[1] | 1 | ! |
---|
| 2 | ! $Id: conema3.F 1403 2010-07-01 09:02:53Z fairhead $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE conema3 (dtime,paprs,pplay,t,q,u,v,tra,ntra, |
---|
| 5 | . work1,work2,d_t,d_q,d_u,d_v,d_tra, |
---|
| 6 | . rain, snow, kbas, ktop, |
---|
| 7 | . upwd,dnwd,dnwdbis,bas,top,Ma,cape,tvp,rflag, |
---|
| 8 | . pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr, |
---|
| 9 | . qcond_incld) |
---|
| 10 | |
---|
| 11 | USE dimphy |
---|
| 12 | USE infotrac, ONLY : nbtr |
---|
| 13 | IMPLICIT none |
---|
| 14 | c====================================================================== |
---|
| 15 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 16 | c Objet: schema de convection de Emanuel (1991) interface |
---|
| 17 | c Mai 1998: Interface modifiee pour implementation dans LMDZ |
---|
| 18 | c====================================================================== |
---|
| 19 | c Arguments: |
---|
| 20 | c dtime---input-R-pas d'integration (s) |
---|
| 21 | c paprs---input-R-pression inter-couches (Pa) |
---|
| 22 | c pplay---input-R-pression au milieu des couches (Pa) |
---|
| 23 | c t-------input-R-temperature (K) |
---|
| 24 | c q-------input-R-humidite specifique (kg/kg) |
---|
| 25 | c u-------input-R-vitesse du vent zonal (m/s) |
---|
| 26 | c v-------input-R-vitesse duvent meridien (m/s) |
---|
| 27 | c tra-----input-R-tableau de rapport de melange des traceurs |
---|
| 28 | c work*: input et output: deux variables de travail, |
---|
| 29 | c on peut les mettre a 0 au debut |
---|
| 30 | c |
---|
| 31 | C d_t-----output-R-increment de la temperature |
---|
| 32 | c d_q-----output-R-increment de la vapeur d'eau |
---|
| 33 | c d_u-----output-R-increment de la vitesse zonale |
---|
| 34 | c d_v-----output-R-increment de la vitesse meridienne |
---|
| 35 | c d_tra---output-R-increment du contenu en traceurs |
---|
| 36 | c rain----output-R-la pluie (mm/s) |
---|
| 37 | c snow----output-R-la neige (mm/s) |
---|
| 38 | c kbas----output-R-bas du nuage (integer) |
---|
| 39 | c ktop----output-R-haut du nuage (integer) |
---|
| 40 | c upwd----output-R-saturated updraft mass flux (kg/m**2/s) |
---|
| 41 | c dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) |
---|
| 42 | c dnwdbis-output-R-unsaturated downdraft mass flux (kg/m**2/s) |
---|
| 43 | c bas-----output-R-bas du nuage (real) |
---|
| 44 | c top-----output-R-haut du nuage (real) |
---|
| 45 | c Ma------output-R-flux ascendant non dilue (kg/m**2/s) |
---|
| 46 | c cape----output-R-CAPE |
---|
| 47 | c tvp-----output-R-virtual temperature of the lifted parcel |
---|
| 48 | c rflag---output-R-flag sur le fonctionnement de convect |
---|
| 49 | c pbase---output-R-pression a la base du nuage (Pa) |
---|
| 50 | c bbase---output-R-buoyancy a la base du nuage (K) |
---|
| 51 | c dtvpdt1-output-R-derivative of parcel virtual temp wrt T1 |
---|
| 52 | c dtvpdq1-output-R-derivative of parcel virtual temp wrt Q1 |
---|
| 53 | c dplcldt-output-R-derivative of the PCP pressure wrt T1 |
---|
| 54 | c dplcldr-output-R-derivative of the PCP pressure wrt Q1 |
---|
| 55 | c====================================================================== |
---|
| 56 | c |
---|
| 57 | #include "dimensions.h" |
---|
| 58 | #include "conema3.h" |
---|
| 59 | INTEGER i, l,m,itra |
---|
| 60 | INTEGER ntra ! if no tracer transport |
---|
| 61 | ! is needed, set ntra = 1 (or 0) |
---|
| 62 | REAL dtime |
---|
| 63 | c |
---|
| 64 | REAL d_t2(klon,klev), d_q2(klon,klev) ! sbl |
---|
| 65 | REAL d_u2(klon,klev), d_v2(klon,klev) ! sbl |
---|
| 66 | REAL em_d_t2(klev), em_d_q2(klev) ! sbl |
---|
| 67 | REAL em_d_u2(klev), em_d_v2(klev) ! sbl |
---|
| 68 | c |
---|
| 69 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 70 | REAL t(klon,klev), q(klon,klev), d_t(klon,klev), d_q(klon,klev) |
---|
| 71 | REAL u(klon,klev), v(klon,klev), tra(klon,klev,ntra) |
---|
| 72 | REAL d_u(klon,klev), d_v(klon,klev), d_tra(klon,klev,ntra) |
---|
| 73 | REAL work1(klon,klev), work2(klon,klev) |
---|
| 74 | REAL upwd(klon,klev), dnwd(klon,klev), dnwdbis(klon,klev) |
---|
| 75 | REAL rain(klon) |
---|
| 76 | REAL snow(klon) |
---|
| 77 | REAL cape(klon), tvp(klon,klev), rflag(klon) |
---|
| 78 | REAL pbase(klon), bbase(klon) |
---|
| 79 | REAL dtvpdt1(klon,klev), dtvpdq1(klon,klev) |
---|
| 80 | REAL dplcldt(klon), dplcldr(klon) |
---|
| 81 | INTEGER kbas(klon), ktop(klon) |
---|
| 82 | |
---|
| 83 | REAL wd(klon) |
---|
| 84 | REAL qcond_incld(klon,klev) |
---|
| 85 | c |
---|
| 86 | LOGICAL,SAVE :: first=.true. |
---|
| 87 | c$OMP THREADPRIVATE(first) |
---|
| 88 | |
---|
| 89 | cym REAL em_t(klev) |
---|
| 90 | REAL,ALLOCATABLE,SAVE :: em_t(:) |
---|
| 91 | c$OMP THREADPRIVATE(em_t) |
---|
| 92 | cym REAL em_q(klev) |
---|
| 93 | REAL,ALLOCATABLE,SAVE :: em_q(:) |
---|
| 94 | c$OMP THREADPRIVATE(em_q) |
---|
| 95 | cym REAL em_qs(klev) |
---|
| 96 | REAL,ALLOCATABLE,SAVE :: em_qs(:) |
---|
| 97 | c$OMP THREADPRIVATE(em_qs) |
---|
| 98 | cym REAL em_u(klev), em_v(klev), em_tra(klev,nbtr) |
---|
| 99 | REAL,ALLOCATABLE,SAVE :: em_u(:),em_v(:),em_tra(:,:) |
---|
| 100 | c$OMP THREADPRIVATE(em_u,em_v,em_tra) |
---|
| 101 | cym REAL em_ph(klev+1), em_p(klev) |
---|
| 102 | REAL,ALLOCATABLE,SAVE ::em_ph(:),em_p(:) |
---|
| 103 | c$OMP THREADPRIVATE(em_ph,em_p) |
---|
| 104 | cym REAL em_work1(klev), em_work2(klev) |
---|
| 105 | REAL,ALLOCATABLE,SAVE ::em_work1(:),em_work2(:) |
---|
| 106 | c$OMP THREADPRIVATE(em_work1,em_work2) |
---|
| 107 | cym REAL em_precip, em_d_t(klev), em_d_q(klev) |
---|
| 108 | REAL,SAVE :: em_precip |
---|
| 109 | c$OMP THREADPRIVATE(em_precip) |
---|
| 110 | REAL,ALLOCATABLE,SAVE :: em_d_t(:),em_d_q(:) |
---|
| 111 | c$OMP THREADPRIVATE(em_d_t,em_d_q) |
---|
| 112 | cym REAL em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr) |
---|
| 113 | REAL,ALLOCATABLE,SAVE ::em_d_u(:),em_d_v(:),em_d_tra(:,:) |
---|
| 114 | c$OMP THREADPRIVATE(em_d_u,em_d_v,em_d_tra) |
---|
| 115 | cym REAL em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev) |
---|
| 116 | REAL,ALLOCATABLE,SAVE :: em_upwd(:),em_dnwd(:),em_dnwdbis(:) |
---|
| 117 | c$OMP THREADPRIVATE(em_upwd,em_dnwd,em_dnwdbis) |
---|
| 118 | REAL em_dtvpdt1(klev), em_dtvpdq1(klev) |
---|
| 119 | REAL em_dplcldt, em_dplcldr |
---|
| 120 | cym SAVE em_t,em_q, em_qs, em_ph, em_p, em_work1, em_work2 |
---|
| 121 | cym SAVE em_u,em_v, em_tra |
---|
| 122 | cym SAVE em_d_u,em_d_v, em_d_tra |
---|
| 123 | cym SAVE em_precip, em_d_t, em_d_q, em_upwd, em_dnwd, em_dnwdbis |
---|
| 124 | |
---|
| 125 | INTEGER em_bas, em_top |
---|
| 126 | SAVE em_bas, em_top |
---|
| 127 | c$OMP THREADPRIVATE(em_bas,em_top) |
---|
| 128 | REAL em_wd |
---|
| 129 | REAL em_qcond(klev) |
---|
| 130 | REAL em_qcondc(klev) |
---|
| 131 | c |
---|
| 132 | REAL zx_t, zx_qs, zdelta, zcor |
---|
| 133 | INTEGER iflag |
---|
| 134 | REAL sigsum |
---|
| 135 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 136 | c VARIABLES A SORTIR |
---|
| 137 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 138 | |
---|
| 139 | cym REAL emmip(klev) !variation de flux ascnon dilue i et i+1 |
---|
| 140 | REAL,ALLOCATABLE,SAVE ::emmip(:) |
---|
| 141 | c$OMP THREADPRIVATE(emmip) |
---|
| 142 | cym SAVE emmip |
---|
| 143 | cym real emMke(klev) |
---|
| 144 | REAL,ALLOCATABLE,SAVE ::emMke(:) |
---|
| 145 | c$OMP THREADPRIVATE(emMke) |
---|
| 146 | cym save emMke |
---|
| 147 | real top |
---|
| 148 | real bas |
---|
| 149 | cym real emMa(klev) |
---|
| 150 | REAL,ALLOCATABLE,SAVE ::emMa(:) |
---|
| 151 | c$OMP THREADPRIVATE(emMa) |
---|
| 152 | cym save emMa |
---|
| 153 | real Ma(klon,klev) |
---|
| 154 | real Ment(klev,klev) |
---|
| 155 | real Qent(klev,klev) |
---|
| 156 | real TPS(klev),TLS(klev) |
---|
| 157 | real SIJ(klev,klev) |
---|
| 158 | real em_CAPE, em_TVP(klev) |
---|
| 159 | real em_pbase, em_bbase |
---|
| 160 | integer iw,j,k,ix,iy |
---|
| 161 | |
---|
| 162 | c -- sb: pour schema nuages: |
---|
| 163 | |
---|
| 164 | integer iflagcon |
---|
| 165 | integer em_ifc(klev) |
---|
| 166 | |
---|
| 167 | real em_pradj |
---|
| 168 | real em_cldf(klev), em_cldq(klev) |
---|
| 169 | real em_ftadj(klev), em_fradj(klev) |
---|
| 170 | |
---|
| 171 | integer ifc(klon,klev) |
---|
| 172 | real pradj(klon) |
---|
| 173 | real cldf(klon,klev), cldq(klon,klev) |
---|
| 174 | real ftadj(klon,klev), fqadj(klon,klev) |
---|
| 175 | |
---|
| 176 | c sb -- |
---|
| 177 | |
---|
| 178 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 179 | c |
---|
| 180 | #include "YOMCST.h" |
---|
| 181 | #include "YOETHF.h" |
---|
| 182 | #include "FCTTRE.h" |
---|
| 183 | |
---|
| 184 | if (first) then |
---|
| 185 | |
---|
| 186 | allocate(em_t(klev)) |
---|
| 187 | allocate(em_q(klev)) |
---|
| 188 | allocate(em_qs(klev)) |
---|
| 189 | allocate(em_u(klev), em_v(klev), em_tra(klev,nbtr)) |
---|
| 190 | allocate(em_ph(klev+1), em_p(klev)) |
---|
| 191 | allocate(em_work1(klev), em_work2(klev)) |
---|
| 192 | allocate(em_d_t(klev), em_d_q(klev)) |
---|
| 193 | allocate(em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr)) |
---|
| 194 | allocate(em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev)) |
---|
| 195 | allocate(emmip(klev)) |
---|
| 196 | allocate(emMke(klev)) |
---|
| 197 | allocate(emMa(klev)) |
---|
| 198 | |
---|
| 199 | first=.false. |
---|
| 200 | endif |
---|
| 201 | |
---|
| 202 | qcond_incld(:,:) = 0. |
---|
| 203 | c |
---|
| 204 | c@$$ print*,'debut conema' |
---|
| 205 | |
---|
| 206 | DO 999 i = 1, klon |
---|
| 207 | DO l = 1, klev+1 |
---|
| 208 | em_ph(l) = paprs(i,l) / 100.0 |
---|
| 209 | ENDDO |
---|
| 210 | c |
---|
| 211 | DO l = 1, klev |
---|
| 212 | em_p(l) = pplay(i,l) / 100.0 |
---|
| 213 | em_t(l) = t(i,l) |
---|
| 214 | em_q(l) = q(i,l) |
---|
| 215 | em_u(l) = u(i,l) |
---|
| 216 | em_v(l) = v(i,l) |
---|
| 217 | do itra = 1, ntra |
---|
| 218 | em_tra(l,itra) = tra(i,l,itra) |
---|
| 219 | enddo |
---|
| 220 | c@$$ print*,'em_t',em_t |
---|
| 221 | c@$$ print*,'em_q',em_q |
---|
| 222 | c@$$ print*,'em_qs',em_qs |
---|
| 223 | c@$$ print*,'em_u',em_u |
---|
| 224 | c@$$ print*,'em_v',em_v |
---|
| 225 | c@$$ print*,'em_tra',em_tra |
---|
| 226 | c@$$ print*,'em_p',em_p |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | c |
---|
| 230 | zx_t = em_t(l) |
---|
| 231 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
| 232 | zx_qs= r2es * FOEEW(zx_t,zdelta)/em_p(l)/100.0 |
---|
| 233 | zx_qs=MIN(0.5,zx_qs) |
---|
| 234 | c@$$ print*,'zx_qs',zx_qs |
---|
| 235 | zcor=1./(1.-retv*zx_qs) |
---|
| 236 | zx_qs=zx_qs*zcor |
---|
| 237 | em_qs(l) = zx_qs |
---|
| 238 | c@$$ print*,'em_qs',em_qs |
---|
| 239 | c |
---|
| 240 | em_work1(l) = work1(i,l) |
---|
| 241 | em_work2(l) = work2(i,l) |
---|
| 242 | emMke(l)=0 |
---|
| 243 | c emMa(l)=0 |
---|
| 244 | c Ma(i,l)=0 |
---|
| 245 | |
---|
| 246 | em_dtvpdt1(l) = 0. |
---|
| 247 | em_dtvpdq1(l) = 0. |
---|
| 248 | dtvpdt1(i,l) = 0. |
---|
| 249 | dtvpdq1(i,l) = 0. |
---|
| 250 | ENDDO |
---|
| 251 | c |
---|
| 252 | em_dplcldt = 0. |
---|
| 253 | em_dplcldr = 0. |
---|
| 254 | rain(i) = 0.0 |
---|
| 255 | snow(i) = 0.0 |
---|
| 256 | kbas(i) = 1 |
---|
| 257 | ktop(i) = 1 |
---|
| 258 | c ajout SB: |
---|
| 259 | bas = 1 |
---|
| 260 | top = 1 |
---|
| 261 | |
---|
| 262 | |
---|
| 263 | c sb3d write(*,1792) (em_work1(m),m=1,klev) |
---|
| 264 | 1792 format('sig avant convect ',/,10(1X,E13.5)) |
---|
| 265 | c |
---|
| 266 | c sb d write(*,1793) (em_work2(m),m=1,klev) |
---|
| 267 | 1793 format('w avant convect ',/,10(1X,E13.5)) |
---|
| 268 | |
---|
| 269 | c@$$ print*,'avant convect' |
---|
| 270 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 271 | c |
---|
| 272 | |
---|
| 273 | c print*,'avant convect i=',i |
---|
| 274 | CALL convect3(dtime,epmax,ok_adj_ema, |
---|
| 275 | . em_t, em_q, em_qs,em_u ,em_v , |
---|
| 276 | . em_tra, em_p, em_ph, |
---|
| 277 | . klev, klev+1, klev-1,ntra, dtime, iflag, |
---|
| 278 | . em_d_t, em_d_q,em_d_u,em_d_v, |
---|
| 279 | . em_d_tra, em_precip, |
---|
| 280 | . em_bas, em_top,em_upwd, em_dnwd, em_dnwdbis, |
---|
| 281 | . em_work1, em_work2,emmip,emMke,emMa,Ment, |
---|
| 282 | . Qent,TPS,TLS,SIJ,em_CAPE,em_TVP,em_pbase,em_bbase, |
---|
| 283 | . em_dtvpdt1,em_dtvpdq1,em_dplcldt,em_dplcldr, ! sbl |
---|
| 284 | . em_d_t2,em_d_q2,em_d_u2,em_d_v2,em_wd,em_qcond,em_qcondc)!sbl |
---|
| 285 | c print*,'apres convect ' |
---|
| 286 | c |
---|
| 287 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 288 | c |
---|
| 289 | c -- sb: Appel schema statistique de nuages couple a la convection |
---|
| 290 | c (Bony et Emanuel 2001): |
---|
| 291 | |
---|
| 292 | c -- creer cvthermo.h qui contiendra les cstes thermo de LMDZ: |
---|
| 293 | |
---|
| 294 | iflagcon = 3 |
---|
| 295 | c CALL cv_thermo(iflagcon) |
---|
| 296 | |
---|
| 297 | c -- appel schema de nuages: |
---|
| 298 | |
---|
| 299 | c CALL CLOUDS_SUB_LS(klev,em_q,em_qs,em_t |
---|
| 300 | c i ,em_p,em_ph,dtime,em_qcondc |
---|
| 301 | c o ,em_cldf,em_cldq,em_pradj,em_ftadj,em_fradj,em_ifc) |
---|
| 302 | |
---|
| 303 | do k = 1, klev |
---|
| 304 | cldf(i,k) = em_cldf(k) ! cloud fraction (0-1) |
---|
| 305 | cldq(i,k) = em_cldq(k) ! in-cloud water content (kg/kg) |
---|
| 306 | ftadj(i,k) = em_ftadj(k) ! (dT/dt)_{LS adj} (K/s) |
---|
| 307 | fqadj(i,k) = em_fradj(k) ! (dq/dt)_{LS adj} (kg/kg/s) |
---|
| 308 | ifc(i,k) = em_ifc(k) ! flag convergence clouds_gno (1 ou 2) |
---|
| 309 | enddo |
---|
| 310 | pradj(i) = em_pradj ! precip from LS supersat adj (mm/day) |
---|
| 311 | |
---|
| 312 | c sb -- |
---|
| 313 | c |
---|
| 314 | c SB: |
---|
| 315 | if (iflag.ne.1 .and. iflag.ne.4) then |
---|
| 316 | em_CAPE = 0. |
---|
| 317 | do l = 1, klev |
---|
| 318 | em_upwd(l) = 0. |
---|
| 319 | em_dnwd(l) = 0. |
---|
| 320 | em_dnwdbis(l) = 0. |
---|
| 321 | emMa(l) = 0. |
---|
| 322 | em_TVP(l) = 0. |
---|
| 323 | enddo |
---|
| 324 | endif |
---|
| 325 | c fin SB |
---|
| 326 | c |
---|
| 327 | c If sig has been set to zero, then set Ma to zero |
---|
| 328 | c |
---|
| 329 | sigsum = 0. |
---|
| 330 | do k = 1,klev |
---|
| 331 | sigsum = sigsum + em_work1(k) |
---|
| 332 | enddo |
---|
| 333 | if (sigsum .eq. 0.0) then |
---|
| 334 | do k = 1,klev |
---|
| 335 | emMa(k) = 0. |
---|
| 336 | enddo |
---|
| 337 | endif |
---|
| 338 | c |
---|
| 339 | c sb3d print*,'i, iflag=',i,iflag |
---|
| 340 | c |
---|
| 341 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 342 | c |
---|
| 343 | c SORTIE DES ICB ET INB |
---|
| 344 | c en fait inb et icb correspondent au niveau ou se trouve |
---|
| 345 | c le nuage,le numero d'interface |
---|
| 346 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 347 | |
---|
| 348 | c modif SB: |
---|
| 349 | if (iflag.EQ.1 .or. iflag.EQ.4) then |
---|
| 350 | top=em_top |
---|
| 351 | bas=em_bas |
---|
| 352 | kbas(i) = em_bas |
---|
| 353 | ktop(i) = em_top |
---|
| 354 | endif |
---|
| 355 | |
---|
| 356 | pbase(i) = em_pbase |
---|
| 357 | bbase(i) = em_bbase |
---|
| 358 | rain(i) = em_precip/ 86400.0 |
---|
| 359 | snow(i) = 0.0 |
---|
| 360 | cape(i) = em_CAPE |
---|
| 361 | wd(i) = em_wd |
---|
| 362 | rflag(i) = REAL(iflag) |
---|
| 363 | c SB kbas(i) = em_bas |
---|
| 364 | c SB ktop(i) = em_top |
---|
| 365 | dplcldt(i) = em_dplcldt |
---|
| 366 | dplcldr(i) = em_dplcldr |
---|
| 367 | DO l = 1, klev |
---|
| 368 | d_t2(i,l) = dtime * em_d_t2(l) |
---|
| 369 | d_q2(i,l) = dtime * em_d_q2(l) |
---|
| 370 | d_u2(i,l) = dtime * em_d_u2(l) |
---|
| 371 | d_v2(i,l) = dtime * em_d_v2(l) |
---|
| 372 | |
---|
| 373 | d_t(i,l) = dtime * em_d_t(l) |
---|
| 374 | d_q(i,l) = dtime * em_d_q(l) |
---|
| 375 | d_u(i,l) = dtime * em_d_u(l) |
---|
| 376 | d_v(i,l) = dtime * em_d_v(l) |
---|
| 377 | do itra = 1, ntra |
---|
| 378 | d_tra(i,l,itra) = dtime * em_d_tra(l,itra) |
---|
| 379 | enddo |
---|
| 380 | upwd(i,l) = em_upwd(l) |
---|
| 381 | dnwd(i,l) = em_dnwd(l) |
---|
| 382 | dnwdbis(i,l) = em_dnwdbis(l) |
---|
| 383 | work1(i,l) = em_work1(l) |
---|
| 384 | work2(i,l) = em_work2(l) |
---|
| 385 | Ma(i,l)=emMa(l) |
---|
| 386 | tvp(i,l)=em_TVP(l) |
---|
| 387 | dtvpdt1(i,l) = em_dtvpdt1(l) |
---|
| 388 | dtvpdq1(i,l) = em_dtvpdq1(l) |
---|
| 389 | |
---|
| 390 | if (iflag_clw.eq.0) then |
---|
| 391 | qcond_incld(i,l) = em_qcondc(l) |
---|
| 392 | else if (iflag_clw.eq.1) then |
---|
| 393 | qcond_incld(i,l) = em_qcond(l) |
---|
| 394 | endif |
---|
| 395 | ENDDO |
---|
| 396 | 999 CONTINUE |
---|
| 397 | |
---|
| 398 | c On calcule une eau liquide diagnostique en fonction de la |
---|
| 399 | c precip. |
---|
| 400 | if ( iflag_clw.eq.2 ) then |
---|
| 401 | do l=1,klev |
---|
| 402 | do i=1,klon |
---|
| 403 | if (ktop(i)-kbas(i).gt.0.and. |
---|
| 404 | s l.ge.kbas(i).and.l.le.ktop(i)) then |
---|
| 405 | qcond_incld(i,l)=rain(i)*8.e4 |
---|
| 406 | c s *(pplay(i,l )-paprs(i,ktop(i)+1)) |
---|
| 407 | s /(pplay(i,kbas(i))-pplay(i,ktop(i))) |
---|
| 408 | c s **2 |
---|
| 409 | else |
---|
| 410 | qcond_incld(i,l)=0. |
---|
| 411 | endif |
---|
| 412 | enddo |
---|
| 413 | print*,'l=',l,', qcond_incld=',qcond_incld(1,l) |
---|
| 414 | enddo |
---|
| 415 | endif |
---|
| 416 | |
---|
| 417 | |
---|
| 418 | RETURN |
---|
| 419 | END |
---|
| 420 | |
---|