
| 1786 | asij(il)=1.0/asij(il) |
---|
| 1787 | asum(il,i)=0.0 |
---|
| 1788 | bsum(il,i)=0.0 |
---|
| 1789 | csum(il,i)=0.0 |
---|
| 1790 | endif |
---|
| 1791 | enddo |
---|
| 1792 | |
---|
| 1793 | do 180 j=minorig,nl |
---|
| 1794 | do il=1,ncum |
---|
| 1795 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1796 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1797 | ment(il,i,j)=ment(il,i,j)*asij(il) |
---|
| 1798 | endif |
---|
| 1799 | enddo |
---|
| 1800 | 180 continue |
---|
| 1801 | |
---|
| 1802 | do 190 j=minorig,nl |
---|
| 1803 | do il=1,ncum |
---|
| 1804 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1805 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1806 | asum(il,i)=asum(il,i)+ment(il,i,j) |
---|
| 1807 | ment(il,i,j)=ment(il,i,j)*sig(il,j) |
---|
| 1808 | bsum(il,i)=bsum(il,i)+ment(il,i,j) |
---|
| 1809 | endif |
---|
| 1810 | enddo |
---|
| 1811 | 190 continue |
---|
| 1812 | |
---|
| 1813 | do il=1,ncum |
---|
| 1814 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
| 1815 | bsum(il,i)=amax1(bsum(il,i),1.0e-16) |
---|
| 1816 | bsum(il,i)=1.0/bsum(il,i) |
---|
| 1817 | endif |
---|
| 1818 | enddo |
---|
| 1819 | |
---|
| 1820 | do 195 j=minorig,nl |
---|
| 1821 | do il=1,ncum |
---|
| 1822 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1823 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1824 | ment(il,i,j)=ment(il,i,j)*asum(il,i)*bsum(il,i) |
---|
| 1825 | endif |
---|
| 1826 | enddo |
---|
| 1827 | 195 continue |
---|
| 1828 | |
---|
| 1829 | do 197 j=minorig,nl |
---|
| 1830 | do il=1,ncum |
---|
| 1831 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1832 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1833 | csum(il,i)=csum(il,i)+ment(il,i,j) |
---|
| 1834 | endif |
---|
| 1835 | enddo |
---|
| 1836 | 197 continue |
---|
| 1837 | |
---|
| 1838 | do il=1,ncum |
---|
| 1839 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1840 | : .and. csum(il,i).lt.m(il,i) ) then |
---|
| 1841 | nent(il,i)=0 |
---|
| 1842 | ment(il,i,i)=m(il,i) |
---|
| 1843 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 1844 | uent(il,i,i)=unk(il) |
---|
| 1845 | vent(il,i,i)=vnk(il) |
---|
| 1846 | elij(il,i,i)=clw(il,i) |
---|
| 1847 | cMAF sij(il,i,i)=1.0 |
---|
| 1848 | sij(il,i,i)=0.0 |
---|
| 1849 | endif |
---|
| 1850 | enddo ! il |
---|
| 1851 | |
---|
| 1852 | do j=1,ntra |
---|
| 1853 | do il=1,ncum |
---|
| 1854 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1855 | : .and. csum(il,i).lt.m(il,i) ) then |
---|
| 1856 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1857 | endif |
---|
| 1858 | enddo |
---|
| 1859 | enddo |
---|
| 1860 | 789 continue |
---|
| 1861 | c |
---|
| 1862 | c MAF: renormalisation de MENT |
---|
| 1863 | call zilch(zm,nloc*na) |
---|
| 1864 | do jm=1,nd |
---|
| 1865 | do im=1,nd |
---|
| 1866 | do il=1,ncum |
---|
| 1867 | zm(il,im)=zm(il,im)+(1.-sij(il,im,jm))*ment(il,im,jm) |
---|
| 1868 | end do |
---|
| 1869 | end do |
---|
| 1870 | end do |
---|
| 1871 | c |
---|
| 1872 | do jm=1,nd |
---|
| 1873 | do im=1,nd |
---|
| 1874 | do il=1,ncum |
---|
| 1875 | if(zm(il,im).ne.0.) then |
---|
| 1876 | ment(il,im,jm)=ment(il,im,jm)*m(il,im)/zm(il,im) |
---|
| 1877 | endif |
---|
| 1878 | end do |
---|
| 1879 | end do |
---|
| 1880 | end do |
---|
| 1881 | c |
---|
| 1882 | do jm=1,nd |
---|
| 1883 | do im=1,nd |
---|
| 1884 | do 999 il=1,ncum |
---|
| 1885 | qents(il,im,jm)=qent(il,im,jm) |
---|
| 1886 | ments(il,im,jm)=ment(il,im,jm) |
---|
| 1887 | 999 continue |
---|
| 1888 | enddo |
---|
| 1889 | enddo |
---|
| 1890 | |
---|
| 1891 | return |
---|
| 1892 | end |
---|
| 1893 | |
---|
| 1894 | SUBROUTINE cv3_unsat(nloc,ncum,nd,na,ntra,icb,inb,iflag |
---|
| 1895 | : ,t,rr,rs,gz,u,v,tra,p,ph |
---|
| 1896 | : ,th,tv,lv,cpn,ep,sigp,clw |
---|
| 1897 | : ,m,ment,elij,delt,plcl,coef_clos |
---|
| 1898 | o ,mp,rp,up,vp,trap,wt,water,evap,b,sigd) |
---|
| 1899 | implicit none |
---|
| 1900 | |
---|
| 1901 | |
---|
| 1902 | #include "cvthermo.h" |
---|
| 1903 | #include "cv3param.h" |
---|
| 1904 | #include "cvflag.h" |
---|
| 1905 | |
---|
| 1906 | c inputs: |
---|
| 1907 | integer ncum, nd, na, ntra, nloc |
---|
| 1908 | integer icb(nloc), inb(nloc) |
---|
| 1909 | real delt, plcl(nloc) |
---|
| 1910 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd),gz(nloc,na) |
---|
| 1911 | real u(nloc,nd), v(nloc,nd) |
---|
| 1912 | real tra(nloc,nd,ntra) |
---|
| 1913 | real p(nloc,nd), ph(nloc,nd+1) |
---|
| 1914 | real ep(nloc,na), sigp(nloc,na), clw(nloc,na) |
---|
| 1915 | real th(nloc,na),tv(nloc,na),lv(nloc,na),cpn(nloc,na) |
---|
| 1916 | real m(nloc,na), ment(nloc,na,na), elij(nloc,na,na) |
---|
| 1917 | real coef_clos(nloc) |
---|
| 1918 | c |
---|
| 1919 | c input/output |
---|
| 1920 | integer iflag(nloc) |
---|
| 1921 | c |
---|
| 1922 | c outputs: |
---|
| 1923 | real mp(nloc,na), rp(nloc,na), up(nloc,na), vp(nloc,na) |
---|
| 1924 | real water(nloc,na), evap(nloc,na), wt(nloc,na) |
---|
| 1925 | real trap(nloc,na,ntra) |
---|
| 1926 | real b(nloc,na), sigd(nloc) |
---|
| 1927 | |
---|
| 1928 | c local variables |
---|
| 1929 | integer i,j,k,il,num1,ndp1 |
---|
| 1930 | real tinv, delti |
---|
| 1931 | real awat, afac, afac1, afac2, bfac |
---|
| 1932 | real pr1, pr2, sigt, b6, c6, revap, tevap, delth |
---|
| 1933 | real amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
---|
| 1934 | real ampmax |
---|
| 1935 | real lvcp(nloc,na) |
---|
| 1936 | real h(nloc,na),hm(nloc,na) |
---|
| 1937 | real wdtrain(nloc) |
---|
| 1938 | logical lwork(nloc) |
---|
| 1939 | |
---|
| 1940 | |
---|
| 1941 | c------------------------------------------------------ |
---|
| 1942 | |
---|
| 1943 | delti = 1./delt |
---|
| 1944 | tinv=1./3. |
---|
| 1945 | |
---|
| 1946 | mp(:,:)=0. |
---|
| 1947 | |
---|
| 1948 | do i=1,nl |
---|
| 1949 | do il=1,ncum |
---|
| 1950 | mp(il,i)=0.0 |
---|
| 1951 | rp(il,i)=rr(il,i) |
---|
| 1952 | up(il,i)=u(il,i) |
---|
| 1953 | vp(il,i)=v(il,i) |
---|
| 1954 | wt(il,i)=0.001 |
---|
| 1955 | water(il,i)=0.0 |
---|
| 1956 | evap(il,i)=0.0 |
---|
| 1957 | b(il,i)=0.0 |
---|
| 1958 | lvcp(il,i)=lv(il,i)/cpn(il,i) |
---|
| 1959 | enddo |
---|
| 1960 | enddo |
---|
| 1961 | do k=1,ntra |
---|
| 1962 | do i=1,nd |
---|
| 1963 | do il=1,ncum |
---|
| 1964 | trap(il,i,k)=tra(il,i,k) |
---|
| 1965 | enddo |
---|
| 1966 | enddo |
---|
| 1967 | enddo |
---|
| 1968 | c |
---|
| 1969 | c *** check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 1970 | c *** downdraft calculation *** |
---|
| 1971 | c |
---|
| 1972 | |
---|
| 1973 | do il=1,ncum |
---|
| 1974 | lwork(il)=.TRUE. |
---|
| 1975 | if(ep(il,inb(il)).lt.0.0001)lwork(il)=.FALSE. |
---|
| 1976 | enddo |
---|
| 1977 | |
---|
| 1978 | call zilch(wdtrain,ncum) |
---|
| 1979 | |
---|
| 1980 | c *** Set the fractionnal area sigd of precipitating downdraughts |
---|
| 1981 | do il = 1,ncum |
---|
| 1982 | sigd(il) = sigdz*coef_clos(il) |
---|
| 1983 | enddo |
---|
| 1984 | |
---|
| 1985 | DO 400 i=nl+1,1,-1 |
---|
| 1986 | |
---|
| 1987 | num1=0 |
---|
| 1988 | do il=1,ncum |
---|
| 1989 | if ( i.le.inb(il) .and. lwork(il) ) num1=num1+1 |
---|
| 1990 | enddo |
---|
| 1991 | if (num1.le.0) goto 400 |
---|
| 1992 | |
---|
| 1993 | c |
---|
| 1994 | c *** integrate liquid water equation to find condensed water *** |
---|
| 1995 | c *** and condensed water flux *** |
---|
| 1996 | c |
---|
| 1997 | |
---|
| 1998 | c |
---|
| 1999 | c *** begin downdraft loop *** |
---|
| 2000 | c |
---|
| 2001 | |
---|
| 2002 | c |
---|
| 2003 | c *** calculate detrained precipitation *** |
---|
| 2004 | c |
---|
| 2005 | do il=1,ncum |
---|
| 2006 | if (i.le.inb(il) .and. lwork(il)) then |
---|
| 2007 | if (cvflag_grav) then |
---|
| 2008 | wdtrain(il)=grav*ep(il,i)*m(il,i)*clw(il,i) |
---|
| 2009 | else |
---|
| 2010 | wdtrain(il)=10.0*ep(il,i)*m(il,i)*clw(il,i) |
---|
| 2011 | endif |
---|
| 2012 | endif |
---|
| 2013 | enddo |
---|
| 2014 | |
---|
| 2015 | if(i.gt.1)then |
---|
| 2016 | do 320 j=1,i-1 |
---|
| 2017 | do il=1,ncum |
---|
| 2018 | if (i.le.inb(il) .and. lwork(il)) then |
---|
| 2019 | awat=elij(il,j,i)-(1.-ep(il,i))*clw(il,i) |
---|
| 2020 | awat=amax1(awat,0.0) |
---|
| 2021 | if (cvflag_grav) then |
---|
| 2022 | wdtrain(il)=wdtrain(il)+grav*awat*ment(il,j,i) |
---|
| 2023 | else |
---|
| 2024 | wdtrain(il)=wdtrain(il)+10.0*awat*ment(il,j,i) |
---|
| 2025 | endif |
---|
| 2026 | endif |
---|
| 2027 | enddo |
---|
| 2028 | 320 continue |
---|
| 2029 | endif |
---|
| 2030 | |
---|
| 2031 | c |
---|
| 2032 | c *** find rain water and evaporation using provisional *** |
---|
| 2033 | c *** estimates of rp(i)and rp(i-1) *** |
---|
| 2034 | c |
---|
| 2035 | |
---|
| 2036 | do 999 il=1,ncum |
---|
| 2037 | |
---|
| 2038 | if (i.le.inb(il) .and. lwork(il)) then |
---|
| 2039 | |
---|
| 2040 | wt(il,i)=45.0 |
---|
| 2041 | |
---|
| 2042 | if(i.lt.inb(il))then |
---|
| 2043 | rp(il,i)=rp(il,i+1) |
---|
| 2044 | : +(cpd*(t(il,i+1)-t(il,i))+gz(il,i+1)-gz(il,i))/lv(il,i) |
---|
| 2045 | rp(il,i)=0.5*(rp(il,i)+rr(il,i)) |
---|
| 2046 | endif |
---|
| 2047 | rp(il,i)=amax1(rp(il,i),0.0) |
---|
| 2048 | rp(il,i)=amin1(rp(il,i),rs(il,i)) |
---|
| 2049 | rp(il,inb(il))=rr(il,inb(il)) |
---|
| 2050 | |
---|
| 2051 | if(i.eq.1)then |
---|
| 2052 | afac=p(il,1)*(rs(il,1)-rp(il,1))/(1.0e4+2000.0*p(il,1)*rs(il,1)) |
---|
| 2053 | else |
---|
| 2054 | rp(il,i-1)=rp(il,i) |
---|
| 2055 | : +(cpd*(t(il,i)-t(il,i-1))+gz(il,i)-gz(il,i-1))/lv(il,i) |
---|
| 2056 | rp(il,i-1)=0.5*(rp(il,i-1)+rr(il,i-1)) |
---|
| 2057 | rp(il,i-1)=amin1(rp(il,i-1),rs(il,i-1)) |
---|
| 2058 | rp(il,i-1)=amax1(rp(il,i-1),0.0) |
---|
| 2059 | afac1=p(il,i)*(rs(il,i)-rp(il,i))/(1.0e4+2000.0*p(il,i)*rs(il,i)) |
---|
| 2060 | afac2=p(il,i-1)*(rs(il,i-1)-rp(il,i-1)) |
---|
| 2061 | : /(1.0e4+2000.0*p(il,i-1)*rs(il,i-1)) |
---|
| 2062 | afac=0.5*(afac1+afac2) |
---|
| 2063 | endif |
---|
| 2064 | if(i.eq.inb(il))afac=0.0 |
---|
| 2065 | afac=amax1(afac,0.0) |
---|
| 2066 | bfac=1./(sigd(il)*wt(il,i)) |
---|
| 2067 | c |
---|
| 2068 | cjyg1 |
---|
| 2069 | ccc sigt=1.0 |
---|
| 2070 | ccc if(i.ge.icb)sigt=sigp(i) |
---|
| 2071 | c prise en compte de la variation progressive de sigt dans |
---|
| 2072 | c les couches icb et icb-1: |
---|
| 2073 | c pour plcl<ph(i+1), pr1=0 & pr2=1 |
---|
| 2074 | c pour plcl>ph(i), pr1=1 & pr2=0 |
---|
| 2075 | c pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
---|
| 2076 | c sur le nuage, et pr2 est la proportion sous la base du |
---|
| 2077 | c nuage. |
---|
| 2078 | pr1=(plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
---|
| 2079 | pr1=max(0.,min(1.,pr1)) |
---|
| 2080 | pr2=(ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
---|
| 2081 | pr2=max(0.,min(1.,pr2)) |
---|
| 2082 | sigt=sigp(il,i)*pr1+pr2 |
---|
| 2083 | cjyg2 |
---|
| 2084 | c |
---|
| 2085 | cjyg---- |
---|
| 2086 | c b6 = bfac*100.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
| 2087 | c c6 = water(il,i+1) + wdtrain(il)*bfac |
---|
| 2088 | c revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 2089 | c evap(il,i)=sigt*afac*revap |
---|
| 2090 | c water(il,i)=revap*revap |
---|
| 2091 | cc print *,' i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) ', |
---|
| 2092 | cc $ i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) |
---|
| 2093 | cc---end jyg--- |
---|
| 2094 | c |
---|
| 2095 | c--------retour à la formulation originale d'Emanuel. |
---|
| 2096 | b6=bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
| 2097 | c6=water(il,i+1)+bfac*wdtrain(il) |
---|
| 2098 | : -50.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il,i+1) |
---|
| 2099 | if(c6.gt.0.0)then |
---|
| 2100 | revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 2101 | cjyg Dans sa formulation originale, Emanuel calcule l'evaporation par: |
---|
| 2102 | cc evap(il,i)=sigt*afac*revap |
---|
| 2103 | c ce qui n'est pas correct. Dans cv_routines, la formulation a été modifiee. |
---|
| 2104 | c Ici,l'evaporation evap est simplement calculee par l'equation de |
---|
| 2105 | c conservation. |
---|
| 2106 | water(il,i)=revap*revap |
---|
| 2107 | else |
---|
| 2108 | cjyg---- Correction : si c6 <= 0, water(il,i)=0. |
---|
| 2109 | water(il,i) = 0. |
---|
| 2110 | endif |
---|
| 2111 | cJYG/IM : ci-dessous formulation originale de KE |
---|
| 2112 | c evap(il,i)=-evap(il,i+1) |
---|
| 2113 | c : +(wdtrain(il)+sigd(il)*wt(il,i)*water(il,i+1)) |
---|
| 2114 | c : /(sigd(il)*(ph(il,i)-ph(il,i+1))*50.) |
---|
| 2115 | c |
---|
| 2116 | cJYG/IM : ci-dessous modification formulation originale de KE |
---|
| 2117 | c pour eliminer oscillations verticales de pluie se produisant |
---|
| 2118 | c lorsqu'il y a evaporation totale de la pluie |
---|
| 2119 | c |
---|
| 2120 | c evap(il,i)= +(wdtrain(il)+sigd(il)*wt(il,i)*water(il,i+1)) !itlmd(jyg) |
---|
| 2121 | c : /(sigd(il)*(ph(il,i)-ph(il,i+1))*100.) |
---|
| 2122 | c end if !itlmd(jyg) |
---|
| 2123 | cjyg--- Dans tous les cas, evaporation = [tt ce qui entre dans la couche i] |
---|
| 2124 | c moins [tt ce qui sort de la couche i] |
---|
| 2125 | evap(il,i)= |
---|
| 2126 | : (wdtrain(il)+sigd(il)*wt(il,i)*(water(il,i+1)-water(il,i))) |
---|
| 2127 | : /(sigd(il)*(ph(il,i)-ph(il,i+1))*100.) |
---|
| 2128 | c |
---|
| 2129 | ccc |
---|
| 2130 | c *** calculate precipitating downdraft mass flux under *** |
---|
| 2131 | c *** hydrostatic approximation *** |
---|
| 2132 | c |
---|
| 2133 | if (i.ne.1) then |
---|
| 2134 | |
---|
| 2135 | tevap=amax1(0.0,evap(il,i)) |
---|
| 2136 | delth=amax1(0.001,(th(il,i)-th(il,i-1))) |
---|
| 2137 | if (cvflag_grav) then |
---|
| 2138 | mp(il,i)=100.*ginv*lvcp(il,i)*sigd(il)*tevap |
---|
| 2139 | : *(p(il,i-1)-p(il,i))/delth |
---|
| 2140 | else |
---|
| 2141 | mp(il,i)=10.*lvcp(il,i)*sigd(il)*tevap |
---|
| 2142 | : *(p(il,i-1)-p(il,i))/delth |
---|
| 2143 | endif |
---|
| 2144 | c |
---|
| 2145 | c *** if hydrostatic assumption fails, *** |
---|
| 2146 | c *** solve cubic difference equation for downdraft theta *** |
---|
| 2147 | c *** and mass flux from two simultaneous differential eqns *** |
---|
| 2148 | c |
---|
| 2149 | amfac=sigd(il)*sigd(il)*70.0*ph(il,i)*(p(il,i-1)-p(il,i)) |
---|
| 2150 | : *(th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
---|
| 2151 | amp2=abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
---|
| 2152 | if(amp2.gt.(0.1*amfac))then |
---|
| 2153 | xf=100.0*sigd(il)*sigd(il)*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
| 2154 | tf=b(il,i)-5.0*(th(il,i)-th(il,i-1))*t(il,i) |
---|
| 2155 | : /(lvcp(il,i)*sigd(il)*th(il,i)) |
---|
| 2156 | af=xf*tf+mp(il,i+1)*mp(il,i+1)*tinv |
---|
| 2157 | bf=2.*(tinv*mp(il,i+1))**3+tinv*mp(il,i+1)*xf*tf |
---|
| 2158 | : +50.*(p(il,i-1)-p(il,i))*xf*tevap |
---|
| 2159 | fac2=1.0 |
---|
| 2160 | if(bf.lt.0.0)fac2=-1.0 |
---|
| 2161 | bf=abs(bf) |
---|
| 2162 | ur=0.25*bf*bf-af*af*af*tinv*tinv*tinv |
---|
| 2163 | if(ur.ge.0.0)then |
---|
| 2164 | sru=sqrt(ur) |
---|
| 2165 | fac=1.0 |
---|
| 2166 | if((0.5*bf-sru).lt.0.0)fac=-1.0 |
---|
| 2167 | mp(il,i)=mp(il,i+1)*tinv+(0.5*bf+sru)**tinv |
---|
| 2168 | : +fac*(abs(0.5*bf-sru))**tinv |
---|
| 2169 | else |
---|
| 2170 | d=atan(2.*sqrt(-ur)/(bf+1.0e-28)) |
---|
| 2171 | if(fac2.lt.0.0)d=3.14159-d |
---|
| 2172 | mp(il,i)=mp(il,i+1)*tinv+2.*sqrt(af*tinv)*cos(d*tinv) |
---|
| 2173 | endif |
---|
| 2174 | mp(il,i)=amax1(0.0,mp(il,i)) |
---|
| 2175 | |
---|
| 2176 | if (cvflag_grav) then |
---|
| 2177 | Cjyg : il y a vraisemblablement une erreur dans la ligne 2 suivante: |
---|
| 2178 | C il faut diviser par (mp(il,i)*sigd(il)*grav) et non par (mp(il,i)+sigd(il)*0.1). |
---|
| 2179 | C Et il faut bien revoir les facteurs 100. |
---|
| 2180 | b(il,i-1)=b(il,i)+100.0*(p(il,i-1)-p(il,i))*tevap |
---|
| 2181 | 2 /(mp(il,i)+sigd(il)*0.1) |
---|
| 2182 | 3 -10.0*(th(il,i)-th(il,i-1))*t(il,i)/(lvcp(il,i) |
---|
| 2183 | : *sigd(il)*th(il,i)) |
---|
| 2184 | else |
---|
| 2185 | b(il,i-1)=b(il,i)+100.0*(p(il,i-1)-p(il,i))*tevap |
---|
| 2186 | 2 /(mp(il,i)+sigd(il)*0.1) |
---|
| 2187 | 3 -10.0*(th(il,i)-th(il,i-1))*t(il,i)/(lvcp(il,i) |
---|
| 2188 | : *sigd(il)*th(il,i)) |
---|
| 2189 | endif |
---|
| 2190 | b(il,i-1)=amax1(b(il,i-1),0.0) |
---|
| 2191 | endif |
---|
| 2192 | c |
---|
| 2193 | c *** limit magnitude of mp(i) to meet cfl condition *** |
---|
| 2194 | c |
---|
| 2195 | ampmax=2.0*(ph(il,i)-ph(il,i+1))*delti |
---|
| 2196 | amp2=2.0*(ph(il,i-1)-ph(il,i))*delti |
---|
| 2197 | ampmax=amin1(ampmax,amp2) |
---|
| 2198 | mp(il,i)=amin1(mp(il,i),ampmax) |
---|
| 2199 | c |
---|
| 2200 | c *** force mp to decrease linearly to zero *** |
---|
| 2201 | c *** between cloud base and the surface *** |
---|
| 2202 | c |
---|
| 2203 | c |
---|
| 2204 | cc if(p(il,i).gt.p(il,icb(il)))then |
---|
| 2205 | cc mp(il,i)=mp(il,icb(il))*(p(il,1)-p(il,i))/(p(il,1)-p(il,icb(il))) |
---|
| 2206 | cc endif |
---|
| 2207 | if(ph(il,i) .gt. 0.9*plcl(il)) then |
---|
| 2208 | mp(il,i) = mp(il,i)*(ph(il,1)-ph(il,i))/ |
---|
| 2209 | $ (ph(il,1)-0.9*plcl(il)) |
---|
| 2210 | endif |
---|
| 2211 | |
---|
| 2212 | 360 continue |
---|
| 2213 | endif ! i.eq.1 |
---|
| 2214 | c |
---|
| 2215 | c *** find mixing ratio of precipitating downdraft *** |
---|
| 2216 | c |
---|
| 2217 | |
---|
| 2218 | if (i.ne.inb(il)) then |
---|
| 2219 | |
---|
| 2220 | rp(il,i)=rr(il,i) |
---|
| 2221 | |
---|
| 2222 | if(mp(il,i).gt.mp(il,i+1))then |
---|
| 2223 | |
---|
| 2224 | if (cvflag_grav) then |
---|
| 2225 | rp(il,i)=rp(il,i+1)*mp(il,i+1)+rr(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2226 | : +100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
| 2227 | : *(evap(il,i+1)+evap(il,i)) |
---|
| 2228 | else |
---|
| 2229 | rp(il,i)=rp(il,i+1)*mp(il,i+1)+rr(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2230 | : +5.*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
| 2231 | : *(evap(il,i+1)+evap(il,i)) |
---|
| 2232 | endif |
---|
| 2233 | rp(il,i)=rp(il,i)/mp(il,i) |
---|
| 2234 | up(il,i)=up(il,i+1)*mp(il,i+1)+u(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2235 | up(il,i)=up(il,i)/mp(il,i) |
---|
| 2236 | vp(il,i)=vp(il,i+1)*mp(il,i+1)+v(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2237 | vp(il,i)=vp(il,i)/mp(il,i) |
---|
| 2238 | |
---|
| 2239 | do j=1,ntra |
---|
| 2240 | trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
---|
| 2241 | : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
| 2242 | trap(il,i,j)=trap(il,i,j)/mp(il,i) |
---|
| 2243 | end do |
---|
| 2244 | |
---|
| 2245 | else |
---|
| 2246 | |
---|
| 2247 | if(mp(il,i+1).gt.1.0e-16)then |
---|
| 2248 | if (cvflag_grav) then |
---|
| 2249 | rp(il,i)=rp(il,i+1) |
---|
| 2250 | : +100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
| 2251 | : *(evap(il,i+1)+evap(il,i))/mp(il,i+1) |
---|
| 2252 | else |
---|
| 2253 | rp(il,i)=rp(il,i+1) |
---|
| 2254 | : +5.*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
| 2255 | : *(evap(il,i+1)+evap(il,i))/mp(il,i+1) |
---|
| 2256 | endif |
---|
| 2257 | up(il,i)=up(il,i+1) |
---|
| 2258 | vp(il,i)=vp(il,i+1) |
---|
| 2259 | |
---|
| 2260 | do j=1,ntra |
---|
| 2261 | trap(il,i,j)=trap(il,i+1,j) |
---|
| 2262 | end do |
---|
| 2263 | |
---|
| 2264 | endif |
---|
| 2265 | endif |
---|
| 2266 | rp(il,i)=amin1(rp(il,i),rs(il,i)) |
---|
| 2267 | rp(il,i)=amax1(rp(il,i),0.0) |
---|
| 2268 | |
---|
| 2269 | endif |
---|
| 2270 | endif |
---|
| 2271 | 999 continue |
---|
| 2272 | |
---|
| 2273 | 400 continue |
---|
| 2274 | |
---|
| 2275 | return |
---|
| 2276 | end |
---|
| 2277 | |
---|
| 2278 | SUBROUTINE cv3_yield(nloc,ncum,nd,na,ntra |
---|
| 2279 | : ,icb,inb,delt |
---|
| 2280 | : ,t,rr,t_wake,rr_wake,s_wake,u,v,tra |
---|
| 2281 | : ,gz,p,ph,h,hp,lv,cpn,th,th_wake |
---|
| 2282 | : ,ep,clw,m,tp,mp,rp,up,vp,trap |
---|
| 2283 | : ,wt,water,evap,b,sigd |
---|
| 2284 | : ,ment,qent,hent,iflag_mix,uent,vent |
---|
| 2285 | : ,nent,elij,traent,sig |
---|
| 2286 | : ,tv,tvp,wghti |
---|
| 2287 | : ,iflag,precip,Vprecip,ft,fr,fu,fv,ftra |
---|
| 2288 | : ,cbmf,upwd,dnwd,dnwd0,ma,mip |
---|
| 2289 | : ,tls,tps,qcondc,wd |
---|
| 2290 | : ,ftd,fqd) |
---|
| 2291 | |
---|
| 2292 | implicit none |
---|
| 2293 | |
---|
| 2294 | #include "cvthermo.h" |
---|
| 2295 | #include "cv3param.h" |
---|
| 2296 | #include "cvflag.h" |
---|
| 2297 | #include "conema3.h" |
---|
| 2298 | |
---|
| 2299 | c inputs: |
---|
| 2300 | c print*,'cv3_yield apres include' |
---|
| 2301 | integer iflag_mix |
---|
| 2302 | integer ncum,nd,na,ntra,nloc |
---|
| 2303 | integer icb(nloc), inb(nloc) |
---|
| 2304 | real delt |
---|
| 2305 | real t(nloc,nd), rr(nloc,nd), u(nloc,nd), v(nloc,nd) |
---|
| 2306 | real t_wake(nloc,nd), rr_wake(nloc,nd) |
---|
| 2307 | real s_wake(nloc) |
---|
| 2308 | real tra(nloc,nd,ntra), sig(nloc,nd) |
---|
| 2309 | real gz(nloc,na), ph(nloc,nd+1), h(nloc,na), hp(nloc,na) |
---|
| 2310 | real th(nloc,na), p(nloc,nd), tp(nloc,na) |
---|
| 2311 | real lv(nloc,na), cpn(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
| 2312 | real m(nloc,na), mp(nloc,na), rp(nloc,na), up(nloc,na) |
---|
| 2313 | real vp(nloc,na), wt(nloc,nd), trap(nloc,nd,ntra) |
---|
| 2314 | real water(nloc,na), evap(nloc,na), b(nloc,na), sigd(nloc) |
---|
| 2315 | real ment(nloc,na,na), qent(nloc,na,na), uent(nloc,na,na) |
---|
| 2316 | real hent(nloc,na,na) |
---|
| 2317 | cIM bug real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
---|
| 2318 | real vent(nloc,na,na), elij(nloc,na,na) |
---|
| 2319 | integer nent(nloc,nd) |
---|
| 2320 | real traent(nloc,na,na,ntra) |
---|
| 2321 | real tv(nloc,nd), tvp(nloc,nd), wghti(nloc,nd) |
---|
| 2322 | c print*,'cv3_yield declarations 1' |
---|
| 2323 | c input/output: |
---|
| 2324 | integer iflag(nloc) |
---|
| 2325 | |
---|
| 2326 | c outputs: |
---|
| 2327 | real precip(nloc) |
---|
| 2328 | real ft(nloc,nd), fr(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
| 2329 | real ftd(nloc,nd), fqd(nloc,nd) |
---|
| 2330 | real ftra(nloc,nd,ntra) |
---|
| 2331 | real upwd(nloc,nd), dnwd(nloc,nd), ma(nloc,nd) |
---|
| 2332 | real dnwd0(nloc,nd), mip(nloc,nd) |
---|
| 2333 | real Vprecip(nloc,nd+1) |
---|
| 2334 | real tls(nloc,nd), tps(nloc,nd) |
---|
| 2335 | real qcondc(nloc,nd) ! cld |
---|
| 2336 | real wd(nloc) ! gust |
---|
| 2337 | real cbmf(nloc) |
---|
| 2338 | c print*,'cv3_yield declarations 2' |
---|
| 2339 | c local variables: |
---|
| 2340 | integer i,k,il,n,j,num1 |
---|
| 2341 | real rat, delti |
---|
| 2342 | real ax, bx, cx, dx, ex |
---|
| 2343 | real cpinv, rdcp, dpinv |
---|
| 2344 | real awat(nloc) |
---|
| 2345 | real lvcp(nloc,na), mke(nloc,na) |
---|
| 2346 | real am(nloc), work(nloc), ad(nloc), amp1(nloc) |
---|
| 2347 | c!! real up1(nloc), dn1(nloc) |
---|
| 2348 | real up1(nloc,nd,nd), dn1(nloc,nd,nd) |
---|
| 2349 | real asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
---|
| 2350 | real esum(nloc), fsum(nloc), gsum(nloc), hsum(nloc) |
---|
| 2351 | real th_wake(nloc,nd) |
---|
| 2352 | real alpha_qpos(nloc),alpha_qpos1(nloc) |
---|
| 2353 | real qcond(nloc,nd), nqcond(nloc,nd), wa(nloc,nd) ! cld |
---|
| 2354 | real siga(nloc,nd), sax(nloc,nd), mac(nloc,nd) ! cld |
---|
| 2355 | |
---|
| 2356 | c print*,'cv3_yield declarations 3' |
---|
| 2357 | c------------------------------------------------------------- |
---|
| 2358 | |
---|
| 2359 | c initialization: |
---|
| 2360 | |
---|
| 2361 | delti = 1.0/delt |
---|
| 2362 | c print*,'cv3_yield initialisation delt', delt |
---|
| 2363 | cprecip,Vprecip,ft,fr,fu,fv,ftra |
---|
| 2364 | c : ,cbmf,upwd,dnwd,dnwd0,ma,mip |
---|
| 2365 | c : ,tls,tps,qcondc,wd |
---|
| 2366 | c : ,ftd,fqd ) |
---|
| 2367 | do il=1,ncum |
---|
| 2368 | precip(il)=0.0 |
---|
| 2369 | Vprecip(il,nd+1)=0.0 |
---|
| 2370 | wd(il)=0.0 ! gust |
---|
| 2371 | enddo |
---|
| 2372 | |
---|
| 2373 | do i=1,nd |
---|
| 2374 | do il=1,ncum |
---|
| 2375 | Vprecip(il,i)=0.0 |
---|
| 2376 | ft(il,i)=0.0 |
---|
| 2377 | fr(il,i)=0.0 |
---|
| 2378 | fu(il,i)=0.0 |
---|
| 2379 | fv(il,i)=0.0 |
---|
| 2380 | upwd(il,i)=0.0 |
---|
| 2381 | dnwd(il,i)=0.0 |
---|
| 2382 | dnwd0(il,i)=0.0 |
---|
| 2383 | mip(il,i)=0.0 |
---|
| 2384 | ftd(il,i)=0.0 |
---|
| 2385 | fqd(il,i)=0.0 |
---|
| 2386 | qcondc(il,i)=0.0 ! cld |
---|
| 2387 | qcond(il,i)=0.0 ! cld |
---|
| 2388 | nqcond(il,i)=0.0 ! cld |
---|
| 2389 | enddo |
---|
| 2390 | enddo |
---|
| 2391 | c print*,'cv3_yield initialisation 2' |
---|
| 2392 | do j=1,ntra |
---|
| 2393 | do i=1,nd |
---|
| 2394 | do il=1,ncum |
---|
| 2395 | ftra(il,i,j)=0.0 |
---|
| 2396 | enddo |
---|
| 2397 | enddo |
---|
| 2398 | enddo |
---|
| 2399 | c print*,'cv3_yield initialisation 3' |
---|
| 2400 | do i=1,nl |
---|
| 2401 | do il=1,ncum |
---|
| 2402 | lvcp(il,i)=lv(il,i)/cpn(il,i) |
---|
| 2403 | enddo |
---|
| 2404 | enddo |
---|
| 2405 | |
---|
| 2406 | |
---|
| 2407 | c |
---|
| 2408 | c *** calculate surface precipitation in mm/day *** |
---|
| 2409 | c |
---|
| 2410 | do il=1,ncum |
---|
| 2411 | if(ep(il,inb(il)).ge.0.0001 .and. iflag(il) .le. 1)then |
---|
| 2412 | if (cvflag_grav) then |
---|
| 2413 | precip(il)=wt(il,1)*sigd(il)*water(il,1)*86400.*1000. |
---|
| 2414 | : /(rowl*grav) |
---|
| 2415 | else |
---|
| 2416 | precip(il)=wt(il,1)*sigd(il)*water(il,1)*8640. |
---|
| 2417 | endif |
---|
| 2418 | endif |
---|
| 2419 | enddo |
---|
| 2420 | c print*,'cv3_yield apres calcul precip' |
---|
| 2421 | |
---|
| 2422 | C |
---|
| 2423 | C === calculate vertical profile of precipitation in kg/m2/s === |
---|
| 2424 | C |
---|
| 2425 | do i = 1,nl |
---|
| 2426 | do il=1,ncum |
---|
| 2427 | if(ep(il,inb(il)).ge.0.0001 .and. i.le.inb(il) |
---|
| 2428 | : .and. iflag(il) .le. 1)then |
---|
| 2429 | if (cvflag_grav) then |
---|
| 2430 | VPrecip(il,i) = wt(il,i)*sigd(il)*water(il,i)/grav |
---|
| 2431 | else |
---|
| 2432 | VPrecip(il,i) = wt(il,i)*sigd(il)*water(il,i)/10. |
---|
| 2433 | endif |
---|
| 2434 | endif |
---|
| 2435 | enddo |
---|
| 2436 | enddo |
---|
| 2437 | C |
---|
| 2438 | c |
---|
| 2439 | c *** Calculate downdraft velocity scale *** |
---|
| 2440 | c *** NE PAS UTILISER POUR L'INSTANT *** |
---|
| 2441 | c |
---|
| 2442 | c! do il=1,ncum |
---|
| 2443 | c! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
---|
| 2444 | c! : /(sigd(il)*p(il,icb(il))) |
---|
| 2445 | c! enddo |
---|
| 2446 | |
---|
| 2447 | c |
---|
| 2448 | c *** calculate tendencies of lowest level potential temperature *** |
---|
| 2449 | c *** and mixing ratio *** |
---|
| 2450 | c |
---|
| 2451 | do il=1,ncum |
---|
| 2452 | work(il)=1.0/(ph(il,1)-ph(il,2)) |
---|
| 2453 | cbmf(il)=0.0 |
---|
| 2454 | enddo |
---|
| 2455 | |
---|
| 2456 | do k=2,nl |
---|
| 2457 | do il=1,ncum |
---|
| 2458 | if (k.ge.icb(il)) then |
---|
| 2459 | cbmf(il)=cbmf(il)+m(il,k) |
---|
| 2460 | endif |
---|
| 2461 | enddo |
---|
| 2462 | enddo |
---|
| 2463 | |
---|
| 2464 | c print*,'cv3_yield avant ft' |
---|
| 2465 | c AM is the part of cbmf taken from the first level |
---|
| 2466 | do il=1,ncum |
---|
| 2467 | am(il)=cbmf(il)*wghti(il,1) |
---|
| 2468 | enddo |
---|
| 2469 | c |
---|
| 2470 | do il=1,ncum |
---|
| 2471 | if (iflag(il) .le. 1) then |
---|
| 2472 | c convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
---|
| 2473 | cjyg Correction pour conserver l'eau |
---|
| 2474 | ccc ft(il,1)=-0.5*lvcp(il,1)*sigd(il)*(evap(il,1)+evap(il,2)) !precip |
---|
| 2475 | ft(il,1)=-lvcp(il,1)*sigd(il)*evap(il,1) !precip |
---|
| 2476 | |
---|
| 2477 | if (cvflag_grav) then |
---|
| 2478 | ft(il,1)=ft(il,1)-0.009*grav*sigd(il)*mp(il,2) |
---|
| 2479 | : *t_wake(il,1)*b(il,1)*work(il) |
---|
| 2480 | else |
---|
| 2481 | ft(il,1)=ft(il,1)-0.09*sigd(il)*mp(il,2) |
---|
| 2482 | : *t_wake(il,1)*b(il,1)*work(il) |
---|
| 2483 | endif |
---|
| 2484 | |
---|
| 2485 | ft(il,1)=ft(il,1)+0.01*sigd(il)*wt(il,1)*(cl-cpd)*water(il,2) |
---|
| 2486 | : *(t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il,1) |
---|
| 2487 | |
---|
| 2488 | ftd(il,1) = ft(il,1) ! fin precip |
---|
| 2489 | |
---|
| 2490 | if (cvflag_grav) then !sature |
---|
| 2491 | if((0.01*grav*work(il)*am(il)).ge.delti)iflag(il)=1!consist vect |
---|
| 2492 | ft(il,1)=ft(il,1)+0.01*grav*work(il)*am(il)*(t(il,2)-t(il,1) |
---|
| 2493 | : +(gz(il,2)-gz(il,1))/cpn(il,1)) |
---|
| 2494 | else |
---|
| 2495 | if((0.1*work(il)*am(il)).ge.delti)iflag(il)=1 !consistency vect |
---|
| 2496 | ft(il,1)=ft(il,1)+0.1*work(il)*am(il)*(t(il,2)-t(il,1) |
---|
| 2497 | : +(gz(il,2)-gz(il,1))/cpn(il,1)) |
---|
| 2498 | endif |
---|
| 2499 | endif ! iflag |
---|
| 2500 | enddo |
---|
| 2501 | |
---|
| 2502 | |
---|
| 2503 | do j=2,nl |
---|
| 2504 | IF (iflag_mix .gt. 0) then |
---|
| 2505 | do il=1,ncum |
---|
| 2506 | c FH WARNING a modifier : |
---|
| 2507 | cpinv=0. |
---|
| 2508 | c cpinv=1.0/cpn(il,1) |
---|
| 2509 | if (j.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2510 | if (cvflag_grav) then |
---|
| 2511 | ft(il,1)=ft(il,1) |
---|
| 2512 | : +0.01*grav*work(il)*ment(il,j,1)*(hent(il,j,1)-h(il,1) |
---|
| 2513 | : +t(il,1)*(cpv-cpd)*(rr(il,1)-Qent(il,j,1)))*cpinv |
---|
| 2514 | else |
---|
| 2515 | ft(il,1)=ft(il,1) |
---|
| 2516 | : +0.1*work(il)*ment(il,j,1)*(hent(il,j,1)-h(il,1) |
---|
| 2517 | : +t(il,1)*(cpv-cpd)*(rr(il,1)-Qent(il,j,1)))*cpinv |
---|
| 2518 | endif ! cvflag_grav |
---|
| 2519 | endif ! j |
---|
| 2520 | enddo |
---|
| 2521 | ENDIF |
---|
| 2522 | enddo |
---|
| 2523 | ! fin sature |
---|
| 2524 | |
---|
| 2525 | |
---|
| 2526 | do il=1,ncum |
---|
| 2527 | if (iflag(il) .le. 1) then |
---|
| 2528 | if (cvflag_grav) then |
---|
| 2529 | Cjyg1 Correction pour mieux conserver l'eau (conformite avec CONVECT4.3) |
---|
| 2530 | fr(il,1)=0.01*grav*mp(il,2)*(rp(il,2)-rr_wake(il,1))*work(il) |
---|
| 2531 | : +sigd(il)*evap(il,1) |
---|
| 2532 | ccc : +sigd(il)*0.5*(evap(il,1)+evap(il,2)) |
---|
| 2533 | |
---|
| 2534 | fqd(il,1)=fr(il,1) !precip |
---|
| 2535 | |
---|
| 2536 | fr(il,1)=fr(il,1)+0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) !sature |
---|
| 2537 | |
---|
| 2538 | fu(il,1)=fu(il,1)+0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) |
---|
| 2539 | : +am(il)*(u(il,2)-u(il,1))) |
---|
| 2540 | fv(il,1)=fv(il,1)+0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) |
---|
| 2541 | : +am(il)*(v(il,2)-v(il,1))) |
---|
| 2542 | else ! cvflag_grav |
---|
| 2543 | fr(il,1)=0.1*mp(il,2)*(rp(il,2)-rr_wake(il,1))*work(il) |
---|
| 2544 | : +sigd(il)*evap(il,1) |
---|
| 2545 | ccc : +sigd(il)*0.5*(evap(il,1)+evap(il,2)) |
---|
| 2546 | fqd(il,1)=fr(il,1) !precip |
---|
| 2547 | fr(il,1)=fr(il,1)+0.1*am(il)*(rr(il,2)-rr(il,1))*work(il) |
---|
| 2548 | fu(il,1)=fu(il,1)+0.1*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) |
---|
| 2549 | : +am(il)*(u(il,2)-u(il,1))) |
---|
| 2550 | fv(il,1)=fv(il,1)+0.1*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) |
---|
| 2551 | : +am(il)*(v(il,2)-v(il,1))) |
---|
| 2552 | endif ! cvflag_grav |
---|
| 2553 | endif ! iflag |
---|
| 2554 | enddo ! il |
---|
| 2555 | |
---|
| 2556 | |
---|
| 2557 | do j=1,ntra |
---|
| 2558 | do il=1,ncum |
---|
| 2559 | if (iflag(il) .le. 1) then |
---|
| 2560 | if (cvflag_grav) then |
---|
| 2561 | ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
---|
| 2562 | : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2563 | : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2564 | else |
---|
| 2565 | ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
---|
| 2566 | : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2567 | : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2568 | endif |
---|
| 2569 | endif ! iflag |
---|
| 2570 | enddo |
---|
| 2571 | enddo |
---|
| 2572 | |
---|
| 2573 | do j=2,nl |
---|
| 2574 | do il=1,ncum |
---|
| 2575 | if (j.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2576 | if (cvflag_grav) then |
---|
| 2577 | fr(il,1)=fr(il,1) |
---|
| 2578 | : +0.01*grav*work(il)*ment(il,j,1)*(qent(il,j,1)-rr(il,1)) |
---|
| 2579 | fu(il,1)=fu(il,1) |
---|
| 2580 | : +0.01*grav*work(il)*ment(il,j,1)*(uent(il,j,1)-u(il,1)) |
---|
| 2581 | fv(il,1)=fv(il,1) |
---|
| 2582 | : +0.01*grav*work(il)*ment(il,j,1)*(vent(il,j,1)-v(il,1)) |
---|
| 2583 | else ! cvflag_grav |
---|
| 2584 | fr(il,1)=fr(il,1) |
---|
| 2585 | : +0.1*work(il)*ment(il,j,1)*(qent(il,j,1)-rr(il,1)) |
---|
| 2586 | fu(il,1)=fu(il,1) |
---|
| 2587 | : +0.1*work(il)*ment(il,j,1)*(uent(il,j,1)-u(il,1)) |
---|
| 2588 | fv(il,1)=fv(il,1) |
---|
| 2589 | : +0.1*work(il)*ment(il,j,1)*(vent(il,j,1)-v(il,1)) ! fin sature |
---|
| 2590 | endif ! cvflag_grav |
---|
| 2591 | endif ! j |
---|
| 2592 | enddo |
---|
| 2593 | enddo |
---|
| 2594 | |
---|
| 2595 | do k=1,ntra |
---|
| 2596 | do j=2,nl |
---|
| 2597 | do il=1,ncum |
---|
| 2598 | if (j.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2599 | |
---|
| 2600 | if (cvflag_grav) then |
---|
| 2601 | ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
---|
| 2602 | : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2603 | else |
---|
| 2604 | ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
---|
| 2605 | : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2606 | endif |
---|
| 2607 | |
---|
| 2608 | endif |
---|
| 2609 | enddo |
---|
| 2610 | enddo |
---|
| 2611 | enddo |
---|
| 2612 | c print*,'cv3_yield apres ft' |
---|
| 2613 | c |
---|
| 2614 | c *** calculate tendencies of potential temperature and mixing ratio *** |
---|
| 2615 | c *** at levels above the lowest level *** |
---|
| 2616 | c |
---|
| 2617 | c *** first find the net saturated updraft and downdraft mass fluxes *** |
---|
| 2618 | c *** through each level *** |
---|
| 2619 | c |
---|
| 2620 | |
---|
| 2621 | do 500 i=2,nl+1 ! newvecto: mettre nl au lieu nl+1? |
---|
| 2622 | |
---|
| 2623 | num1=0 |
---|
| 2624 | do il=1,ncum |
---|
| 2625 | if(i.le.inb(il) .and. iflag(il) .le. 1)num1=num1+1 |
---|
| 2626 | enddo |
---|
| 2627 | if(num1.le.0)go to 500 |
---|
| 2628 | |
---|
| 2629 | call zilch(amp1,ncum) |
---|
| 2630 | call zilch(ad,ncum) |
---|
| 2631 | |
---|
| 2632 | do 440 k=1,nl+1 |
---|
| 2633 | do 441 il=1,ncum |
---|
| 2634 | if(i.ge.icb(il)) then |
---|
| 2635 | if(k.ge.i+1.and. k.le.(inb(il)+1)) then |
---|
| 2636 | amp1(il)=amp1(il)+m(il,k) |
---|
| 2637 | endif |
---|
| 2638 | else |
---|
| 2639 | c AMP1 is the part of cbmf taken from layers I and lower |
---|
| 2640 | if(k.le.i) then |
---|
| 2641 | amp1(il)=amp1(il)+cbmf(il)*wghti(il,k) |
---|
| 2642 | endif |
---|
| 2643 | endif |
---|
| 2644 | 441 continue |
---|
| 2645 | 440 continue |
---|
| 2646 | |
---|
| 2647 | do 450 k=1,i |
---|
| 2648 | do 451 j=i+1,nl+1 |
---|
| 2649 | do 452 il=1,ncum |
---|
| 2650 | if (i.le.inb(il) .and. j.le.(inb(il)+1)) then |
---|
| 2651 | amp1(il)=amp1(il)+ment(il,k,j) |
---|
| 2652 | endif |
---|
| 2653 | 452 continue |
---|
| 2654 | 451 continue |
---|
| 2655 | 450 continue |
---|
| 2656 | |
---|
| 2657 | do 470 k=1,i-1 |
---|
| 2658 | do 471 j=i,nl+1 ! newvecto: nl au lieu nl+1? |
---|
| 2659 | do 472 il=1,ncum |
---|
| 2660 | if (i.le.inb(il) .and. j.le.inb(il)) then |
---|
| 2661 | ad(il)=ad(il)+ment(il,j,k) |
---|
| 2662 | endif |
---|
| 2663 | 472 continue |
---|
| 2664 | 471 continue |
---|
| 2665 | 470 continue |
---|
| 2666 | |
---|
| 2667 | do 1350 il=1,ncum |
---|
| 2668 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2669 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2670 | cpinv=1.0/cpn(il,i) |
---|
| 2671 | |
---|
| 2672 | c convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
---|
| 2673 | if (cvflag_grav) then |
---|
| 2674 | if((0.01*grav*dpinv*amp1(il)).ge.delti)iflag(il)=1 ! vecto |
---|
| 2675 | else |
---|
| 2676 | if((0.1*dpinv*amp1(il)).ge.delti)iflag(il)=1 ! vecto |
---|
| 2677 | endif |
---|
| 2678 | |
---|
| 2679 | ! precip |
---|
| 2680 | ccc ft(il,i)= -0.5*sigd(il)*lvcp(il,i)*(evap(il,i)+evap(il,i+1)) |
---|
| 2681 | ft(il,i)= -sigd(il)*lvcp(il,i)*evap(il,i) |
---|
| 2682 | rat=cpn(il,i-1)*cpinv |
---|
| 2683 | c |
---|
| 2684 | if (cvflag_grav) then |
---|
| 2685 | ft(il,i)=ft(il,i)-0.009*grav*sigd(il) |
---|
| 2686 | : *(mp(il,i+1)*t_wake(il,i)*b(il,i) |
---|
| 2687 | : -mp(il,i)*t_wake(il,i-1)*rat*b(il,i-1))*dpinv |
---|
| 2688 | ft(il,i)=ft(il,i)+0.01*sigd(il)*wt(il,i)*(cl-cpd)*water(il,i+1) |
---|
| 2689 | : *(t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv |
---|
| 2690 | ftd(il,i)=ft(il,i) |
---|
| 2691 | ! fin precip |
---|
| 2692 | c |
---|
| 2693 | ! sature |
---|
| 2694 | ft(il,i)=ft(il,i)+0.01*grav*dpinv*(amp1(il)*(t(il,i+1)-t(il,i) |
---|
| 2695 | : +(gz(il,i+1)-gz(il,i))*cpinv) |
---|
| 2696 | : -ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
---|
| 2697 | |
---|
| 2698 | c |
---|
| 2699 | IF (iflag_mix .eq. 0) then |
---|
| 2700 | ft(il,i)=ft(il,i)+0.01*grav*dpinv*ment(il,i,i)*(hp(il,i)-h(il,i) |
---|
| 2701 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
| 2702 | ENDIF |
---|
| 2703 | c |
---|
| 2704 | else ! cvflag_grav |
---|
| 2705 | ft(il,i)=ft(il,i)-0.09*sigd(il) |
---|
| 2706 | : *(mp(il,i+1)*t_wake(il,i)*b(il,i) |
---|
| 2707 | : -mp(il,i)*t_wake(il,i-1)*rat*b(il,i-1))*dpinv |
---|
| 2708 | ft(il,i)=ft(il,i)+0.01*sigd(il)*wt(il,i)*(cl-cpd)*water(il,i+1) |
---|
| 2709 | : *(t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv |
---|
| 2710 | ftd(il,i)=ft(il,i) |
---|
| 2711 | ! fin precip |
---|
| 2712 | c |
---|
| 2713 | ! sature |
---|
| 2714 | ft(il,i)=ft(il,i)+0.1*dpinv*(amp1(il)*(t(il,i+1)-t(il,i) |
---|
| 2715 | : +(gz(il,i+1)-gz(il,i))*cpinv) |
---|
| 2716 | : -ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
---|
| 2717 | |
---|
| 2718 | c |
---|
| 2719 | IF (iflag_mix .eq. 0) then |
---|
| 2720 | ft(il,i)=ft(il,i)+0.1*dpinv*ment(il,i,i)*(hp(il,i)-h(il,i) |
---|
| 2721 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
| 2722 | ENDIF |
---|
| 2723 | endif ! cvflag_grav |
---|
| 2724 | |
---|
| 2725 | |
---|
| 2726 | if (cvflag_grav) then |
---|
| 2727 | c sb: on ne fait pas encore la correction permettant de mieux |
---|
| 2728 | c conserver l'eau: |
---|
| 2729 | c jyg: correction permettant de mieux conserver l'eau: |
---|
| 2730 | ccc fr(il,i)=0.5*sigd(il)*(evap(il,i)+evap(il,i+1)) |
---|
| 2731 | fr(il,i)=sigd(il)*evap(il,i) |
---|
| 2732 | : +0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr_wake(il,i)) |
---|
| 2733 | : -mp(il,i)*(rp(il,i)-rr_wake(il,i-1)))*dpinv |
---|
| 2734 | fqd(il,i)=fr(il,i) ! precip |
---|
| 2735 | |
---|
| 2736 | fu(il,i)=0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il,i)) |
---|
| 2737 | : -mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
| 2738 | fv(il,i)=0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) |
---|
| 2739 | : -mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
| 2740 | else ! cvflag_grav |
---|
| 2741 | ccc fr(il,i)=0.5*sigd(il)*(evap(il,i)+evap(il,i+1)) |
---|
| 2742 | fr(il,i)=sigd(il)*evap(il,i) |
---|
| 2743 | : +0.1*(mp(il,i+1)*(rp(il,i+1)-rr_wake(il,i)) |
---|
| 2744 | : -mp(il,i)*(rp(il,i)-rr_wake(il,i-1)))*dpinv |
---|
| 2745 | fqd(il,i)=fr(il,i) ! precip |
---|
| 2746 | |
---|
| 2747 | fu(il,i)=0.1*(mp(il,i+1)*(up(il,i+1)-u(il,i)) |
---|
| 2748 | : -mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
| 2749 | fv(il,i)=0.1*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) |
---|
| 2750 | : -mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
| 2751 | endif ! cvflag_grav |
---|
| 2752 | |
---|
| 2753 | |
---|
| 2754 | if (cvflag_grav) then |
---|
| 2755 | fr(il,i)=fr(il,i)+0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) |
---|
| 2756 | : -ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
| 2757 | fu(il,i)=fu(il,i)+0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) |
---|
| 2758 | : -ad(il)*(u(il,i)-u(il,i-1))) |
---|
| 2759 | fv(il,i)=fv(il,i)+0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) |
---|
| 2760 | : -ad(il)*(v(il,i)-v(il,i-1))) |
---|
| 2761 | else ! cvflag_grav |
---|
| 2762 | fr(il,i)=fr(il,i)+0.1*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) |
---|
| 2763 | : -ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
| 2764 | fu(il,i)=fu(il,i)+0.1*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) |
---|
| 2765 | : -ad(il)*(u(il,i)-u(il,i-1))) |
---|
| 2766 | fv(il,i)=fv(il,i)+0.1*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) |
---|
| 2767 | : -ad(il)*(v(il,i)-v(il,i-1))) |
---|
| 2768 | endif ! cvflag_grav |
---|
| 2769 | |
---|
| 2770 | endif ! i |
---|
| 2771 | 1350 continue |
---|
| 2772 | |
---|
| 2773 | do k=1,ntra |
---|
| 2774 | do il=1,ncum |
---|
| 2775 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2776 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2777 | cpinv=1.0/cpn(il,i) |
---|
| 2778 | if (cvflag_grav) then |
---|
| 2779 | ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
---|
| 2780 | : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2781 | : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2782 | else |
---|
| 2783 | ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
---|
| 2784 | : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2785 | : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2786 | endif |
---|
| 2787 | endif |
---|
| 2788 | enddo |
---|
| 2789 | enddo |
---|
| 2790 | |
---|
| 2791 | do 480 k=1,i-1 |
---|
| 2792 | c |
---|
| 2793 | do il = 1,ncum |
---|
| 2794 | awat(il)=elij(il,k,i)-(1.-ep(il,i))*clw(il,i) |
---|
| 2795 | awat(il)=amax1(awat(il),0.0) |
---|
| 2796 | enddo |
---|
| 2797 | c |
---|
| 2798 | IF (iflag_mix .ne. 0) then |
---|
| 2799 | do il=1,ncum |
---|
| 2800 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2801 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2802 | cpinv=1.0/cpn(il,i) |
---|
| 2803 | if (cvflag_grav) then |
---|
| 2804 | ft(il,i)=ft(il,i) |
---|
| 2805 | : +0.01*grav*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
| 2806 | : +t(il,i)*(cpv-cpd)*(rr(il,i)+awat(il)-Qent(il,k,i)))*cpinv |
---|
| 2807 | |
---|
| 2808 | c |
---|
| 2809 | c |
---|
| 2810 | else |
---|
| 2811 | ft(il,i)=ft(il,i) |
---|
| 2812 | : +0.1*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
| 2813 | : +t(il,i)*(cpv-cpd)*(rr(il,i)+awat(il)-Qent(il,k,i)))*cpinv |
---|
| 2814 | endif !cvflag_grav |
---|
| 2815 | endif ! i |
---|
| 2816 | enddo |
---|
| 2817 | ENDIF |
---|
| 2818 | c |
---|
| 2819 | do 1370 il=1,ncum |
---|
| 2820 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2821 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2822 | cpinv=1.0/cpn(il,i) |
---|
| 2823 | if (cvflag_grav) then |
---|
| 2824 | fr(il,i)=fr(il,i) |
---|
| 2825 | : +0.01*grav*dpinv*ment(il,k,i)*(qent(il,k,i)-awat(il)-rr(il,i)) |
---|
| 2826 | fu(il,i)=fu(il,i) |
---|
| 2827 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2828 | fv(il,i)=fv(il,i) |
---|
| 2829 | : +0.01*grav*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2830 | else ! cvflag_grav |
---|
| 2831 | fr(il,i)=fr(il,i) |
---|
| 2832 | : +0.1*dpinv*ment(il,k,i)*(qent(il,k,i)-awat(il)-rr(il,i)) |
---|
| 2833 | fu(il,i)=fu(il,i) |
---|
| 2834 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2835 | fv(il,i)=fv(il,i) |
---|
| 2836 | : +0.1*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2837 | endif ! cvflag_grav |
---|
| 2838 | |
---|
| 2839 | c (saturated updrafts resulting from mixing) ! cld |
---|
| 2840 | qcond(il,i)=qcond(il,i)+(elij(il,k,i)-awat(il)) ! cld |
---|
| 2841 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
| 2842 | endif ! i |
---|
| 2843 | 1370 continue |
---|
| 2844 | 480 continue |
---|
| 2845 | |
---|
| 2846 | do j=1,ntra |
---|
| 2847 | do k=1,i-1 |
---|
| 2848 | do il=1,ncum |
---|
| 2849 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2850 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2851 | cpinv=1.0/cpn(il,i) |
---|
| 2852 | if (cvflag_grav) then |
---|
| 2853 | ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2854 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2855 | else |
---|
| 2856 | ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2857 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2858 | endif |
---|
| 2859 | endif |
---|
| 2860 | enddo |
---|
| 2861 | enddo |
---|
| 2862 | enddo |
---|
| 2863 | |
---|
| 2864 | do 490 k=i,nl+1 |
---|
| 2865 | c |
---|
| 2866 | IF (iflag_mix .ne. 0) then |
---|
| 2867 | do il=1,ncum |
---|
| 2868 | if (i.le.inb(il) .and. k.le.inb(il) |
---|
| 2869 | $ .and. iflag(il) .le. 1) then |
---|
| 2870 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2871 | cpinv=1.0/cpn(il,i) |
---|
| 2872 | if (cvflag_grav) then |
---|
| 2873 | ft(il,i)=ft(il,i) |
---|
| 2874 | : +0.01*grav*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
| 2875 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-Qent(il,k,i)))*cpinv |
---|
| 2876 | c |
---|
| 2877 | c |
---|
| 2878 | else |
---|
| 2879 | ft(il,i)=ft(il,i) |
---|
| 2880 | : +0.1*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
| 2881 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-Qent(il,k,i)))*cpinv |
---|
| 2882 | endif !cvflag_grav |
---|
| 2883 | endif ! i |
---|
| 2884 | enddo |
---|
| 2885 | ENDIF |
---|
| 2886 | c |
---|
| 2887 | do 1380 il=1,ncum |
---|
| 2888 | if (i.le.inb(il) .and. k.le.inb(il) |
---|
| 2889 | $ .and. iflag(il) .le. 1) then |
---|
| 2890 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2891 | cpinv=1.0/cpn(il,i) |
---|
| 2892 | |
---|
| 2893 | if (cvflag_grav) then |
---|
| 2894 | fr(il,i)=fr(il,i) |
---|
| 2895 | : +0.01*grav*dpinv*ment(il,k,i)*(qent(il,k,i)-rr(il,i)) |
---|
| 2896 | fu(il,i)=fu(il,i) |
---|
| 2897 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2898 | fv(il,i)=fv(il,i) |
---|
| 2899 | : +0.01*grav*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2900 | else ! cvflag_grav |
---|
| 2901 | fr(il,i)=fr(il,i) |
---|
| 2902 | : +0.1*dpinv*ment(il,k,i)*(qent(il,k,i)-rr(il,i)) |
---|
| 2903 | fu(il,i)=fu(il,i) |
---|
| 2904 | : +0.1*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2905 | fv(il,i)=fv(il,i) |
---|
| 2906 | : +0.1*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2907 | endif ! cvflag_grav |
---|
| 2908 | endif ! i and k |
---|
| 2909 | 1380 continue |
---|
| 2910 | 490 continue |
---|
| 2911 | |
---|
| 2912 | do j=1,ntra |
---|
| 2913 | do k=i,nl+1 |
---|
| 2914 | do il=1,ncum |
---|
| 2915 | if (i.le.inb(il) .and. k.le.inb(il) |
---|
| 2916 | $ .and. iflag(il) .le. 1) then |
---|
| 2917 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2918 | cpinv=1.0/cpn(il,i) |
---|
| 2919 | if (cvflag_grav) then |
---|
| 2920 | ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2921 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2922 | else |
---|
| 2923 | ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2924 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2925 | endif |
---|
| 2926 | endif ! i and k |
---|
| 2927 | enddo |
---|
| 2928 | enddo |
---|
| 2929 | enddo |
---|
| 2930 | |
---|
| 2931 | c sb: interface with the cloud parameterization: ! cld |
---|
| 2932 | |
---|
| 2933 | do k=i+1,nl |
---|
| 2934 | do il=1,ncum |
---|
| 2935 | if (k.le.inb(il) .and. i.le.inb(il) |
---|
| 2936 | $ .and. iflag(il) .le. 1) then ! cld |
---|
| 2937 | C (saturated downdrafts resulting from mixing) ! cld |
---|
| 2938 | qcond(il,i)=qcond(il,i)+elij(il,k,i) ! cld |
---|
| 2939 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
| 2940 | endif ! cld |
---|
| 2941 | enddo ! cld |
---|
| 2942 | enddo ! cld |
---|
| 2943 | |
---|
| 2944 | C (particular case: no detraining level is found) ! cld |
---|
| 2945 | do il=1,ncum ! cld |
---|
| 2946 | if (i.le.inb(il) .and. nent(il,i).eq.0 |
---|
| 2947 | $ .and. iflag(il) .le. 1) then ! cld |
---|
| 2948 | qcond(il,i)=qcond(il,i)+(1.-ep(il,i))*clw(il,i) ! cld |
---|
| 2949 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
| 2950 | endif ! cld |
---|
| 2951 | enddo ! cld |
---|
| 2952 | |
---|
| 2953 | do il=1,ncum ! cld |
---|
| 2954 | if (i.le.inb(il) .and. nqcond(il,i).ne.0 |
---|
| 2955 | $ .and. iflag(il) .le. 1) then ! cld |
---|
| 2956 | qcond(il,i)=qcond(il,i)/nqcond(il,i) ! cld |
---|
| 2957 | endif ! cld |
---|
| 2958 | enddo |
---|
| 2959 | |
---|
| 2960 | do j=1,ntra |
---|
| 2961 | do il=1,ncum |
---|
| 2962 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
| 2963 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2964 | cpinv=1.0/cpn(il,i) |
---|
| 2965 | |
---|
| 2966 | if (cvflag_grav) then |
---|
| 2967 | ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
---|
| 2968 | : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2969 | : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
---|
| 2970 | else |
---|
| 2971 | ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
---|
| 2972 | : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2973 | : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
---|
| 2974 | endif |
---|
| 2975 | endif ! i |
---|
| 2976 | enddo |
---|
| 2977 | enddo |
---|
| 2978 | |
---|
| 2979 | |
---|
| 2980 | 500 continue |
---|
| 2981 | |
---|
| 2982 | |
---|
| 2983 | c *** move the detrainment at level inb down to level inb-1 *** |
---|
| 2984 | c *** in such a way as to preserve the vertically *** |
---|
| 2985 | c *** integrated enthalpy and water tendencies *** |
---|
| 2986 | c |
---|
| 2987 | c Correction bug le 18-03-09 |
---|
| 2988 | do 503 il=1,ncum |
---|
| 2989 | IF (iflag(il) .le. 1) THEN |
---|
| 2990 | if (cvflag_grav) then |
---|
| 2991 | ax=0.01*grav*ment(il,inb(il),inb(il))*(hp(il,inb(il)) |
---|
| 2992 | : -h(il,inb(il))+t(il,inb(il))*(cpv-cpd) |
---|
| 2993 | : *(rr(il,inb(il))-qent(il,inb(il),inb(il)))) |
---|
| 2994 | : /(cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
---|
| 2995 | ft(il,inb(il))=ft(il,inb(il))-ax |
---|
| 2996 | ft(il,inb(il)-1)=ft(il,inb(il)-1)+ax*cpn(il,inb(il)) |
---|
| 2997 | : *(ph(il,inb(il))-ph(il,inb(il)+1))/(cpn(il,inb(il)-1) |
---|
| 2998 | : *(ph(il,inb(il)-1)-ph(il,inb(il)))) |
---|
| 2999 | |
---|
| 3000 | bx=0.01*grav*ment(il,inb(il),inb(il))*(qent(il,inb(il),inb(il)) |
---|
| 3001 | : -rr(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3002 | fr(il,inb(il))=fr(il,inb(il))-bx |
---|
| 3003 | fr(il,inb(il)-1)=fr(il,inb(il)-1) |
---|
| 3004 | : +bx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3005 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3006 | |
---|
| 3007 | cx=0.01*grav*ment(il,inb(il),inb(il))*(uent(il,inb(il),inb(il)) |
---|
| 3008 | : -u(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3009 | fu(il,inb(il))=fu(il,inb(il))-cx |
---|
| 3010 | fu(il,inb(il)-1)=fu(il,inb(il)-1) |
---|
| 3011 | : +cx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3012 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3013 | |
---|
| 3014 | dx=0.01*grav*ment(il,inb(il),inb(il))*(vent(il,inb(il),inb(il)) |
---|
| 3015 | : -v(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3016 | fv(il,inb(il))=fv(il,inb(il))-dx |
---|
| 3017 | fv(il,inb(il)-1)=fv(il,inb(il)-1) |
---|
| 3018 | : +dx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3019 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3020 | else |
---|
| 3021 | ax=0.1*ment(il,inb(il),inb(il))*(hp(il,inb(il)) |
---|
| 3022 | : -h(il,inb(il))+t(il,inb(il))*(cpv-cpd) |
---|
| 3023 | : *(rr(il,inb(il))-qent(il,inb(il),inb(il)))) |
---|
| 3024 | : /(cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
---|
| 3025 | ft(il,inb(il))=ft(il,inb(il))-ax |
---|
| 3026 | ft(il,inb(il)-1)=ft(il,inb(il)-1)+ax*cpn(il,inb(il)) |
---|
| 3027 | : *(ph(il,inb(il))-ph(il,inb(il)+1))/(cpn(il,inb(il)-1) |
---|
| 3028 | : *(ph(il,inb(il)-1)-ph(il,inb(il)))) |
---|
| 3029 | |
---|
| 3030 | bx=0.1*ment(il,inb(il),inb(il))*(qent(il,inb(il),inb(il)) |
---|
| 3031 | : -rr(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3032 | fr(il,inb(il))=fr(il,inb(il))-bx |
---|
| 3033 | fr(il,inb(il)-1)=fr(il,inb(il)-1) |
---|
| 3034 | : +bx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3035 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3036 | |
---|
| 3037 | cx=0.1*ment(il,inb(il),inb(il))*(uent(il,inb(il),inb(il)) |
---|
| 3038 | : -u(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3039 | fu(il,inb(il))=fu(il,inb(il))-cx |
---|
| 3040 | fu(il,inb(il)-1)=fu(il,inb(il)-1) |
---|
| 3041 | : +cx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3042 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3043 | |
---|
| 3044 | dx=0.1*ment(il,inb(il),inb(il))*(vent(il,inb(il),inb(il)) |
---|
| 3045 | : -v(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3046 | fv(il,inb(il))=fv(il,inb(il))-dx |
---|
| 3047 | fv(il,inb(il)-1)=fv(il,inb(il)-1) |
---|
| 3048 | : +dx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3049 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3050 | endif |
---|
| 3051 | ENDIF !iflag |
---|
| 3052 | 503 continue |
---|
| 3053 | |
---|
| 3054 | do j=1,ntra |
---|
| 3055 | do il=1,ncum |
---|
| 3056 | IF (iflag(il) .le. 1) THEN |
---|
| 3057 | IF (cvflag_grav) then |
---|
| 3058 | ex=0.01*grav*ment(il,inb(il),inb(il)) |
---|
| 3059 | : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
| 3060 | : /(ph(i l,inb(il))-ph(il,inb(il)+1)) |
---|
| 3061 | ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
| 3062 | ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
| 3063 | : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3064 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3065 | else |
---|
| 3066 | ex=0.1*ment(il,inb(il),inb(il)) |
---|
| 3067 | : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
| 3068 | : /(ph(i l,inb(il))-ph(il,inb(il)+1)) |
---|
| 3069 | ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
| 3070 | ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
| 3071 | : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 3072 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 3073 | ENDIF !cvflag grav |
---|
| 3074 | ENDIF !iflag |
---|
| 3075 | enddo |
---|
| 3076 | enddo |
---|
| 3077 | |
---|
| 3078 | c |
---|
| 3079 | c *** homogenize tendencies below cloud base *** |
---|
| 3080 | c |
---|
| 3081 | c |
---|
| 3082 | do il=1,ncum |
---|
| 3083 | asum(il)=0.0 |
---|
| 3084 | bsum(il)=0.0 |
---|
| 3085 | csum(il)=0.0 |
---|
| 3086 | dsum(il)=0.0 |
---|
| 3087 | esum(il)=0.0 |
---|
| 3088 | fsum(il)=0.0 |
---|
| 3089 | gsum(il)=0.0 |
---|
| 3090 | hsum(il)=0.0 |
---|
| 3091 | enddo |
---|
| 3092 | c |
---|
| 3093 | c do i=1,nl |
---|
| 3094 | c do il=1,ncum |
---|
| 3095 | c th_wake(il,i)=t_wake(il,i)*(1000.0/p(il,i))**rdcp |
---|
| 3096 | c enddo |
---|
| 3097 | c enddo |
---|
| 3098 | c |
---|
| 3099 | do i=1,nl |
---|
| 3100 | do il=1,ncum |
---|
| 3101 | if (i.le.(icb(il)-1) .and. iflag(il) .le. 1) then |
---|
| 3102 | cjyg Saturated part : use T profile |
---|
| 3103 | asum(il)=asum(il)+(ft(il,i)-ftd(il,i))*(ph(il,i)-ph(il,i+1)) |
---|
| 3104 | bsum(il)=bsum(il)+(fr(il,i)-fqd(il,i)) |
---|
| 3105 | : *(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1))) |
---|
| 3106 | : *(ph(il,i)-ph(il,i+1)) |
---|
| 3107 | csum(il)=csum(il)+(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1))) |
---|
| 3108 | : *(ph(il,i)-ph(il,i+1)) |
---|
| 3109 | dsum(il)=dsum(il)+t(il,i)*(ph(il,i)-ph(il,i+1))/th(il,i) |
---|
| 3110 | cjyg Unsaturated part : use T_wake profile |
---|
| 3111 | esum(il)=esum(il)+ftd(il,i)*(ph(il,i)-ph(il,i+1)) |
---|
| 3112 | fsum(il)=fsum(il)+fqd(il,i) |
---|
| 3113 | : *(lv(il,i)+(cl-cpd)*(t_wake(il,i)-t_wake(il,1))) |
---|
| 3114 | : *(ph(il,i)-ph(il,i+1)) |
---|
| 3115 | gsum(il)=gsum(il)+(lv(il,i)+(cl-cpd)*(t_wake(il,i)-t_wake(il,1))) |
---|
| 3116 | : *(ph(il,i)-ph(il,i+1)) |
---|
| 3117 | hsum(il)=hsum(il)+t_wake(il,i) |
---|
| 3118 | ; *(ph(il,i)-ph(il,i+1))/th_wake(il,i) |
---|
| 3119 | endif |
---|
| 3120 | enddo |
---|
| 3121 | enddo |
---|
| 3122 | |
---|
| 3123 | c!!! do 700 i=1,icb(il)-1 |
---|
| 3124 | do i=1,nl |
---|
| 3125 | do il=1,ncum |
---|
| 3126 | if (i.le.(icb(il)-1) .and. iflag(il) .le. 1) then |
---|
| 3127 | ftd(il,i)=esum(il)*t_wake(il,i)/(th_wake(il,i)*hsum(il)) |
---|
| 3128 | fqd(il,i)=fsum(il)/gsum(il) |
---|
| 3129 | ft(il,i)=ftd(il,i)+asum(il)*t(il,i)/(th(il,i)*dsum(il)) |
---|
| 3130 | fr(il,i)=fqd(il,i)+bsum(il)/csum(il) |
---|
| 3131 | endif |
---|
| 3132 | enddo |
---|
| 3133 | enddo |
---|
| 3134 | |
---|
| 3135 | c |
---|
| 3136 | c *** Check that moisture stays positive. If not, scale tendencies |
---|
| 3137 | c in order to ensure moisture positivity |
---|
| 3138 | DO il = 1,ncum |
---|
| 3139 | alpha_qpos(il)=1. |
---|
| 3140 | IF (iflag(il) .le. 1) THEN |
---|
| 3141 | if (fr(il,1) .le. 0.) then |
---|
| 3142 | alpha_qpos(il) = max(alpha_qpos(il) , |
---|
| 3143 | : (-delt*fr(il,1))/ |
---|
| 3144 | : (s_wake(il)*rr_wake(il,1)+(1.-s_wake(il))*rr(il,1))) |
---|
| 3145 | end if |
---|
| 3146 | ENDIF |
---|
| 3147 | ENDDO |
---|
| 3148 | DO i = 2,nl |
---|
| 3149 | DO il = 1,ncum |
---|
| 3150 | IF (iflag(il) .le. 1) THEN |
---|
| 3151 | IF (fr(il,i) .le. 0.) THEN |
---|
| 3152 | alpha_qpos1(il)=max(1. , (-delt*fr(il,i))/ |
---|
| 3153 | : (s_wake(il)*rr_wake(il,i)+(1.-s_wake(il))*rr(il,i))) |
---|
| 3154 | IF (alpha_qpos1(il) .ge. alpha_qpos(il)) |
---|
| 3155 | : alpha_qpos(il)=alpha_qpos1(il) |
---|
| 3156 | ENDIF |
---|
| 3157 | ENDIF |
---|
| 3158 | ENDDO |
---|
| 3159 | ENDDO |
---|
| 3160 | DO il = 1,ncum |
---|
| 3161 | IF (iflag(il) .le. 1 .and. alpha_qpos(il) .gt. 1.001) THEN |
---|
| 3162 | alpha_qpos(il) = alpha_qpos(il)*1.1 |
---|
| 3163 | ENDIF |
---|
| 3164 | ENDDO |
---|
| 3165 | DO il = 1,ncum |
---|
| 3166 | IF (iflag(il) .le. 1) THEN |
---|
| 3167 | sigd(il) = sigd(il)/alpha_qpos(il) |
---|
| 3168 | precip(il) = precip(il)/alpha_qpos(il) |
---|
| 3169 | ENDIF |
---|
| 3170 | ENDDO |
---|
| 3171 | DO i = 1,nl |
---|
| 3172 | DO il = 1,ncum |
---|
| 3173 | IF (iflag(il) .le. 1) THEN |
---|
| 3174 | fr(il,i) = fr(il,i)/alpha_qpos(il) |
---|
| 3175 | ft(il,i) = ft(il,i)/alpha_qpos(il) |
---|
| 3176 | fqd(il,i) = fqd(il,i)/alpha_qpos(il) |
---|
| 3177 | ftd(il,i) = ftd(il,i)/alpha_qpos(il) |
---|
| 3178 | fu(il,i) = fu(il,i)/alpha_qpos(il) |
---|
| 3179 | fv(il,i) = fv(il,i)/alpha_qpos(il) |
---|
| 3180 | m(il,i) = m(il,i)/alpha_qpos(il) |
---|
| 3181 | mp(il,i) = mp(il,i)/alpha_qpos(il) |
---|
| 3182 | Vprecip(il,i) = Vprecip(il,i)/alpha_qpos(il) |
---|
| 3183 | ENDIF |
---|
| 3184 | ENDDO |
---|
| 3185 | ENDDO |
---|
| 3186 | DO i = 1,nl |
---|
| 3187 | DO j = 1,nl |
---|
| 3188 | DO il = 1,ncum |
---|
| 3189 | IF (iflag(il) .le. 1) THEN |
---|
| 3190 | ment(il,i,j) = ment(il,i,j)/alpha_qpos(il) |
---|
| 3191 | ENDIF |
---|
| 3192 | ENDDO |
---|
| 3193 | ENDDO |
---|
| 3194 | ENDDO |
---|
| 3195 | DO j = 1,ntra |
---|
| 3196 | DO i = 1,nl |
---|
| 3197 | DO il = 1,ncum |
---|
| 3198 | IF (iflag(il) .le. 1) THEN |
---|
| 3199 | ftra(il,i,j) = ftra(il,i,j)/alpha_qpos(il) |
---|
| 3200 | ENDIF |
---|
| 3201 | ENDDO |
---|
| 3202 | ENDDO |
---|
| 3203 | ENDDO |
---|
| 3204 | |
---|
| 3205 | c |
---|
| 3206 | c *** reset counter and return *** |
---|
| 3207 | c |
---|
| 3208 | do il=1,ncum |
---|
| 3209 | sig(il,nd)=2.0 |
---|
| 3210 | enddo |
---|
| 3211 | |
---|
| 3212 | |
---|
| 3213 | do i=1,nd |
---|
| 3214 | do il=1,ncum |
---|
| 3215 | upwd(il,i)=0.0 |
---|
| 3216 | dnwd(il,i)=0.0 |
---|
| 3217 | enddo |
---|
| 3218 | enddo |
---|
| 3219 | |
---|
| 3220 | do i=1,nl |
---|
| 3221 | do il=1,ncum |
---|
| 3222 | dnwd0(il,i)=-mp(il,i) |
---|
| 3223 | enddo |
---|
| 3224 | enddo |
---|
| 3225 | do i=nl+1,nd |
---|
| 3226 | do il=1,ncum |
---|
| 3227 | dnwd0(il,i)=0. |
---|
| 3228 | enddo |
---|
| 3229 | enddo |
---|
| 3230 | |
---|
| 3231 | |
---|
| 3232 | do i=1,nl |
---|
| 3233 | do il=1,ncum |
---|
| 3234 | if (i.ge.icb(il) .and. i.le.inb(il)) then |
---|
| 3235 | upwd(il,i)=0.0 |
---|
| 3236 | dnwd(il,i)=0.0 |
---|
| 3237 | endif |
---|
| 3238 | enddo |
---|
| 3239 | enddo |
---|
| 3240 | |
---|
| 3241 | do i=1,nl |
---|
| 3242 | do k=1,nl |
---|
| 3243 | do il=1,ncum |
---|
| 3244 | up1(il,k,i)=0.0 |
---|
| 3245 | dn1(il,k,i)=0.0 |
---|
| 3246 | enddo |
---|
| 3247 | enddo |
---|
| 3248 | enddo |
---|
| 3249 | |
---|
| 3250 | do i=1,nl |
---|
| 3251 | do k=i,nl |
---|
| 3252 | do n=1,i-1 |
---|
| 3253 | do il=1,ncum |
---|
| 3254 | if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
---|
| 3255 | up1(il,k,i)=up1(il,k,i)+ment(il,n,k) |
---|
| 3256 | dn1(il,k,i)=dn1(il,k,i)-ment(il,k,n) |
---|
| 3257 | endif |
---|
| 3258 | enddo |
---|
| 3259 | enddo |
---|
| 3260 | enddo |
---|
| 3261 | enddo |
---|
| 3262 | |
---|
| 3263 | do i=1,nl |
---|
| 3264 | do k=1,nl |
---|
| 3265 | do il=1,ncum |
---|
| 3266 | if(i.ge.icb(il)) then |
---|
| 3267 | if(k.ge.i.and. k.le.(inb(il))) then |
---|
| 3268 | upwd(il,i)=upwd(il,i)+m(il,k) |
---|
| 3269 | endif |
---|
| 3270 | else |
---|
| 3271 | if(k.lt.i) then |
---|
| 3272 | upwd(il,i)=upwd(il,i)+cbmf(il)*wghti(il,k) |
---|
| 3273 | endif |
---|
| 3274 | endif |
---|
| 3275 | cc print *,'cbmf',il,i,k,cbmf(il),wghti(il,k) |
---|
| 3276 | end do |
---|
| 3277 | end do |
---|
| 3278 | end do |
---|
| 3279 | |
---|
| 3280 | do i=2,nl |
---|
| 3281 | do k=i,nl |
---|
| 3282 | do il=1,ncum |
---|
| 3283 | ctest if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
---|
| 3284 | if (i.le.inb(il).and.k.le.inb(il)) then |
---|
| 3285 | upwd(il,i)=upwd(il,i)+up1(il,k,i) |
---|
| 3286 | dnwd(il,i)=dnwd(il,i)+dn1(il,k,i) |
---|
| 3287 | endif |
---|
| 3288 | cc print *,'upwd',il,i,k,inb(il),upwd(il,i),m(il,k),up1(il,k,i) |
---|
| 3289 | enddo |
---|
| 3290 | enddo |
---|
| 3291 | enddo |
---|
| 3292 | |
---|
| 3293 | |
---|
| 3294 | c!!! DO il=1,ncum |
---|
| 3295 | c!!! do i=icb(il),inb(il) |
---|
| 3296 | c!!! |
---|
| 3297 | c!!! upwd(il,i)=0.0 |
---|
| 3298 | c!!! dnwd(il,i)=0.0 |
---|
| 3299 | c!!! do k=i,inb(il) |
---|
| 3300 | c!!! up1=0.0 |
---|
| 3301 | c!!! dn1=0.0 |
---|
| 3302 | c!!! do n=1,i-1 |
---|
| 3303 | c!!! up1=up1+ment(il,n,k) |
---|
| 3304 | c!!! dn1=dn1-ment(il,k,n) |
---|
| 3305 | c!!! enddo |
---|
| 3306 | c!!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
---|
| 3307 | c!!! dnwd(il,i)=dnwd(il,i)+dn1 |
---|
| 3308 | c!!! enddo |
---|
| 3309 | c!!! enddo |
---|
| 3310 | c!!! |
---|
| 3311 | c!!! ENDDO |
---|
| 3312 | |
---|
| 3313 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 3314 | c determination de la variation de flux ascendant entre |
---|
| 3315 | c deux niveau non dilue mip |
---|
| 3316 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 3317 | |
---|
| 3318 | do i=1,nl |
---|
| 3319 | do il=1,ncum |
---|
| 3320 | mip(il,i)=m(il,i) |
---|
| 3321 | enddo |
---|
| 3322 | enddo |
---|
| 3323 | |
---|
| 3324 | do i=nl+1,nd |
---|
| 3325 | do il=1,ncum |
---|
| 3326 | mip(il,i)=0. |
---|
| 3327 | enddo |
---|
| 3328 | enddo |
---|
| 3329 | |
---|
| 3330 | do i=1,nd |
---|
| 3331 | do il=1,ncum |
---|
| 3332 | ma(il,i)=0 |
---|
| 3333 | enddo |
---|
| 3334 | enddo |
---|
| 3335 | |
---|
| 3336 | do i=1,nl |
---|
| 3337 | do j=i,nl |
---|
| 3338 | do il=1,ncum |
---|
| 3339 | ma(il,i)=ma(il,i)+m(il,j) |
---|
| 3340 | enddo |
---|
| 3341 | enddo |
---|
| 3342 | enddo |
---|
| 3343 | |
---|
| 3344 | do i=nl+1,nd |
---|
| 3345 | do il=1,ncum |
---|
| 3346 | ma(il,i)=0. |
---|
| 3347 | enddo |
---|
| 3348 | enddo |
---|
| 3349 | |
---|
| 3350 | do i=1,nl |
---|
| 3351 | do il=1,ncum |
---|
| 3352 | if (i.le.(icb(il)-1)) then |
---|
| 3353 | ma(il,i)=0 |
---|
| 3354 | endif |
---|
| 3355 | enddo |
---|
| 3356 | enddo |
---|
| 3357 | |
---|
| 3358 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 3359 | c icb represente de niveau ou se trouve la |
---|
| 3360 | c base du nuage , et inb le top du nuage |
---|
| 3361 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 3362 | |
---|
| 3363 | do i=1,nd |
---|
| 3364 | do il=1,ncum |
---|
| 3365 | mke(il,i)=upwd(il,i)+dnwd(il,i) |
---|
| 3366 | enddo |
---|
| 3367 | enddo |
---|
| 3368 | |
---|
| 3369 | do i=1,nd |
---|
| 3370 | DO 999 il=1,ncum |
---|
| 3371 | rdcp=(rrd*(1.-rr(il,i))-rr(il,i)*rrv) |
---|
| 3372 | : /(cpd*(1.-rr(il,i))+rr(il,i)*cpv) |
---|
| 3373 | tls(il,i)=t(il,i)*(1000.0/p(il,i))**rdcp |
---|
| 3374 | tps(il,i)=tp(il,i) |
---|
| 3375 | 999 CONTINUE |
---|
| 3376 | enddo |
---|
| 3377 | |
---|
| 3378 | c |
---|
| 3379 | c *** diagnose the in-cloud mixing ratio *** ! cld |
---|
| 3380 | c *** of condensed water *** ! cld |
---|
| 3381 | c ! cld |
---|
| 3382 | |
---|
| 3383 | do i=1,nd ! cld |
---|
| 3384 | do il=1,ncum ! cld |
---|
| 3385 | mac(il,i)=0.0 ! cld |
---|
| 3386 | wa(il,i)=0.0 ! cld |
---|
| 3387 | siga(il,i)=0.0 ! cld |
---|
| 3388 | sax(il,i)=0.0 ! cld |
---|
| 3389 | enddo ! cld |
---|
| 3390 | enddo ! cld |
---|
| 3391 | |
---|
| 3392 | do i=minorig, nl ! cld |
---|
| 3393 | do k=i+1,nl+1 ! cld |
---|
| 3394 | do il=1,ncum ! cld |
---|
| 3395 | if (i.le.inb(il) .and. k.le.(inb(il)+1) |
---|
| 3396 | $ .and. iflag(il) .le. 1) then ! cld |
---|
| 3397 | mac(il,i)=mac(il,i)+m(il,k) ! cld |
---|
| 3398 | endif ! cld |
---|
| 3399 | enddo ! cld |
---|
| 3400 | enddo ! cld |
---|
| 3401 | enddo ! cld |
---|
| 3402 | |
---|
| 3403 | do i=1,nl ! cld |
---|
| 3404 | do j=1,i ! cld |
---|
| 3405 | do il=1,ncum ! cld |
---|
| 3406 | if (i.ge.icb(il) .and. i.le.(inb(il)-1) ! cld |
---|
| 3407 | : .and. j.ge.icb(il) |
---|
| 3408 | : .and. iflag(il) .le. 1 ) then ! cld |
---|
| 3409 | sax(il,i)=sax(il,i)+rrd*(tvp(il,j)-tv(il,j)) ! cld |
---|
| 3410 | : *(ph(il,j)-ph(il,j+1))/p(il,j) ! cld |
---|
| 3411 | endif ! cld |
---|
| 3412 | enddo ! cld |
---|
| 3413 | enddo ! cld |
---|
| 3414 | enddo ! cld |
---|
| 3415 | |
---|
| 3416 | do i=1,nl ! cld |
---|
| 3417 | do il=1,ncum ! cld |
---|
| 3418 | if (i.ge.icb(il) .and. i.le.(inb(il)-1) ! cld |
---|
| 3419 | : .and. sax(il,i).gt.0.0 |
---|
| 3420 | : .and. iflag(il) .le. 1 ) then ! cld |
---|
| 3421 | wa(il,i)=sqrt(2.*sax(il,i)) ! cld |
---|
| 3422 | endif ! cld |
---|
| 3423 | enddo ! cld |
---|
| 3424 | enddo ! cld |
---|
| 3425 | |
---|
| 3426 | do i=1,nl ! cld |
---|
| 3427 | do il=1,ncum ! cld |
---|
| 3428 | if (wa(il,i).gt.0.0 .and. iflag(il) .le. 1) ! cld |
---|
| 3429 | : siga(il,i)=mac(il,i)/wa(il,i) ! cld |
---|
| 3430 | : *rrd*tvp(il,i)/p(il,i)/100./delta ! cld |
---|
| 3431 | siga(il,i) = min(siga(il,i),1.0) ! cld |
---|
| 3432 | cIM cf. FH |
---|
| 3433 | if (iflag_clw.eq.0) then |
---|
| 3434 | qcondc(il,i)=siga(il,i)*clw(il,i)*(1.-ep(il,i)) ! cld |
---|
| 3435 | : + (1.-siga(il,i))*qcond(il,i) ! cld |
---|
| 3436 | else if (iflag_clw.eq.1) then |
---|
| 3437 | qcondc(il,i)=qcond(il,i) ! cld |
---|
| 3438 | endif |
---|
| 3439 | |
---|
| 3440 | enddo ! cld |
---|
| 3441 | enddo |
---|
| 3442 | c print*,'cv3_yield fin' |
---|
| 3443 | ! cld |
---|
| 3444 | return |
---|
| 3445 | end |
---|
| 3446 | |
---|
| 3447 | |
---|
| 3448 | SUBROUTINE cv3_uncompress(nloc,len,ncum,nd,ntra,idcum |
---|
| 3449 | : ,iflag |
---|
| 3450 | : ,precip,sig,w0 |
---|
| 3451 | : ,ft,fq,fu,fv,ftra |
---|
| 3452 | : ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape |
---|
| 3453 | : ,iflag1 |
---|
| 3454 | : ,precip1,sig1,w01 |
---|
| 3455 | : ,ft1,fq1,fu1,fv1,ftra1 |
---|
| 3456 | : ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1 |
---|
| 3457 | : ) |
---|
| 3458 | implicit none |
---|
| 3459 | |
---|
| 3460 | #include "cv3param.h" |
---|
| 3461 | |
---|
| 3462 | c inputs: |
---|
| 3463 | integer len, ncum, nd, ntra, nloc |
---|
| 3464 | integer idcum(nloc) |
---|
| 3465 | integer iflag(nloc) |
---|
| 3466 | real precip(nloc) |
---|
| 3467 | real sig(nloc,nd), w0(nloc,nd) |
---|
| 3468 | real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
| 3469 | real ftra(nloc,nd,ntra) |
---|
| 3470 | real Ma(nloc,nd) |
---|
| 3471 | real upwd(nloc,nd),dnwd(nloc,nd),dnwd0(nloc,nd) |
---|
| 3472 | real qcondc(nloc,nd) |
---|
| 3473 | real wd(nloc),cape(nloc) |
---|
| 3474 | |
---|
| 3475 | c outputs: |
---|
| 3476 | integer iflag1(len) |
---|
| 3477 | real precip1(len) |
---|
| 3478 | real sig1(len,nd), w01(len,nd) |
---|
| 3479 | real ft1(len,nd), fq1(len,nd), fu1(len,nd), fv1(len,nd) |
---|
| 3480 | real ftra1(len,nd,ntra) |
---|
| 3481 | real Ma1(len,nd) |
---|
| 3482 | real upwd1(len,nd),dnwd1(len,nd),dnwd01(len,nd) |
---|
| 3483 | real qcondc1(nloc,nd) |
---|
| 3484 | real wd1(nloc),cape1(nloc) |
---|
| 3485 | |
---|
| 3486 | c local variables: |
---|
| 3487 | integer i,k,j |
---|
| 3488 | |
---|
| 3489 | do 2000 i=1,ncum |
---|
| 3490 | precip1(idcum(i))=precip(i) |
---|
| 3491 | iflag1(idcum(i))=iflag(i) |
---|
| 3492 | wd1(idcum(i))=wd(i) |
---|
| 3493 | cape1(idcum(i))=cape(i) |
---|
| 3494 | 2000 continue |
---|
| 3495 | |
---|
| 3496 | do 2020 k=1,nl |
---|
| 3497 | do 2010 i=1,ncum |
---|
| 3498 | sig1(idcum(i),k)=sig(i,k) |
---|
| 3499 | w01(idcum(i),k)=w0(i,k) |
---|
| 3500 | ft1(idcum(i),k)=ft(i,k) |
---|
| 3501 | fq1(idcum(i),k)=fq(i,k) |
---|
| 3502 | fu1(idcum(i),k)=fu(i,k) |
---|
| 3503 | fv1(idcum(i),k)=fv(i,k) |
---|
| 3504 | Ma1(idcum(i),k)=Ma(i,k) |
---|
| 3505 | upwd1(idcum(i),k)=upwd(i,k) |
---|
| 3506 | dnwd1(idcum(i),k)=dnwd(i,k) |
---|
| 3507 | dnwd01(idcum(i),k)=dnwd0(i,k) |
---|
| 3508 | qcondc1(idcum(i),k)=qcondc(i,k) |
---|
| 3509 | 2010 continue |
---|
| 3510 | 2020 continue |
---|
| 3511 | |
---|
| 3512 | do 2200 i=1,ncum |
---|
| 3513 | sig1(idcum(i),nd)=sig(i,nd) |
---|
| 3514 | 2200 continue |
---|
| 3515 | |
---|
| 3516 | |
---|
| 3517 | do 2100 j=1,ntra |
---|
| 3518 | c oct3 do 2110 k=1,nl |
---|
| 3519 | do 2110 k=1,nd ! oct3 |
---|
| 3520 | do 2120 i=1,ncum |
---|
| 3521 | ftra1(idcum(i),k,j)=ftra(i,k,j) |
---|
| 3522 | 2120 continue |
---|
| 3523 | 2110 continue |
---|
| 3524 | 2100 continue |
---|
| 3525 | return |
---|
| 3526 | end |
---|
| 3527 | |
---|