[1] | 1 | ! |
---|
| 2 | MODULE climb_wind_mod |
---|
| 3 | ! |
---|
| 4 | ! Module to solve the verctical diffusion of the wind components "u" and "v". |
---|
| 5 | ! |
---|
| 6 | USE dimphy |
---|
| 7 | |
---|
| 8 | IMPLICIT NONE |
---|
| 9 | |
---|
| 10 | SAVE |
---|
| 11 | PRIVATE |
---|
| 12 | |
---|
| 13 | REAL, DIMENSION(:), ALLOCATABLE :: alf1, alf2 |
---|
| 14 | !$OMP THREADPRIVATE(alf1,alf2) |
---|
| 15 | REAL, DIMENSION(:,:), ALLOCATABLE :: Kcoefm |
---|
| 16 | !$OMP THREADPRIVATE(Kcoefm) |
---|
| 17 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_U, Dcoef_U |
---|
| 18 | !$OMP THREADPRIVATE(Ccoef_U, Dcoef_U) |
---|
| 19 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_V, Dcoef_V |
---|
| 20 | !$OMP THREADPRIVATE(Ccoef_V, Dcoef_V) |
---|
| 21 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_U, Bcoef_U |
---|
| 22 | !$OMP THREADPRIVATE(Acoef_U, Bcoef_U) |
---|
| 23 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_V, Bcoef_V |
---|
| 24 | !$OMP THREADPRIVATE(Acoef_V, Bcoef_V) |
---|
| 25 | LOGICAL :: firstcall=.TRUE. |
---|
| 26 | !$OMP THREADPRIVATE(firstcall) |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | PUBLIC :: climb_wind_down, climb_wind_up |
---|
| 30 | |
---|
| 31 | CONTAINS |
---|
| 32 | ! |
---|
| 33 | !**************************************************************************************** |
---|
| 34 | ! |
---|
| 35 | SUBROUTINE climb_wind_init |
---|
| 36 | |
---|
| 37 | INTEGER :: ierr |
---|
| 38 | CHARACTER(len = 20) :: modname = 'climb_wind_init' |
---|
| 39 | |
---|
| 40 | !**************************************************************************************** |
---|
| 41 | ! Allocation of global module variables |
---|
| 42 | ! |
---|
| 43 | !**************************************************************************************** |
---|
| 44 | |
---|
| 45 | ALLOCATE(alf1(klon), stat=ierr) |
---|
| 46 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate alf2',1) |
---|
| 47 | |
---|
| 48 | ALLOCATE(alf2(klon), stat=ierr) |
---|
| 49 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate alf2',1) |
---|
| 50 | |
---|
| 51 | ALLOCATE(Kcoefm(klon,klev), stat=ierr) |
---|
| 52 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate Kcoefm',1) |
---|
| 53 | |
---|
| 54 | ALLOCATE(Ccoef_U(klon,klev), stat=ierr) |
---|
| 55 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate Ccoef_U',1) |
---|
| 56 | |
---|
| 57 | ALLOCATE(Dcoef_U(klon,klev), stat=ierr) |
---|
| 58 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocation Dcoef_U',1) |
---|
| 59 | |
---|
| 60 | ALLOCATE(Ccoef_V(klon,klev), stat=ierr) |
---|
| 61 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocation Ccoef_V',1) |
---|
| 62 | |
---|
| 63 | ALLOCATE(Dcoef_V(klon,klev), stat=ierr) |
---|
| 64 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocation Dcoef_V',1) |
---|
| 65 | |
---|
| 66 | ALLOCATE(Acoef_U(klon), Bcoef_U(klon), Acoef_V(klon), Bcoef_V(klon), STAT=ierr) |
---|
| 67 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Acoef_U and Bcoef_U, ierr=', ierr |
---|
| 68 | |
---|
| 69 | firstcall=.FALSE. |
---|
| 70 | |
---|
| 71 | END SUBROUTINE climb_wind_init |
---|
| 72 | ! |
---|
| 73 | !**************************************************************************************** |
---|
| 74 | ! |
---|
| 75 | SUBROUTINE climb_wind_down(knon, dtime, coef_in, pplay, paprs, temp, delp, u_old, v_old, & |
---|
| 76 | Acoef_U_out, Acoef_V_out, Bcoef_U_out, Bcoef_V_out) |
---|
| 77 | ! |
---|
| 78 | ! This routine calculates for the wind components u and v, |
---|
| 79 | ! recursivly the coefficients C and D in equation |
---|
| 80 | ! X(k) = C(k) + D(k)*X(k-1), X=[u,v], k=[1,klev] is the vertical layer. |
---|
| 81 | ! |
---|
| 82 | ! |
---|
| 83 | INCLUDE "YOMCST.h" |
---|
| 84 | ! Input arguments |
---|
| 85 | !**************************************************************************************** |
---|
| 86 | INTEGER, INTENT(IN) :: knon |
---|
| 87 | REAL, INTENT(IN) :: dtime |
---|
| 88 | REAL, DIMENSION(klon,klev), INTENT(IN) :: coef_in |
---|
| 89 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! pres au milieu de couche (Pa) |
---|
| 90 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! pression a inter-couche (Pa) |
---|
| 91 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature |
---|
| 92 | REAL, DIMENSION(klon,klev), INTENT(IN) :: delp |
---|
| 93 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_old |
---|
| 94 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_old |
---|
| 95 | |
---|
| 96 | ! Output arguments |
---|
| 97 | !**************************************************************************************** |
---|
| 98 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_U_out |
---|
| 99 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_V_out |
---|
| 100 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_U_out |
---|
| 101 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_V_out |
---|
| 102 | |
---|
| 103 | ! Local variables |
---|
| 104 | !**************************************************************************************** |
---|
| 105 | REAL, DIMENSION(klon) :: u1lay, v1lay |
---|
| 106 | INTEGER :: k, i |
---|
| 107 | |
---|
| 108 | |
---|
| 109 | !**************************************************************************************** |
---|
| 110 | ! Initialize module |
---|
| 111 | IF (firstcall) CALL climb_wind_init |
---|
| 112 | |
---|
| 113 | !**************************************************************************************** |
---|
| 114 | ! Calculate the coefficients C and D in : u(k) = C(k) + D(k)*u(k-1) |
---|
| 115 | ! |
---|
| 116 | !**************************************************************************************** |
---|
| 117 | ! - Define alpha (alf1 and alf2) |
---|
| 118 | alf1(:) = 1.0 |
---|
| 119 | alf2(:) = 1.0 - alf1(:) |
---|
| 120 | |
---|
| 121 | ! - Calculate the coefficients K |
---|
| 122 | Kcoefm(:,:) = 0.0 |
---|
| 123 | DO k = 2, klev |
---|
| 124 | DO i=1,knon |
---|
| 125 | Kcoefm(i,k) = coef_in(i,k)*RG*RG*dtime/(pplay(i,k-1)-pplay(i,k)) & |
---|
| 126 | *(paprs(i,k)*2/(temp(i,k)+temp(i,k-1))/RD)**2 |
---|
| 127 | END DO |
---|
| 128 | END DO |
---|
| 129 | |
---|
| 130 | ! - Calculate the coefficients C and D, component "u" |
---|
| 131 | CALL calc_coef(knon, Kcoefm(:,:), delp(:,:), & |
---|
| 132 | u_old(:,:), alf1(:), alf2(:), & |
---|
| 133 | Ccoef_U(:,:), Dcoef_U(:,:), Acoef_U(:), Bcoef_U(:)) |
---|
| 134 | |
---|
| 135 | ! - Calculate the coefficients C and D, component "v" |
---|
| 136 | CALL calc_coef(knon, Kcoefm(:,:), delp(:,:), & |
---|
| 137 | v_old(:,:), alf1(:), alf2(:), & |
---|
| 138 | Ccoef_V(:,:), Dcoef_V(:,:), Acoef_V(:), Bcoef_V(:)) |
---|
| 139 | |
---|
| 140 | !**************************************************************************************** |
---|
| 141 | ! 6) |
---|
| 142 | ! Return the first layer in output variables |
---|
| 143 | ! |
---|
| 144 | !**************************************************************************************** |
---|
| 145 | Acoef_U_out = Acoef_U |
---|
| 146 | Bcoef_U_out = Bcoef_U |
---|
| 147 | Acoef_V_out = Acoef_V |
---|
| 148 | Bcoef_V_out = Bcoef_V |
---|
| 149 | |
---|
| 150 | END SUBROUTINE climb_wind_down |
---|
| 151 | ! |
---|
| 152 | !**************************************************************************************** |
---|
| 153 | ! |
---|
| 154 | SUBROUTINE calc_coef(knon, Kcoef, delp, X, alfa1, alfa2, Ccoef, Dcoef, Acoef, Bcoef) |
---|
| 155 | ! |
---|
| 156 | ! Find the coefficients C and D in fonction of alfa, K and delp |
---|
| 157 | ! |
---|
| 158 | ! Input arguments |
---|
| 159 | !**************************************************************************************** |
---|
| 160 | INTEGER, INTENT(IN) :: knon |
---|
| 161 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef, delp |
---|
| 162 | REAL, DIMENSION(klon,klev), INTENT(IN) :: X |
---|
| 163 | REAL, DIMENSION(klon), INTENT(IN) :: alfa1, alfa2 |
---|
| 164 | |
---|
| 165 | ! Output arguments |
---|
| 166 | !**************************************************************************************** |
---|
| 167 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef, Bcoef |
---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef, Dcoef |
---|
| 169 | |
---|
| 170 | ! local variables |
---|
| 171 | !**************************************************************************************** |
---|
| 172 | INTEGER :: k, i |
---|
| 173 | REAL :: buf |
---|
| 174 | |
---|
| 175 | INCLUDE "YOMCST.h" |
---|
| 176 | !**************************************************************************************** |
---|
| 177 | ! |
---|
| 178 | |
---|
| 179 | ! Calculate coefficients C and D at top level, k=klev |
---|
| 180 | ! |
---|
| 181 | Ccoef(:,:) = 0.0 |
---|
| 182 | Dcoef(:,:) = 0.0 |
---|
| 183 | |
---|
| 184 | DO i = 1, knon |
---|
| 185 | buf = delp(i,klev) + Kcoef(i,klev) |
---|
| 186 | |
---|
| 187 | Ccoef(i,klev) = X(i,klev)*delp(i,klev)/buf |
---|
| 188 | Dcoef(i,klev) = Kcoef(i,klev)/buf |
---|
| 189 | END DO |
---|
| 190 | |
---|
| 191 | ! |
---|
| 192 | ! Calculate coefficients C and D at top level (klev-1) <= k <= 2 |
---|
| 193 | ! |
---|
| 194 | DO k=(klev-1),2,-1 |
---|
| 195 | DO i = 1, knon |
---|
| 196 | buf = delp(i,k) + Kcoef(i,k) + Kcoef(i,k+1)*(1.-Dcoef(i,k+1)) |
---|
| 197 | |
---|
| 198 | Ccoef(i,k) = (X(i,k)*delp(i,k) + Kcoef(i,k+1)*Ccoef(i,k+1))/buf |
---|
| 199 | Dcoef(i,k) = Kcoef(i,k)/buf |
---|
| 200 | END DO |
---|
| 201 | END DO |
---|
| 202 | |
---|
| 203 | ! |
---|
| 204 | ! Calculate coeffiecent A and B at surface |
---|
| 205 | ! |
---|
| 206 | DO i = 1, knon |
---|
| 207 | buf = delp(i,1) + Kcoef(i,2)*(1-Dcoef(i,2)) |
---|
| 208 | Acoef(i) = (X(i,1)*delp(i,1) + Kcoef(i,2)*Ccoef(i,2))/buf |
---|
| 209 | Bcoef(i) = -RG/buf |
---|
| 210 | END DO |
---|
| 211 | |
---|
| 212 | END SUBROUTINE calc_coef |
---|
| 213 | ! |
---|
| 214 | !**************************************************************************************** |
---|
| 215 | ! |
---|
| 216 | |
---|
| 217 | SUBROUTINE climb_wind_up(knon, dtime, u_old, v_old, flx_u1, flx_v1, & |
---|
| 218 | flx_u_new, flx_v_new, d_u_new, d_v_new) |
---|
| 219 | ! |
---|
| 220 | ! Diffuse the wind components from the surface layer and up to the top layer. |
---|
| 221 | ! Coefficents A, B, C and D are known from before. Start values for the diffusion are the |
---|
| 222 | ! momentum fluxes at surface. |
---|
| 223 | ! |
---|
| 224 | ! u(k=1) = A + B*flx*dtime |
---|
| 225 | ! u(k) = C(k) + D(k)*u(k-1) [2 <= k <= klev] |
---|
| 226 | ! |
---|
| 227 | !**************************************************************************************** |
---|
| 228 | INCLUDE "YOMCST.h" |
---|
| 229 | |
---|
| 230 | ! Input arguments |
---|
| 231 | !**************************************************************************************** |
---|
| 232 | INTEGER, INTENT(IN) :: knon |
---|
| 233 | REAL, INTENT(IN) :: dtime |
---|
| 234 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_old |
---|
| 235 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_old |
---|
| 236 | REAL, DIMENSION(klon), INTENT(IN) :: flx_u1, flx_v1 ! momentum flux |
---|
| 237 | |
---|
| 238 | ! Output arguments |
---|
| 239 | !**************************************************************************************** |
---|
| 240 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: flx_u_new, flx_v_new |
---|
| 241 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_u_new, d_v_new |
---|
| 242 | |
---|
| 243 | ! Local variables |
---|
| 244 | !**************************************************************************************** |
---|
| 245 | REAL, DIMENSION(klon,klev) :: u_new, v_new |
---|
| 246 | INTEGER :: k, i |
---|
| 247 | |
---|
| 248 | ! |
---|
| 249 | !**************************************************************************************** |
---|
| 250 | |
---|
| 251 | ! Niveau 1 |
---|
| 252 | DO i = 1, knon |
---|
| 253 | u_new(i,1) = Acoef_U(i) + Bcoef_U(i)*flx_u1(i)*dtime |
---|
| 254 | v_new(i,1) = Acoef_V(i) + Bcoef_V(i)*flx_v1(i)*dtime |
---|
| 255 | END DO |
---|
| 256 | |
---|
| 257 | ! Niveau 2 jusqu'au sommet klev |
---|
| 258 | DO k = 2, klev |
---|
| 259 | DO i=1, knon |
---|
| 260 | u_new(i,k) = Ccoef_U(i,k) + Dcoef_U(i,k) * u_new(i,k-1) |
---|
| 261 | v_new(i,k) = Ccoef_V(i,k) + Dcoef_V(i,k) * v_new(i,k-1) |
---|
| 262 | END DO |
---|
| 263 | END DO |
---|
| 264 | |
---|
| 265 | !**************************************************************************************** |
---|
| 266 | ! Calcul flux |
---|
| 267 | ! |
---|
| 268 | !== flux_u/v est le flux de moment angulaire (positif vers bas) |
---|
| 269 | !== dont l'unite est: (kg m/s)/(m**2 s) |
---|
| 270 | ! |
---|
| 271 | !**************************************************************************************** |
---|
| 272 | ! |
---|
| 273 | flx_u_new(:,:) = 0.0 |
---|
| 274 | flx_v_new(:,:) = 0.0 |
---|
| 275 | |
---|
| 276 | flx_u_new(1:knon,1)=flx_u1(1:knon) |
---|
| 277 | flx_v_new(1:knon,1)=flx_v1(1:knon) |
---|
| 278 | |
---|
| 279 | ! Niveau 2->klev |
---|
| 280 | DO k = 2, klev |
---|
| 281 | DO i = 1, knon |
---|
| 282 | flx_u_new(i,k) = Kcoefm(i,k)/RG/dtime * & |
---|
| 283 | (u_new(i,k)-u_new(i,k-1)) |
---|
| 284 | |
---|
| 285 | flx_v_new(i,k) = Kcoefm(i,k)/RG/dtime * & |
---|
| 286 | (v_new(i,k)-v_new(i,k-1)) |
---|
| 287 | END DO |
---|
| 288 | END DO |
---|
| 289 | |
---|
| 290 | !**************************************************************************************** |
---|
| 291 | ! Calcul tendances |
---|
| 292 | ! |
---|
| 293 | !**************************************************************************************** |
---|
| 294 | d_u_new(:,:) = 0.0 |
---|
| 295 | d_v_new(:,:) = 0.0 |
---|
| 296 | DO k = 1, klev |
---|
| 297 | DO i = 1, knon |
---|
| 298 | d_u_new(i,k) = u_new(i,k) - u_old(i,k) |
---|
| 299 | d_v_new(i,k) = v_new(i,k) - v_old(i,k) |
---|
| 300 | END DO |
---|
| 301 | END DO |
---|
| 302 | |
---|
| 303 | END SUBROUTINE climb_wind_up |
---|
| 304 | ! |
---|
| 305 | !**************************************************************************************** |
---|
| 306 | ! |
---|
| 307 | END MODULE climb_wind_mod |
---|