[1] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE ADVZP(LIMIT,DTZ,W,SM,S0,SSX,SY,SZ |
---|
| 5 | . ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
---|
| 6 | |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | |
---|
| 9 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 10 | C C |
---|
| 11 | C second-order moments (SOM) advection of tracer in Z direction C |
---|
| 12 | C C |
---|
| 13 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 14 | C C |
---|
| 15 | C Source : Pascal Simon ( Meteo, CNRM ) C |
---|
| 16 | C Adaptation : A.A. (LGGE) C |
---|
| 17 | C Derniere Modif : 19/11/95 LAST C |
---|
| 18 | C C |
---|
| 19 | C sont les arguments d'entree pour le s-pg C |
---|
| 20 | C C |
---|
| 21 | C argument de sortie du s-pg C |
---|
| 22 | C C |
---|
| 23 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 24 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 25 | C |
---|
| 26 | C Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
| 27 | C Attention au sens de l'indexation |
---|
| 28 | C |
---|
| 29 | |
---|
| 30 | C |
---|
| 31 | C parametres principaux du modele |
---|
| 32 | C |
---|
| 33 | #include "dimensions.h" |
---|
| 34 | #include "paramet.h" |
---|
| 35 | #include "comconst.h" |
---|
| 36 | #include "comvert.h" |
---|
| 37 | #include "comgeom.h" |
---|
| 38 | C |
---|
| 39 | C Arguments : |
---|
| 40 | C ---------- |
---|
| 41 | C dty : frequence fictive d'appel du transport |
---|
| 42 | C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
| 43 | c |
---|
| 44 | INTEGER lon,lat,niv |
---|
| 45 | INTEGER i,j,jv,k,kp,l,lp |
---|
| 46 | INTEGER ntra |
---|
| 47 | c PARAMETER (ntra = 1) |
---|
| 48 | c |
---|
| 49 | REAL dtz |
---|
| 50 | REAL w ( iip1,jjp1,llm ) |
---|
| 51 | c |
---|
| 52 | C moments: SM total mass in each grid box |
---|
| 53 | C S0 mass of tracer in each grid box |
---|
| 54 | C Si 1rst order moment in i direction |
---|
| 55 | C |
---|
| 56 | REAL SM(iip1,jjp1,llm) |
---|
| 57 | + ,S0(iip1,jjp1,llm,ntra) |
---|
| 58 | REAL SSX(iip1,jjp1,llm,ntra) |
---|
| 59 | + ,SY(iip1,jjp1,llm,ntra) |
---|
| 60 | + ,SZ(iip1,jjp1,llm,ntra) |
---|
| 61 | + ,SSXX(iip1,jjp1,llm,ntra) |
---|
| 62 | + ,SSXY(iip1,jjp1,llm,ntra) |
---|
| 63 | + ,SSXZ(iip1,jjp1,llm,ntra) |
---|
| 64 | + ,SYY(iip1,jjp1,llm,ntra) |
---|
| 65 | + ,SYZ(iip1,jjp1,llm,ntra) |
---|
| 66 | + ,SZZ(iip1,jjp1,llm,ntra) |
---|
| 67 | C |
---|
| 68 | C Local : |
---|
| 69 | C ------- |
---|
| 70 | C |
---|
| 71 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
| 72 | C mass fluxes in kg |
---|
| 73 | C declaration : |
---|
| 74 | C |
---|
| 75 | REAL WGRI(iip1,jjp1,0:llm) |
---|
| 76 | |
---|
| 77 | C Rem : UGRI et VGRI ne sont pas utilises dans |
---|
| 78 | C cette subroutine ( advection en z uniquement ) |
---|
| 79 | C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
| 80 | C attention a celui de WGRI |
---|
| 81 | C |
---|
| 82 | C the moments F are similarly defined and used as temporary |
---|
| 83 | C storage for portions of the grid boxes in transit |
---|
| 84 | C |
---|
| 85 | C the moments Fij are used as temporary storage for |
---|
| 86 | C portions of the grid boxes in transit at the current level |
---|
| 87 | C |
---|
| 88 | C work arrays |
---|
| 89 | C |
---|
| 90 | C |
---|
| 91 | REAL F0(iim,llm,ntra),FM(iim,llm) |
---|
| 92 | REAL FX(iim,llm,ntra),FY(iim,llm,ntra) |
---|
| 93 | REAL FZ(iim,llm,ntra) |
---|
| 94 | REAL FXX(iim,llm,ntra),FXY(iim,llm,ntra) |
---|
| 95 | REAL FXZ(iim,llm,ntra),FYY(iim,llm,ntra) |
---|
| 96 | REAL FYZ(iim,llm,ntra),FZZ(iim,llm,ntra) |
---|
| 97 | REAL S00(ntra) |
---|
| 98 | REAL SM0 ! Just temporal variable |
---|
| 99 | C |
---|
| 100 | C work arrays |
---|
| 101 | C |
---|
| 102 | REAL ALF(iim),ALF1(iim) |
---|
| 103 | REAL ALFQ(iim),ALF1Q(iim) |
---|
| 104 | REAL ALF2(iim),ALF3(iim) |
---|
| 105 | REAL ALF4(iim) |
---|
| 106 | REAL TEMPTM ! Just temporal variable |
---|
| 107 | REAL SLPMAX,S1MAX,S1NEW,S2NEW |
---|
| 108 | c |
---|
| 109 | REAL sqi,sqf |
---|
| 110 | LOGICAL LIMIT |
---|
| 111 | |
---|
| 112 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
| 113 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
| 114 | niv = llm ! tab. S et VGRI |
---|
| 115 | |
---|
| 116 | c----------------------------------------------------------------- |
---|
| 117 | C *** Test : diag de la qtite totale de traceur dans |
---|
| 118 | C l'atmosphere avant l'advection en Y |
---|
| 119 | c |
---|
| 120 | sqi = 0. |
---|
| 121 | sqf = 0. |
---|
| 122 | c |
---|
| 123 | DO l = 1,llm |
---|
| 124 | DO j = 1,jjp1 |
---|
| 125 | DO i = 1,iim |
---|
| 126 | sqi = sqi + S0(i,j,l,ntra) |
---|
| 127 | END DO |
---|
| 128 | END DO |
---|
| 129 | END DO |
---|
| 130 | PRINT*,'---------- DIAG DANS ADVZP - ENTREE --------' |
---|
| 131 | PRINT*,'sqi=',sqi |
---|
| 132 | |
---|
| 133 | c----------------------------------------------------------------- |
---|
| 134 | C Interface : adaptation nouveau modele |
---|
| 135 | C ------------------------------------- |
---|
| 136 | C |
---|
| 137 | C Conversion des flux de masses en kg |
---|
| 138 | |
---|
| 139 | DO 500 l = 1,llm |
---|
| 140 | DO 500 j = 1,jjp1 |
---|
| 141 | DO 500 i = 1,iip1 |
---|
| 142 | wgri (i,j,llm+1-l) = w (i,j,l) |
---|
| 143 | 500 CONTINUE |
---|
| 144 | do j=1,jjp1 |
---|
| 145 | do i=1,iip1 |
---|
| 146 | wgri(i,j,0)=0. |
---|
| 147 | enddo |
---|
| 148 | enddo |
---|
| 149 | c |
---|
| 150 | cAA rem : Je ne suis pas sur du signe |
---|
| 151 | cAA Je ne suis pas sur pour le 0:llm |
---|
| 152 | c |
---|
| 153 | c----------------------------------------------------------------- |
---|
| 154 | C---------------------- START HERE ------------------------------- |
---|
| 155 | C |
---|
| 156 | C boucle sur les latitudes |
---|
| 157 | C |
---|
| 158 | DO 1 K=1,LAT |
---|
| 159 | C |
---|
| 160 | C place limits on appropriate moments before transport |
---|
| 161 | C (if flux-limiting is to be applied) |
---|
| 162 | C |
---|
| 163 | IF(.NOT.LIMIT) GO TO 101 |
---|
| 164 | C |
---|
| 165 | DO 10 JV=1,NTRA |
---|
| 166 | DO 10 L=1,NIV |
---|
| 167 | DO 100 I=1,LON |
---|
| 168 | IF(S0(I,K,L,JV).GT.0.) THEN |
---|
| 169 | SLPMAX=S0(I,K,L,JV) |
---|
| 170 | S1MAX =1.5*SLPMAX |
---|
| 171 | S1NEW =AMIN1(S1MAX,AMAX1(-S1MAX,SZ(I,K,L,JV))) |
---|
| 172 | S2NEW =AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , |
---|
| 173 | + AMAX1(ABS(S1NEW)-SLPMAX,SZZ(I,K,L,JV)) ) |
---|
| 174 | SZ (I,K,L,JV)=S1NEW |
---|
| 175 | SZZ(I,K,L,JV)=S2NEW |
---|
| 176 | SSXZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXZ(I,K,L,JV))) |
---|
| 177 | SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
---|
| 178 | ELSE |
---|
| 179 | SZ (I,K,L,JV)=0. |
---|
| 180 | SZZ(I,K,L,JV)=0. |
---|
| 181 | SSXZ(I,K,L,JV)=0. |
---|
| 182 | SYZ(I,K,L,JV)=0. |
---|
| 183 | ENDIF |
---|
| 184 | 100 CONTINUE |
---|
| 185 | 10 CONTINUE |
---|
| 186 | C |
---|
| 187 | 101 CONTINUE |
---|
| 188 | C |
---|
| 189 | C boucle sur les niveaux intercouches de 1 a NIV-1 |
---|
| 190 | C (flux nul au sommet L=0 et a la base L=NIV) |
---|
| 191 | C |
---|
| 192 | C calculate flux and moments between adjacent boxes |
---|
| 193 | C (flux from LP to L if WGRI(L).lt.0, from L to LP if WGRI(L).gt.0) |
---|
| 194 | C 1- create temporary moments/masses for partial boxes in transit |
---|
| 195 | C 2- reajusts moments remaining in the box |
---|
| 196 | C |
---|
| 197 | DO 11 L=1,NIV-1 |
---|
| 198 | LP=L+1 |
---|
| 199 | C |
---|
| 200 | DO 110 I=1,LON |
---|
| 201 | C |
---|
| 202 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 203 | FM(I,L)=-WGRI(I,K,L)*DTZ |
---|
| 204 | ALF(I)=FM(I,L)/SM(I,K,LP) |
---|
| 205 | SM(I,K,LP)=SM(I,K,LP)-FM(I,L) |
---|
| 206 | ELSE |
---|
| 207 | FM(I,L)=WGRI(I,K,L)*DTZ |
---|
| 208 | ALF(I)=FM(I,L)/SM(I,K,L) |
---|
| 209 | SM(I,K,L)=SM(I,K,L)-FM(I,L) |
---|
| 210 | ENDIF |
---|
| 211 | C |
---|
| 212 | ALFQ (I)=ALF(I)*ALF(I) |
---|
| 213 | ALF1 (I)=1.-ALF(I) |
---|
| 214 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
| 215 | ALF2 (I)=ALF1(I)-ALF(I) |
---|
| 216 | ALF3 (I)=ALF(I)*ALFQ(I) |
---|
| 217 | ALF4 (I)=ALF1(I)*ALF1Q(I) |
---|
| 218 | C |
---|
| 219 | 110 CONTINUE |
---|
| 220 | C |
---|
| 221 | DO 111 JV=1,NTRA |
---|
| 222 | DO 1110 I=1,LON |
---|
| 223 | C |
---|
| 224 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 225 | C |
---|
| 226 | F0 (I,L,JV)=ALF (I)* ( S0(I,K,LP,JV)-ALF1(I)* |
---|
| 227 | + ( SZ(I,K,LP,JV)-ALF2(I)*SZZ(I,K,LP,JV) ) ) |
---|
| 228 | FZ (I,L,JV)=ALFQ(I)*(SZ(I,K,LP,JV)-3.*ALF1(I)*SZZ(I,K,LP,JV)) |
---|
| 229 | FZZ(I,L,JV)=ALF3(I)*SZZ(I,K,LP,JV) |
---|
| 230 | FXZ(I,L,JV)=ALFQ(I)*SSXZ(I,K,LP,JV) |
---|
| 231 | FYZ(I,L,JV)=ALFQ(I)*SYZ(I,K,LP,JV) |
---|
| 232 | FX (I,L,JV)=ALF (I)*(SSX(I,K,LP,JV)-ALF1(I)*SSXZ(I,K,LP,JV)) |
---|
| 233 | FY (I,L,JV)=ALF (I)*(SY(I,K,LP,JV)-ALF1(I)*SYZ(I,K,LP,JV)) |
---|
| 234 | FXX(I,L,JV)=ALF (I)*SSXX(I,K,LP,JV) |
---|
| 235 | FXY(I,L,JV)=ALF (I)*SSXY(I,K,LP,JV) |
---|
| 236 | FYY(I,L,JV)=ALF (I)*SYY(I,K,LP,JV) |
---|
| 237 | C |
---|
| 238 | S0 (I,K,LP,JV)=S0 (I,K,LP,JV)-F0 (I,L,JV) |
---|
| 239 | SZ (I,K,LP,JV)=ALF1Q(I) |
---|
| 240 | + *(SZ(I,K,LP,JV)+3.*ALF(I)*SZZ(I,K,LP,JV)) |
---|
| 241 | SZZ(I,K,LP,JV)=ALF4 (I)*SZZ(I,K,LP,JV) |
---|
| 242 | SSXZ(I,K,LP,JV)=ALF1Q(I)*SSXZ(I,K,LP,JV) |
---|
| 243 | SYZ(I,K,LP,JV)=ALF1Q(I)*SYZ(I,K,LP,JV) |
---|
| 244 | SSX (I,K,LP,JV)=SSX (I,K,LP,JV)-FX (I,L,JV) |
---|
| 245 | SY (I,K,LP,JV)=SY (I,K,LP,JV)-FY (I,L,JV) |
---|
| 246 | SSXX(I,K,LP,JV)=SSXX(I,K,LP,JV)-FXX(I,L,JV) |
---|
| 247 | SSXY(I,K,LP,JV)=SSXY(I,K,LP,JV)-FXY(I,L,JV) |
---|
| 248 | SYY(I,K,LP,JV)=SYY(I,K,LP,JV)-FYY(I,L,JV) |
---|
| 249 | C |
---|
| 250 | ELSE |
---|
| 251 | C |
---|
| 252 | F0 (I,L,JV)=ALF (I)*(S0(I,K,L,JV) |
---|
| 253 | + +ALF1(I) * (SZ(I,K,L,JV)+ALF2(I)*SZZ(I,K,L,JV)) ) |
---|
| 254 | FZ (I,L,JV)=ALFQ(I)*(SZ(I,K,L,JV)+3.*ALF1(I)*SZZ(I,K,L,JV)) |
---|
| 255 | FZZ(I,L,JV)=ALF3(I)*SZZ(I,K,L,JV) |
---|
| 256 | FXZ(I,L,JV)=ALFQ(I)*SSXZ(I,K,L,JV) |
---|
| 257 | FYZ(I,L,JV)=ALFQ(I)*SYZ(I,K,L,JV) |
---|
| 258 | FX (I,L,JV)=ALF (I)*(SSX(I,K,L,JV)+ALF1(I)*SSXZ(I,K,L,JV)) |
---|
| 259 | FY (I,L,JV)=ALF (I)*(SY(I,K,L,JV)+ALF1(I)*SYZ(I,K,L,JV)) |
---|
| 260 | FXX(I,L,JV)=ALF (I)*SSXX(I,K,L,JV) |
---|
| 261 | FXY(I,L,JV)=ALF (I)*SSXY(I,K,L,JV) |
---|
| 262 | FYY(I,L,JV)=ALF (I)*SYY(I,K,L,JV) |
---|
| 263 | C |
---|
| 264 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0(I,L,JV) |
---|
| 265 | SZ (I,K,L,JV)=ALF1Q(I)*(SZ(I,K,L,JV)-3.*ALF(I)*SZZ(I,K,L,JV)) |
---|
| 266 | SZZ(I,K,L,JV)=ALF4 (I)*SZZ(I,K,L,JV) |
---|
| 267 | SSXZ(I,K,L,JV)=ALF1Q(I)*SSXZ(I,K,L,JV) |
---|
| 268 | SYZ(I,K,L,JV)=ALF1Q(I)*SYZ(I,K,L,JV) |
---|
| 269 | SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,L,JV) |
---|
| 270 | SY (I,K,L,JV)=SY (I,K,L,JV)-FY (I,L,JV) |
---|
| 271 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,L,JV) |
---|
| 272 | SSXY(I,K,L,JV)=SSXY(I,K,L,JV)-FXY(I,L,JV) |
---|
| 273 | SYY(I,K,L,JV)=SYY(I,K,L,JV)-FYY(I,L,JV) |
---|
| 274 | C |
---|
| 275 | ENDIF |
---|
| 276 | C |
---|
| 277 | 1110 CONTINUE |
---|
| 278 | 111 CONTINUE |
---|
| 279 | C |
---|
| 280 | 11 CONTINUE |
---|
| 281 | C |
---|
| 282 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 283 | C |
---|
| 284 | DO 12 L=1,NIV-1 |
---|
| 285 | LP=L+1 |
---|
| 286 | C |
---|
| 287 | DO 120 I=1,LON |
---|
| 288 | C |
---|
| 289 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 290 | SM(I,K,L)=SM(I,K,L)+FM(I,L) |
---|
| 291 | ALF(I)=FM(I,L)/SM(I,K,L) |
---|
| 292 | ELSE |
---|
| 293 | SM(I,K,LP)=SM(I,K,LP)+FM(I,L) |
---|
| 294 | ALF(I)=FM(I,L)/SM(I,K,LP) |
---|
| 295 | ENDIF |
---|
| 296 | C |
---|
| 297 | ALF1(I)=1.-ALF(I) |
---|
| 298 | ALFQ(I)=ALF(I)*ALF(I) |
---|
| 299 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
| 300 | ALF2(I)=ALF(I)*ALF1(I) |
---|
| 301 | ALF3(I)=ALF1(I)-ALF(I) |
---|
| 302 | C |
---|
| 303 | 120 CONTINUE |
---|
| 304 | C |
---|
| 305 | DO 121 JV=1,NTRA |
---|
| 306 | DO 1210 I=1,LON |
---|
| 307 | C |
---|
| 308 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 309 | C |
---|
| 310 | TEMPTM=-ALF(I)*S0(I,K,L,JV)+ALF1(I)*F0(I,L,JV) |
---|
| 311 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,L,JV) |
---|
| 312 | SZZ(I,K,L,JV)=ALFQ(I)*FZZ(I,L,JV)+ALF1Q(I)*SZZ(I,K,L,JV) |
---|
| 313 | + +5.*( ALF2(I)*(FZ(I,L,JV)-SZ(I,K,L,JV))+ALF3(I)*TEMPTM ) |
---|
| 314 | SZ (I,K,L,JV)=ALF (I)*FZ (I,L,JV)+ALF1 (I)*SZ (I,K,L,JV) |
---|
| 315 | + +3.*TEMPTM |
---|
| 316 | SSXZ(I,K,L,JV)=ALF (I)*FXZ(I,L,JV)+ALF1 (I)*SSXZ(I,K,L,JV) |
---|
| 317 | + +3.*(ALF1(I)*FX (I,L,JV)-ALF (I)*SSX (I,K,L,JV)) |
---|
| 318 | SYZ(I,K,L,JV)=ALF (I)*FYZ(I,L,JV)+ALF1 (I)*SYZ(I,K,L,JV) |
---|
| 319 | + +3.*(ALF1(I)*FY (I,L,JV)-ALF (I)*SY (I,K,L,JV)) |
---|
| 320 | SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,L,JV) |
---|
| 321 | SY (I,K,L,JV)=SY (I,K,L,JV)+FY (I,L,JV) |
---|
| 322 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,L,JV) |
---|
| 323 | SSXY(I,K,L,JV)=SSXY(I,K,L,JV)+FXY(I,L,JV) |
---|
| 324 | SYY(I,K,L,JV)=SYY(I,K,L,JV)+FYY(I,L,JV) |
---|
| 325 | C |
---|
| 326 | ELSE |
---|
| 327 | C |
---|
| 328 | TEMPTM=ALF(I)*S0(I,K,LP,JV)-ALF1(I)*F0(I,L,JV) |
---|
| 329 | S0 (I,K,LP,JV)=S0(I,K,LP,JV)+F0(I,L,JV) |
---|
| 330 | SZZ(I,K,LP,JV)=ALFQ(I)*FZZ(I,L,JV)+ALF1Q(I)*SZZ(I,K,LP,JV) |
---|
| 331 | + +5.*( ALF2(I)*(SZ(I,K,LP,JV)-FZ(I,L,JV))-ALF3(I)*TEMPTM ) |
---|
| 332 | SZ (I,K,LP,JV)=ALF (I)*FZ(I,L,JV)+ALF1(I)*SZ(I,K,LP,JV) |
---|
| 333 | + +3.*TEMPTM |
---|
| 334 | SSXZ(I,K,LP,JV)=ALF(I)*FXZ(I,L,JV)+ALF1(I)*SSXZ(I,K,LP,JV) |
---|
| 335 | + +3.*(ALF(I)*SSX(I,K,LP,JV)-ALF1(I)*FX(I,L,JV)) |
---|
| 336 | SYZ(I,K,LP,JV)=ALF(I)*FYZ(I,L,JV)+ALF1(I)*SYZ(I,K,LP,JV) |
---|
| 337 | + +3.*(ALF(I)*SY(I,K,LP,JV)-ALF1(I)*FY(I,L,JV)) |
---|
| 338 | SSX (I,K,LP,JV)=SSX (I,K,LP,JV)+FX (I,L,JV) |
---|
| 339 | SY (I,K,LP,JV)=SY (I,K,LP,JV)+FY (I,L,JV) |
---|
| 340 | SSXX(I,K,LP,JV)=SSXX(I,K,LP,JV)+FXX(I,L,JV) |
---|
| 341 | SSXY(I,K,LP,JV)=SSXY(I,K,LP,JV)+FXY(I,L,JV) |
---|
| 342 | SYY(I,K,LP,JV)=SYY(I,K,LP,JV)+FYY(I,L,JV) |
---|
| 343 | C |
---|
| 344 | ENDIF |
---|
| 345 | C |
---|
| 346 | 1210 CONTINUE |
---|
| 347 | 121 CONTINUE |
---|
| 348 | C |
---|
| 349 | 12 CONTINUE |
---|
| 350 | C |
---|
| 351 | C fin de la boucle principale sur les latitudes |
---|
| 352 | C |
---|
| 353 | 1 CONTINUE |
---|
| 354 | C |
---|
| 355 | DO l = 1,llm |
---|
| 356 | DO j = 1,jjp1 |
---|
| 357 | SM(iip1,j,l) = SM(1,j,l) |
---|
| 358 | S0(iip1,j,l,ntra) = S0(1,j,l,ntra) |
---|
| 359 | SSX(iip1,j,l,ntra) = SSX(1,j,l,ntra) |
---|
| 360 | SY(iip1,j,l,ntra) = SY(1,j,l,ntra) |
---|
| 361 | SZ(iip1,j,l,ntra) = SZ(1,j,l,ntra) |
---|
| 362 | ENDDO |
---|
| 363 | ENDDO |
---|
| 364 | c C------------------------------------------------------------- |
---|
| 365 | C *** Test : diag de la qqtite totale de tarceur |
---|
| 366 | C dans l'atmosphere avant l'advection en z |
---|
| 367 | DO l = 1,llm |
---|
| 368 | DO j = 1,jjp1 |
---|
| 369 | DO i = 1,iim |
---|
| 370 | sqf = sqf + S0(i,j,l,ntra) |
---|
| 371 | ENDDO |
---|
| 372 | ENDDO |
---|
| 373 | ENDDO |
---|
| 374 | PRINT*,'-------- DIAG DANS ADVZ - SORTIE ---------' |
---|
| 375 | PRINT*,'sqf=', sqf |
---|
| 376 | |
---|
| 377 | RETURN |
---|
| 378 | END |
---|