[1] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE advy(limit,dty,pbarv,sm,s0,sx,sy,sz) |
---|
| 5 | IMPLICIT NONE |
---|
| 6 | |
---|
| 7 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 8 | C C |
---|
| 9 | C first-order moments (SOM) advection of tracer in Y direction C |
---|
| 10 | C C |
---|
| 11 | C Source : Pascal Simon ( Meteo, CNRM ) C |
---|
| 12 | C Adaptation : A.A. (LGGE) C |
---|
| 13 | C Derniere Modif : 15/12/94 LAST |
---|
| 14 | C C |
---|
| 15 | C sont les arguments d'entree pour le s-pg C |
---|
| 16 | C C |
---|
| 17 | C argument de sortie du s-pg C |
---|
| 18 | C C |
---|
| 19 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 20 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 21 | C |
---|
| 22 | C Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
| 23 | C Attention au sens de l'indexation |
---|
| 24 | C |
---|
| 25 | C parametres principaux du modele |
---|
| 26 | C |
---|
| 27 | C |
---|
| 28 | #include "dimensions.h" |
---|
| 29 | #include "paramet.h" |
---|
| 30 | #include "comconst.h" |
---|
| 31 | #include "comvert.h" |
---|
| 32 | #include "comgeom2.h" |
---|
| 33 | |
---|
| 34 | C Arguments : |
---|
| 35 | C ---------- |
---|
| 36 | C dty : frequence fictive d'appel du transport |
---|
| 37 | C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
| 38 | |
---|
| 39 | INTEGER lon,lat,niv |
---|
| 40 | INTEGER i,j,jv,k,kp,l |
---|
| 41 | INTEGER ntra |
---|
| 42 | PARAMETER (ntra = 1) |
---|
| 43 | |
---|
| 44 | REAL dty |
---|
| 45 | REAL pbarv ( iip1,jjm, llm ) |
---|
| 46 | |
---|
| 47 | C moments: SM total mass in each grid box |
---|
| 48 | C S0 mass of tracer in each grid box |
---|
| 49 | C Si 1rst order moment in i direction |
---|
| 50 | C |
---|
| 51 | REAL SM(iip1,jjp1,llm) |
---|
| 52 | + ,S0(iip1,jjp1,llm,ntra) |
---|
| 53 | REAL sx(iip1,jjp1,llm,ntra) |
---|
| 54 | + ,sy(iip1,jjp1,llm,ntra) |
---|
| 55 | + ,sz(iip1,jjp1,llm,ntra) |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | C Local : |
---|
| 59 | C ------- |
---|
| 60 | |
---|
| 61 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
| 62 | C mass fluxes in kg |
---|
| 63 | C declaration : |
---|
| 64 | |
---|
| 65 | REAL VGRI(iip1,0:jjp1,llm) |
---|
| 66 | |
---|
| 67 | C Rem : UGRI et WGRI ne sont pas utilises dans |
---|
| 68 | C cette subroutine ( advection en y uniquement ) |
---|
| 69 | C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
| 70 | C |
---|
| 71 | C the moments F are similarly defined and used as temporary |
---|
| 72 | C storage for portions of the grid boxes in transit |
---|
| 73 | C |
---|
| 74 | REAL F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
---|
| 75 | REAL FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
---|
| 76 | REAL FZ(iim,jjm,ntra) |
---|
| 77 | REAL S00(ntra) |
---|
| 78 | REAL SM0 ! Just temporal variable |
---|
| 79 | C |
---|
| 80 | C work arrays |
---|
| 81 | C |
---|
| 82 | REAL ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
---|
| 83 | REAL ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
---|
| 84 | REAL TEMPTM ! Just temporal variable |
---|
| 85 | c |
---|
| 86 | C Special pour poles |
---|
| 87 | c |
---|
| 88 | REAL sbms,sfms,sfzs,sbmn,sfmn,sfzn |
---|
| 89 | REAL sns0(ntra),snsz(ntra),snsm |
---|
| 90 | REAL s1v(llm),slatv(llm) |
---|
| 91 | REAL qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
---|
| 92 | REAL cx1(llm,ntra), cxLAT(llm,ntra) |
---|
| 93 | REAL cy1(llm,ntra), cyLAT(llm,ntra) |
---|
| 94 | REAL z1(iim), zcos(iim), zsin(iim) |
---|
| 95 | real smpn,smps,s0pn,s0ps |
---|
| 96 | REAL SSUM |
---|
| 97 | EXTERNAL SSUM |
---|
| 98 | C |
---|
| 99 | REAL sqi,sqf |
---|
| 100 | LOGICAL LIMIT |
---|
| 101 | |
---|
| 102 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
| 103 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
| 104 | niv=llm |
---|
| 105 | |
---|
| 106 | C |
---|
| 107 | C the moments Fi are used as temporary storage for |
---|
| 108 | C portions of the grid boxes in transit at the current level |
---|
| 109 | C |
---|
| 110 | C work arrays |
---|
| 111 | C |
---|
| 112 | |
---|
| 113 | DO l = 1,llm |
---|
| 114 | DO j = 1,jjm |
---|
| 115 | DO i = 1,iip1 |
---|
| 116 | vgri (i,j,llm+1-l)=-1.*pbarv(i,j,l) |
---|
| 117 | enddo |
---|
| 118 | enddo |
---|
| 119 | do i=1,iip1 |
---|
| 120 | vgri(i,0,l) = 0. |
---|
| 121 | vgri(i,jjp1,l) = 0. |
---|
| 122 | enddo |
---|
| 123 | enddo |
---|
| 124 | |
---|
| 125 | DO 1 L=1,NIV |
---|
| 126 | C |
---|
| 127 | C place limits on appropriate moments before transport |
---|
| 128 | C (if flux-limiting is to be applied) |
---|
| 129 | C |
---|
| 130 | IF(.NOT.LIMIT) GO TO 11 |
---|
| 131 | C |
---|
| 132 | DO 10 JV=1,NTRA |
---|
| 133 | DO 10 K=1,LAT |
---|
| 134 | DO 100 I=1,LON |
---|
| 135 | sy(I,K,L,JV)=SIGN(AMIN1(AMAX1(S0(I,K,L,JV),0.), |
---|
| 136 | + ABS(sy(I,K,L,JV))),sy(I,K,L,JV)) |
---|
| 137 | 100 CONTINUE |
---|
| 138 | 10 CONTINUE |
---|
| 139 | C |
---|
| 140 | 11 CONTINUE |
---|
| 141 | C |
---|
| 142 | C le flux a travers le pole Nord est traite separement |
---|
| 143 | C |
---|
| 144 | SM0=0. |
---|
| 145 | DO 20 JV=1,NTRA |
---|
| 146 | S00(JV)=0. |
---|
| 147 | 20 CONTINUE |
---|
| 148 | C |
---|
| 149 | DO 21 I=1,LON |
---|
| 150 | C |
---|
| 151 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
| 152 | FM(I,0)=-VGRI(I,0,L)*DTY |
---|
| 153 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
| 154 | SM(I,1,L)=SM(I,1,L)-FM(I,0) |
---|
| 155 | SM0=SM0+FM(I,0) |
---|
| 156 | ENDIF |
---|
| 157 | C |
---|
| 158 | ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
---|
| 159 | ALF1(I,0)=1.-ALF(I,0) |
---|
| 160 | ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
---|
| 161 | C |
---|
| 162 | 21 CONTINUE |
---|
| 163 | C |
---|
| 164 | DO 22 JV=1,NTRA |
---|
| 165 | DO 220 I=1,LON |
---|
| 166 | C |
---|
| 167 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
| 168 | C |
---|
| 169 | F0(I,0,JV)=ALF(I,0)* |
---|
| 170 | + ( S0(I,1,L,JV)-ALF1(I,0)*sy(I,1,L,JV) ) |
---|
| 171 | C |
---|
| 172 | S00(JV)=S00(JV)+F0(I,0,JV) |
---|
| 173 | S0(I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
---|
| 174 | sy(I,1,L,JV)=ALF1Q(I,0)*sy(I,1,L,JV) |
---|
| 175 | sx(I,1,L,JV)=ALF1 (I,0)*sx(I,1,L,JV) |
---|
| 176 | sz(I,1,L,JV)=ALF1 (I,0)*sz(I,1,L,JV) |
---|
| 177 | C |
---|
| 178 | ENDIF |
---|
| 179 | C |
---|
| 180 | 220 CONTINUE |
---|
| 181 | 22 CONTINUE |
---|
| 182 | C |
---|
| 183 | DO 23 I=1,LON |
---|
| 184 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 185 | FM(I,0)=VGRI(I,0,L)*DTY |
---|
| 186 | ALF(I,0)=FM(I,0)/SM0 |
---|
| 187 | ENDIF |
---|
| 188 | 23 CONTINUE |
---|
| 189 | C |
---|
| 190 | DO 24 JV=1,NTRA |
---|
| 191 | DO 240 I=1,LON |
---|
| 192 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 193 | F0(I,0,JV)=ALF(I,0)*S00(JV) |
---|
| 194 | ENDIF |
---|
| 195 | 240 CONTINUE |
---|
| 196 | 24 CONTINUE |
---|
| 197 | C |
---|
| 198 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 199 | C |
---|
| 200 | DO 25 I=1,LON |
---|
| 201 | C |
---|
| 202 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 203 | SM(I,1,L)=SM(I,1,L)+FM(I,0) |
---|
| 204 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
| 205 | ENDIF |
---|
| 206 | C |
---|
| 207 | ALF1(I,0)=1.-ALF(I,0) |
---|
| 208 | C |
---|
| 209 | 25 CONTINUE |
---|
| 210 | C |
---|
| 211 | DO 26 JV=1,NTRA |
---|
| 212 | DO 260 I=1,LON |
---|
| 213 | C |
---|
| 214 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 215 | C |
---|
| 216 | TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
---|
| 217 | S0(I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
---|
| 218 | sy(I,1,L,JV)=ALF1(I,0)*sy(I,1,L,JV)+3.*TEMPTM |
---|
| 219 | C |
---|
| 220 | ENDIF |
---|
| 221 | C |
---|
| 222 | 260 CONTINUE |
---|
| 223 | 26 CONTINUE |
---|
| 224 | C |
---|
| 225 | C calculate flux and moments between adjacent boxes |
---|
| 226 | C 1- create temporary moments/masses for partial boxes in transit |
---|
| 227 | C 2- reajusts moments remaining in the box |
---|
| 228 | C |
---|
| 229 | C flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
---|
| 230 | C |
---|
| 231 | DO 30 K=1,LAT-1 |
---|
| 232 | KP=K+1 |
---|
| 233 | DO 300 I=1,LON |
---|
| 234 | C |
---|
| 235 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 236 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
| 237 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
| 238 | SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
---|
| 239 | ELSE |
---|
| 240 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
| 241 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 242 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
| 243 | ENDIF |
---|
| 244 | C |
---|
| 245 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
| 246 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 247 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
| 248 | C |
---|
| 249 | 300 CONTINUE |
---|
| 250 | 30 CONTINUE |
---|
| 251 | C |
---|
| 252 | DO 31 JV=1,NTRA |
---|
| 253 | DO 31 K=1,LAT-1 |
---|
| 254 | KP=K+1 |
---|
| 255 | DO 310 I=1,LON |
---|
| 256 | C |
---|
| 257 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 258 | C |
---|
| 259 | F0(I,K,JV)=ALF (I,K)* |
---|
| 260 | + ( S0(I,KP,L,JV)-ALF1(I,K)*sy(I,KP,L,JV) ) |
---|
| 261 | FY(I,K,JV)=ALFQ(I,K)*sy(I,KP,L,JV) |
---|
| 262 | FX(I,K,JV)=ALF (I,K)*sx(I,KP,L,JV) |
---|
| 263 | FZ(I,K,JV)=ALF (I,K)*sz(I,KP,L,JV) |
---|
| 264 | C |
---|
| 265 | S0(I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
---|
| 266 | sy(I,KP,L,JV)=ALF1Q(I,K)*sy(I,KP,L,JV) |
---|
| 267 | sx(I,KP,L,JV)=sx(I,KP,L,JV)-FX(I,K,JV) |
---|
| 268 | sz(I,KP,L,JV)=sz(I,KP,L,JV)-FZ(I,K,JV) |
---|
| 269 | C |
---|
| 270 | ELSE |
---|
| 271 | C |
---|
| 272 | F0(I,K,JV)=ALF (I,K)* |
---|
| 273 | + ( S0(I,K,L,JV)+ALF1(I,K)*sy(I,K,L,JV) ) |
---|
| 274 | FY(I,K,JV)=ALFQ(I,K)*sy(I,K,L,JV) |
---|
| 275 | FX(I,K,JV)=ALF(I,K)*sx(I,K,L,JV) |
---|
| 276 | FZ(I,K,JV)=ALF(I,K)*sz(I,K,L,JV) |
---|
| 277 | C |
---|
| 278 | S0(I,K,L,JV)=S0(I,K,L,JV)-F0(I,K,JV) |
---|
| 279 | sy(I,K,L,JV)=ALF1Q(I,K)*sy(I,K,L,JV) |
---|
| 280 | sx(I,K,L,JV)=sx(I,K,L,JV)-FX(I,K,JV) |
---|
| 281 | sz(I,K,L,JV)=sz(I,K,L,JV)-FZ(I,K,JV) |
---|
| 282 | C |
---|
| 283 | ENDIF |
---|
| 284 | C |
---|
| 285 | 310 CONTINUE |
---|
| 286 | 31 CONTINUE |
---|
| 287 | C |
---|
| 288 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 289 | C |
---|
| 290 | DO 32 K=1,LAT-1 |
---|
| 291 | KP=K+1 |
---|
| 292 | DO 320 I=1,LON |
---|
| 293 | C |
---|
| 294 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 295 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
| 296 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 297 | ELSE |
---|
| 298 | SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
---|
| 299 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
| 300 | ENDIF |
---|
| 301 | C |
---|
| 302 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 303 | C |
---|
| 304 | 320 CONTINUE |
---|
| 305 | 32 CONTINUE |
---|
| 306 | C |
---|
| 307 | DO 33 JV=1,NTRA |
---|
| 308 | DO 33 K=1,LAT-1 |
---|
| 309 | KP=K+1 |
---|
| 310 | DO 330 I=1,LON |
---|
| 311 | C |
---|
| 312 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 313 | C |
---|
| 314 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
| 315 | S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
| 316 | sy(I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*sy(I,K,L,JV) |
---|
| 317 | + +3.*TEMPTM |
---|
| 318 | sx(I,K,L,JV)=sx(I,K,L,JV)+FX(I,K,JV) |
---|
| 319 | sz(I,K,L,JV)=sz(I,K,L,JV)+FZ(I,K,JV) |
---|
| 320 | C |
---|
| 321 | ELSE |
---|
| 322 | C |
---|
| 323 | TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
---|
| 324 | S0(I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
---|
| 325 | sy(I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*sy(I,KP,L,JV) |
---|
| 326 | + +3.*TEMPTM |
---|
| 327 | sx(I,KP,L,JV)=sx(I,KP,L,JV)+FX(I,K,JV) |
---|
| 328 | sz(I,KP,L,JV)=sz(I,KP,L,JV)+FZ(I,K,JV) |
---|
| 329 | C |
---|
| 330 | ENDIF |
---|
| 331 | C |
---|
| 332 | 330 CONTINUE |
---|
| 333 | 33 CONTINUE |
---|
| 334 | C |
---|
| 335 | C traitement special pour le pole Sud (idem pole Nord) |
---|
| 336 | C |
---|
| 337 | K=LAT |
---|
| 338 | C |
---|
| 339 | SM0=0. |
---|
| 340 | DO 40 JV=1,NTRA |
---|
| 341 | S00(JV)=0. |
---|
| 342 | 40 CONTINUE |
---|
| 343 | C |
---|
| 344 | DO 41 I=1,LON |
---|
| 345 | C |
---|
| 346 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
| 347 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
| 348 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 349 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
| 350 | SM0=SM0+FM(I,K) |
---|
| 351 | ENDIF |
---|
| 352 | C |
---|
| 353 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
| 354 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 355 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
| 356 | C |
---|
| 357 | 41 CONTINUE |
---|
| 358 | C |
---|
| 359 | DO 42 JV=1,NTRA |
---|
| 360 | DO 420 I=1,LON |
---|
| 361 | C |
---|
| 362 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
| 363 | F0 (I,K,JV)=ALF(I,K)* |
---|
| 364 | + ( S0(I,K,L,JV)+ALF1(I,K)*sy(I,K,L,JV) ) |
---|
| 365 | S00(JV)=S00(JV)+F0(I,K,JV) |
---|
| 366 | C |
---|
| 367 | S0(I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
---|
| 368 | sy(I,K,L,JV)=ALF1Q(I,K)*sy(I,K,L,JV) |
---|
| 369 | sx(I,K,L,JV)=ALF1(I,K)*sx(I,K,L,JV) |
---|
| 370 | sz(I,K,L,JV)=ALF1(I,K)*sz(I,K,L,JV) |
---|
| 371 | ENDIF |
---|
| 372 | C |
---|
| 373 | 420 CONTINUE |
---|
| 374 | 42 CONTINUE |
---|
| 375 | C |
---|
| 376 | DO 43 I=1,LON |
---|
| 377 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 378 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
| 379 | ALF(I,K)=FM(I,K)/SM0 |
---|
| 380 | ENDIF |
---|
| 381 | 43 CONTINUE |
---|
| 382 | C |
---|
| 383 | DO 44 JV=1,NTRA |
---|
| 384 | DO 440 I=1,LON |
---|
| 385 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 386 | F0(I,K,JV)=ALF(I,K)*S00(JV) |
---|
| 387 | ENDIF |
---|
| 388 | 440 CONTINUE |
---|
| 389 | 44 CONTINUE |
---|
| 390 | C |
---|
| 391 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 392 | C |
---|
| 393 | DO 45 I=1,LON |
---|
| 394 | C |
---|
| 395 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 396 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
| 397 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 398 | ENDIF |
---|
| 399 | C |
---|
| 400 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 401 | C |
---|
| 402 | 45 CONTINUE |
---|
| 403 | C |
---|
| 404 | DO 46 JV=1,NTRA |
---|
| 405 | DO 460 I=1,LON |
---|
| 406 | C |
---|
| 407 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 408 | C |
---|
| 409 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
| 410 | S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
| 411 | sy(I,K,L,JV)=ALF1(I,K)*sy(I,K,L,JV)+3.*TEMPTM |
---|
| 412 | C |
---|
| 413 | ENDIF |
---|
| 414 | C |
---|
| 415 | 460 CONTINUE |
---|
| 416 | 46 CONTINUE |
---|
| 417 | C |
---|
| 418 | 1 CONTINUE |
---|
| 419 | C |
---|
| 420 | RETURN |
---|
| 421 | END |
---|
| 422 | |
---|