[3] | 1 | /* gptitan: photochimie */ |
---|
| 2 | /* GCCM */ |
---|
| 3 | |
---|
| 4 | /* tout est passe en simple precision */ |
---|
| 5 | /* sauf pour l'inversion de la matrice */ |
---|
| 6 | |
---|
| 7 | /* nitriles et hydrocarbures separes pour l'inversion */ |
---|
| 8 | |
---|
| 9 | /* flux variable au sommet */ |
---|
| 10 | |
---|
| 11 | #include "titan.h" |
---|
| 12 | |
---|
| 13 | void gptitan_(const int *NLAT, |
---|
| 14 | double *RA, double *TEMP, double *NB, |
---|
| 15 | char CORPS[][10], double Y[][NLEV], double *FTOP, |
---|
| 16 | double *DECLIN, double *FIN, int *LAT, double *MASS, |
---|
| 17 | double *botCH4, |
---|
| 18 | double KRPD[][NLEV][RDISS+1][15], double KRATE[][NLEV], |
---|
| 19 | int reactif[][5], int *nom_prod, int *nom_perte, |
---|
| 20 | int prod[][200], int perte[][200][2], int *aerprod, int *utilaer, |
---|
| 21 | double MAER[][NLEV], double PRODAER[][NLEV], |
---|
| 22 | double CSN[][NLEV], double CSH[][NLEV], |
---|
| 23 | int *htoh2, double *surfhaze) |
---|
| 24 | { |
---|
| 25 | char outlog[100],corps[100][10]; |
---|
| 26 | int dec,declinint,i,j,k,l; |
---|
| 27 | int ireac,ncom1,ncom2; |
---|
| 28 | double *fl,*fp,*mu,**jac,*ym1; |
---|
| 29 | double *fluxtop,fluxCH4; |
---|
| 30 | double cm,conv,cp,delta,deltamax,dv,dr,drp,drm; |
---|
| 31 | double rr,np,nm,factdec,s,test,time,ts,v; |
---|
| 32 | double *fd,**jacd; |
---|
| 33 | char str2[15]; |
---|
| 34 | FILE *out; |
---|
| 35 | |
---|
| 36 | /* va avec htoh2 */ |
---|
| 37 | double dyh,dyh2; |
---|
| 38 | |
---|
| 39 | /* va avec aer */ |
---|
| 40 | double dyc2h2,dyhc3n,dyhcn,dynccn,dych3cn,dyc2h3cn; |
---|
| 41 | double **k_dep,**faer; |
---|
| 42 | double *productaer,*csurn,*csurh,*mmolaer; |
---|
| 43 | |
---|
| 44 | if( (*aerprod) == 1 ) |
---|
| 45 | { |
---|
| 46 | k_dep = dm2d( 1, 5, 1, 3 ); /* k en s-1, reactions d'initiation */ |
---|
| 47 | faer = dm2d( 1, 5, 1, 3 ); /* fraction de chaque compose */ |
---|
| 48 | productaer = dm1d( 0, 3 ); /* local production rate by pathways */ |
---|
| 49 | mmolaer = dm1d( 0, 3 ); /* local molar mass by pathways */ |
---|
| 50 | csurn = dm1d( 0, 3 ); /* local C/N by pathways */ |
---|
| 51 | csurh = dm1d( 0, 3 ); /* local C/H by pathways */ |
---|
| 52 | } |
---|
| 53 | |
---|
| 54 | /* DEBUG */ |
---|
| 55 | printf("CHIMIE: lat=%d declin=%e\n",(*LAT)+1,(*DECLIN)); |
---|
| 56 | /**/ |
---|
| 57 | |
---|
| 58 | for( i = 0; i <= NC; i++) |
---|
| 59 | { |
---|
| 60 | strcpy( corps[i], CORPS[i] ); |
---|
| 61 | corps[i][strcspn(CORPS[i], " ")] = '\0'; |
---|
| 62 | } |
---|
| 63 | |
---|
| 64 | strcpy( outlog, "chimietitan" ); |
---|
| 65 | strcat( outlog, ".log" ); |
---|
| 66 | deltamax = 1.e5; |
---|
| 67 | |
---|
| 68 | /* DEBUG |
---|
| 69 | out = fopen( outlog, "a" ); |
---|
| 70 | fprintf(out,"CHIMIE: lat=%d declin=%e\n",(*LAT)+1,(*DECLIN)); |
---|
| 71 | fclose( out ); |
---|
| 72 | */ |
---|
| 73 | ym1 = dm1d( 0, NC-1 ); |
---|
| 74 | fl = dm1d( 0, NC-1 ); |
---|
| 75 | fp = dm1d( 0, NC-1 ); |
---|
| 76 | fd = dm1d( 0, NC-1 ); |
---|
| 77 | mu = dm1d( 0, NLEV-1 ); |
---|
| 78 | fluxtop = dm1d( 0, NC-1 ); |
---|
| 79 | jac = dm2d( 0, NC-1, 0, NC-1 ); |
---|
| 80 | jacd = dm2d( 0, NC-1, 0, NC-1 ); |
---|
| 81 | |
---|
| 82 | /* DEBUG */ |
---|
| 83 | /* |
---|
| 84 | out = fopen( "err.log", "a" ); |
---|
| 85 | fprintf( out,"%s\n", ); |
---|
| 86 | fclose( out ); |
---|
| 87 | */ |
---|
| 88 | |
---|
| 89 | /* initialisation krate pour dissociations */ |
---|
| 90 | |
---|
| 91 | if( ( (*DECLIN) *10 + 267 ) < 14. ) |
---|
| 92 | { |
---|
| 93 | declinint = 0; |
---|
| 94 | dec = 0; |
---|
| 95 | } |
---|
| 96 | else |
---|
| 97 | { |
---|
| 98 | if( ( (*DECLIN) * 10 + 267 ) > 520. ) |
---|
| 99 | { |
---|
| 100 | declinint = 14; |
---|
| 101 | dec = 534; |
---|
| 102 | } |
---|
| 103 | else |
---|
| 104 | { |
---|
| 105 | declinint = 1; |
---|
| 106 | dec = 27; |
---|
| 107 | while( ( (*DECLIN) * 10 + 267 ) >= (float)(dec+20) ) |
---|
| 108 | { |
---|
| 109 | dec += 40; |
---|
| 110 | declinint++; |
---|
| 111 | } |
---|
| 112 | } |
---|
| 113 | } |
---|
| 114 | if( ( (*DECLIN) >= -24. ) && ( (*DECLIN) <= 24. ) ) |
---|
| 115 | factdec = ( (*DECLIN) - (dec-267)/10. ) / 4.; |
---|
| 116 | else |
---|
| 117 | factdec = ( (*DECLIN) - (dec-267)/10. ) / 2.7; |
---|
| 118 | |
---|
| 119 | for( i = 0; i <= RDISS; i++ ) /* RDISS correspond a la dissociation de N2 par les GCR */ |
---|
| 120 | for( j = 0; j <= NLEV-1; j++ ) |
---|
| 121 | { |
---|
| 122 | if( factdec < 0. ) KRATE[i][j] = KRPD[*LAT][j][i][declinint-1] * fabs(factdec) |
---|
| 123 | + KRPD[*LAT][j][i][declinint] * ( 1 + factdec); |
---|
| 124 | if( factdec > 0. ) KRATE[i][j] = KRPD[*LAT][j][i][declinint+1] * factdec |
---|
| 125 | + KRPD[*LAT][j][i][declinint] * ( 1 - factdec); |
---|
| 126 | if( factdec == 0. ) KRATE[i][j] = KRPD[*LAT][j][i][declinint]; |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /* initialisation mu, CH4 au sol */ |
---|
| 130 | |
---|
| 131 | for( j = 0; j <= NLEV-1; j++ ) |
---|
| 132 | { |
---|
| 133 | mu[j] = 0.0e0; |
---|
| 134 | for( i = 0; i <= ST-1; i++ ) |
---|
| 135 | { |
---|
| 136 | if( ( strcmp(corps[i], "CH4") == 0 ) && ( Y[i][j] <= *botCH4 ) && ( j == 0 ) ) |
---|
| 137 | { |
---|
| 138 | fluxCH4 = (*botCH4 - Y[i][j]); |
---|
| 139 | Y[i][j] = *botCH4; |
---|
| 140 | } |
---|
| 141 | mu[j] += ( MASS[i] * Y[i][j] ); |
---|
| 142 | } |
---|
| 143 | } |
---|
| 144 | |
---|
| 145 | /* ****************** */ |
---|
| 146 | /* Main loop: level */ |
---|
| 147 | /* ****************** */ |
---|
| 148 | |
---|
| 149 | for( j = NLEV-1; j >= 0; j-- ) |
---|
| 150 | { |
---|
| 151 | |
---|
| 152 | /* DEBUG |
---|
| 153 | out = fopen( outlog, "a" ); |
---|
| 154 | fprintf(out,"j=%d z=%e nb=%e T=%e\n",j,(RA[j]-R0),NB[j],TEMP[j]); |
---|
| 155 | fclose( out ); |
---|
| 156 | |
---|
| 157 | out = fopen( "profils.log", "a" ); |
---|
| 158 | fprintf(out,"%d %e %e %e\n",j,(RA[j]-R0),NB[j],TEMP[j]); |
---|
| 159 | for (i=0;i<=NREAC-1;i++) fprintf(out,"%d %e\n",i,KRATE[i][j]); |
---|
| 160 | for (i=0;i<=ST-1;i++) fprintf(out,"%10s %e\n",corps[i],Y[i][j]); |
---|
| 161 | fclose( out ); |
---|
| 162 | |
---|
| 163 | printf("%d %e %e %e\n",declinint,(RA[j]-R0),NB[j],TEMP[j]); |
---|
| 164 | for (i=0;i<=RDISS-1;i++) printf("%d %e\n",i,KRPD[*LAT][j][i][declinint]); |
---|
| 165 | for (i=0;i<=ST-1;i++) printf("%10s %e\n",corps[i],FTOP[i]); |
---|
| 166 | |
---|
| 167 | exit(0); |
---|
| 168 | */ |
---|
| 169 | |
---|
| 170 | time = ts = 0.0e0; |
---|
| 171 | /* delta = (*FIN); */ |
---|
| 172 | delta = 1.e-3; |
---|
| 173 | |
---|
| 174 | for( i = 0; i <= ST-1; i++ ) ym1[i] = max(Y[i][j],1.e-30); |
---|
| 175 | |
---|
| 176 | /* ++++++++++++ */ |
---|
| 177 | /* time loop. */ |
---|
| 178 | /* ++++++++++++ */ |
---|
| 179 | |
---|
| 180 | while( time < (*FIN) ) |
---|
| 181 | { |
---|
| 182 | |
---|
| 183 | /* Calcul de f et de la matrice jacobienne */ |
---|
| 184 | /* --------------------------------------- */ |
---|
| 185 | |
---|
| 186 | for( i = 0; i <= ST-1; i++ ) /* productions et pertes chimiques */ |
---|
| 187 | { |
---|
| 188 | Y[i][j] = max(Y[i][j],1.e-30); /* minimum */ |
---|
| 189 | |
---|
| 190 | fp[i] = fl[i] = 0.0e0; /* init for next step */ |
---|
| 191 | for( l = 0; l <= ST-1; l++ ) jac[i][l] = 0.0e0; |
---|
| 192 | |
---|
| 193 | for( l = 0; l <= nom_prod[i]-1; l++ ) /* Production term */ |
---|
| 194 | { |
---|
| 195 | ireac = prod[i][l]; /* Number of the reaction involves. */ |
---|
| 196 | ncom1 = reactif[ireac][0]; /* First compound which reacts. */ |
---|
| 197 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
| 198 | { |
---|
| 199 | jac[i][ncom1] += ( KRATE[ireac][j] * NB[j] ); |
---|
| 200 | fp[i] += ( KRATE[ireac][j] * NB[j] * Y[ncom1][j] ); |
---|
| 201 | } |
---|
| 202 | else /* General case. */ |
---|
| 203 | { |
---|
| 204 | ncom2 = reactif[ireac][1]; /* Second compound which reacts. */ |
---|
| 205 | jac[i][ncom1] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobian compound #1. */ |
---|
| 206 | jac[i][ncom2] += ( KRATE[ireac][j] * Y[ncom1][j] ); /* Jacobian compound #2. */ |
---|
| 207 | fp[i] += ( KRATE[ireac][j] * Y[ncom1][j] * Y[ncom2][j] ); /* Production term. */ |
---|
| 208 | } |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | for( l = 0; l <= nom_perte[i]-1; l++ ) /* Loss term. */ |
---|
| 212 | { |
---|
| 213 | ireac = perte[i][l][0]; /* Reaction number. */ |
---|
| 214 | ncom2 = perte[i][l][1]; /* Compound #2 reacts. */ |
---|
| 215 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
| 216 | { |
---|
| 217 | jac[i][i] -= ( KRATE[ireac][j] * NB[j] ); |
---|
| 218 | fl[i] += ( KRATE[ireac][j] * NB[j] ); |
---|
| 219 | } |
---|
| 220 | else /* General case. */ |
---|
| 221 | { |
---|
| 222 | jac[i][ncom2] -= ( KRATE[ireac][j] * Y[i][j] ); /* Jacobian compound #1. */ |
---|
| 223 | jac[i][i] -= ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobien compound #2. */ |
---|
| 224 | fl[i] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Loss term. */ |
---|
| 225 | } |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | /* Aerosols */ |
---|
| 230 | /* -------- */ |
---|
| 231 | if( (*aerprod) == 1 ) |
---|
| 232 | { |
---|
| 233 | aer(corps,TEMP,NB,Y,&j,k_dep,faer, |
---|
| 234 | &dyc2h2,&dyhc3n,&dyhcn,&dynccn,&dych3cn,&dyc2h3cn,utilaer, |
---|
| 235 | mmolaer,productaer,csurn,csurh); |
---|
| 236 | |
---|
| 237 | for( i = 0; i <= 3; i++ ) |
---|
| 238 | { |
---|
| 239 | PRODAER[i][j] = productaer[i]; |
---|
| 240 | MAER[i][j] = mmolaer[i]; |
---|
| 241 | CSN[i][j] = csurn[i]; |
---|
| 242 | CSH[i][j] = csurh[i]; |
---|
| 243 | } |
---|
| 244 | /* DEBUG |
---|
| 245 | printf("AERPROD : LAT = %d - J = %d\n",(*LAT),j); |
---|
| 246 | if(fabs(dyc2h2*NB[j])>fabs(fp[utilaer[2]]/10.)) |
---|
| 247 | printf("fp(%s) =%e; dyc2h2 =%e\n",corps[utilaer[2]], |
---|
| 248 | fp[utilaer[2]],dyc2h2*NB[j]); |
---|
| 249 | if(fabs(dyhcn*NB[j])>fabs(fp[utilaer[5]]/10.)) |
---|
| 250 | printf("fp(%s) =%e; dyhcn =%e\n",corps[utilaer[5]], |
---|
| 251 | fp[utilaer[5]],dyhcn*NB[j]); |
---|
| 252 | if(fabs(dyhc3n*NB[j])>fabs(fp[utilaer[6]]/10.)) |
---|
| 253 | printf("fp(%s) =%e; dyhc3n =%e\n",corps[utilaer[6]], |
---|
| 254 | fp[utilaer[6]],dyhc3n*NB[j]); |
---|
| 255 | if(fabs(dynccn*NB[j])>fabs(fp[utilaer[13]]/10.)) |
---|
| 256 | printf("fp(%s) =%e; dynccn =%e\n",corps[utilaer[13]], |
---|
| 257 | fp[utilaer[13]],dynccn*NB[j]); |
---|
| 258 | if(fabs(dych3cn*NB[j])>fabs(fp[utilaer[14]]/10.)) |
---|
| 259 | printf("fp(%s) =%e; dych3cn=%e\n",corps[utilaer[14]], |
---|
| 260 | fp[utilaer[14]],dych3cn*NB[j]); |
---|
| 261 | if(fabs(dyc2h3cn*NB[j])>fabs(fp[utilaer[15]]/10.)) |
---|
| 262 | printf("fp(%s) =%e; dyc2h3cn=%e\n",corps[utilaer[15]], |
---|
| 263 | fp[utilaer[15]],dyc2h3cn*NB[j]); |
---|
| 264 | */ |
---|
| 265 | |
---|
| 266 | fp[utilaer[2]] -= ( dyc2h2 * NB[j] ); |
---|
| 267 | fp[utilaer[5]] -= ( dyhcn * NB[j] ); |
---|
| 268 | fp[utilaer[6]] -= ( dyhc3n * NB[j] ); |
---|
| 269 | fp[utilaer[13]]-= ( dynccn * NB[j] ); |
---|
| 270 | fp[utilaer[14]]-= ( dych3cn * NB[j] ); |
---|
| 271 | fp[utilaer[15]]-= ( dyc2h3cn * NB[j] ); |
---|
| 272 | if( Y[utilaer[2]][j] != 0.0 ) |
---|
| 273 | jac[utilaer[2]][utilaer[2]] -= ( dyc2h2 * NB[j] / Y[utilaer[2]][j] ); |
---|
| 274 | if( Y[utilaer[5]][j] != 0.0 ) |
---|
| 275 | jac[utilaer[5]][utilaer[5]] -= ( dyhcn * NB[j] / Y[utilaer[5]][j] ); |
---|
| 276 | if( Y[utilaer[6]][j] != 0.0 ) |
---|
| 277 | jac[utilaer[6]][utilaer[6]] -= ( dyhc3n * NB[j] / Y[utilaer[6]][j] ); |
---|
| 278 | if( Y[utilaer[13]][j] != 0.0 ) |
---|
| 279 | jac[utilaer[13]][utilaer[13]] -= ( dynccn * NB[j] / Y[utilaer[13]][j] ); |
---|
| 280 | if( Y[utilaer[14]][j] != 0.0 ) |
---|
| 281 | jac[utilaer[14]][utilaer[14]] -= ( dych3cn * NB[j] / Y[utilaer[14]][j] ); |
---|
| 282 | if( Y[utilaer[15]][j] != 0.0 ) |
---|
| 283 | jac[utilaer[15]][utilaer[15]] -= (dyc2h3cn * NB[j] / Y[utilaer[15]][j] ); |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | /* H -> H2 on haze particles */ |
---|
| 287 | /* ------------------------- */ |
---|
| 288 | if( (*htoh2) == 1 ) |
---|
| 289 | { |
---|
| 290 | heterohtoh2(corps,TEMP,NB,Y,surfhaze,&j,&dyh,&dyh2,utilaer); |
---|
| 291 | /* dyh <= 0 / 1.0 en adsor., 1 en reac. */ |
---|
| 292 | |
---|
| 293 | /* DEBUG |
---|
| 294 | printf("HTOH2 : LAT = %d - J = %d\n",(*LAT),j); |
---|
| 295 | if(fabs(dyh*NB[j])>fabs(fp[utilaer[0]]/10.)) |
---|
| 296 | printf("fp(%s) = %e; dyh = %e\n",corps[utilaer[0]],fp[utilaer[0]],dyh*NB[j]); |
---|
| 297 | if(fabs(dyh2*NB[j])>fabs(fp[utilaer[1]]/10.)) |
---|
| 298 | printf("fp(%s) = %e; dyh2 = %e\n",corps[utilaer[1]],fp[utilaer[1]],dyh2*NB[j]); |
---|
| 299 | */ |
---|
| 300 | |
---|
| 301 | fp[utilaer[0]] += ( dyh * NB[j] ); |
---|
| 302 | fp[utilaer[1]] += ( dyh2 * NB[j] ); |
---|
| 303 | if( Y[utilaer[0]][j] != 0.0 ) |
---|
| 304 | jac[utilaer[0]][utilaer[0]] += ( dyh * NB[j] / Y[utilaer[0]][j] ); |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | for( i = 0; i <= ST-1; i++ ) /* finition pour inversion */ |
---|
| 308 | { |
---|
| 309 | for( k = 0; k <= ST-1; k++ ) |
---|
| 310 | { |
---|
| 311 | jac[i][k] *= ( -THETA * delta ); /* Correction time step. */ |
---|
| 312 | if( k == i ) jac[k][k] += NB[j]; /* Correction diagonal. */ |
---|
| 313 | jacd[i][k] = (double)jac[i][k]; |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | fd[i] = (double)(delta * ( fp[i] - Y[i][j]*fl[i] )); |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | /* for( i = ST; i <= NC-1; i++ ) pas d'inversion (soot,prod): que faire? |
---|
| 320 | { |
---|
| 321 | Y[i][j] = ??? ; |
---|
| 322 | } |
---|
| 323 | */ |
---|
| 324 | |
---|
| 325 | /* Inversion of matrix cf method LU */ |
---|
| 326 | /* -------------------------------- */ |
---|
| 327 | |
---|
| 328 | /* inversion by blocs: */ |
---|
| 329 | /* Hydrocarbons */ |
---|
| 330 | |
---|
| 331 | solve( jacd, fd, 0, NHC-1 ); |
---|
| 332 | |
---|
| 333 | for( i = 0; i <= NHC-1; i++ ) |
---|
| 334 | { |
---|
| 335 | Y[i][j] += (float)fd[i]; |
---|
| 336 | if( Y[i][j] <= 1.0e-30 ) Y[i][j] = 0.0e0; |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | /* Nitriles */ |
---|
| 340 | |
---|
| 341 | solve( jacd, fd, NHC, ST-1 ); |
---|
| 342 | |
---|
| 343 | for( i = NHC+1; i <= ST-1; i++ ) |
---|
| 344 | { |
---|
| 345 | Y[i][j] += (float)fd[i]; |
---|
| 346 | if( Y[i][j] <= 1.0e-30 ) Y[i][j] = 0.0e0; |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | /* end inversion by blocs: */ |
---|
| 350 | |
---|
| 351 | for( i = 0; i <= ST-1; i++ ) |
---|
| 352 | { |
---|
| 353 | |
---|
| 354 | /* CH4 au sol */ |
---|
| 355 | /* ---------- */ |
---|
| 356 | |
---|
| 357 | if( ( strcmp(corps[i], "CH4") == 0 ) && ( j == 0 ) && ( Y[i][j] < *botCH4 ) ) |
---|
| 358 | { |
---|
| 359 | fluxCH4 += (*botCH4 - Y[i][0]); |
---|
| 360 | Y[i][0] = *botCH4; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | /* test evolution delta */ |
---|
| 366 | /* -------------------- */ |
---|
| 367 | |
---|
| 368 | for( i = 0; i <= ST-1; i++ ) |
---|
| 369 | { |
---|
| 370 | test = 1.0e-15; |
---|
| 371 | if( ( Y[i][j] > test ) && ( ym1[i] > test ) ) |
---|
| 372 | { |
---|
| 373 | conv = fabs( Y[i][j] - ym1[i] ) / ym1[i]; |
---|
| 374 | |
---|
| 375 | if( conv > ts ) |
---|
| 376 | { |
---|
| 377 | /* |
---|
| 378 | if( conv >= 0.1 ) |
---|
| 379 | { |
---|
| 380 | out = fopen( outlog, "a" ); |
---|
| 381 | fprintf( out, "Lat no %d; declin:%e;", (*LAT)+1, (*DECLIN) ); |
---|
| 382 | fprintf(out, " alt:%e; %s %e %e ; %e %e\n",(RA[j]-R0),corps[i],ym1[i],Y[i][j],time,delta); |
---|
| 383 | fclose( out ); |
---|
| 384 | } |
---|
| 385 | */ |
---|
| 386 | ts = conv; |
---|
| 387 | } |
---|
| 388 | } |
---|
| 389 | } |
---|
| 390 | |
---|
| 391 | if( ts < 0.1e0 ) |
---|
| 392 | { |
---|
| 393 | for( i = 0; i <= ST-1; i++ ) |
---|
| 394 | if( (Y[i][j] >= 0.5e0) && (strcmp(corps[i],"N2") != 0) ) |
---|
| 395 | { |
---|
| 396 | out = fopen( outlog, "a" ); |
---|
| 397 | fprintf( out, "WARNING %s mixing ratio is %e %e at %d\n", |
---|
| 398 | corps[i], ym1[i], Y[i][j], j ); |
---|
| 399 | for( k = 0; k <= NLEV-1; k++ ) fprintf( out, "%d %e %e\n",k,ym1[i],Y[i][k] ); |
---|
| 400 | fclose( out ); |
---|
| 401 | // exit(0); |
---|
| 402 | Y[i][j] = 1.e-20; |
---|
| 403 | } |
---|
| 404 | for( i = 0; i <= NC-1; i++ ) ym1[i] = max(Y[i][j],1.e-30); |
---|
| 405 | time += delta; |
---|
| 406 | if( ts < 1.00e-5 ) delta *= 1.0e2; |
---|
| 407 | if( ( ts > 1.00e-5 ) && ( ts < 1.0e-4 ) ) delta *= 1.0e1; |
---|
| 408 | if( ( ts > 1.00e-4 ) && ( ts < 1.0e-3 ) ) delta *= 5.0e0; |
---|
| 409 | if( ( ts > 0.001e0 ) && ( ts < 0.01e0 ) ) delta *= 3.0e0; |
---|
| 410 | if( ( ts > 0.010e0 ) && ( ts < 0.05e0 ) ) delta *= 1.5e0; |
---|
| 411 | |
---|
| 412 | delta = min( deltamax, delta ); |
---|
| 413 | } |
---|
| 414 | else |
---|
| 415 | { |
---|
| 416 | for( i = 0; i <= NC-1; i++ ) Y[i][j] = ym1[i]; |
---|
| 417 | |
---|
| 418 | if( ts > 0.8 ) delta *= 1.e-6; |
---|
| 419 | if( ( ts > 0.6 ) && ( ts <= 0.8 ) ) delta *= 1.e-4; |
---|
| 420 | if( ( ts > 0.4 ) && ( ts <= 0.6 ) ) delta *= 1.e-2; |
---|
| 421 | if( ( ts > 0.3 ) && ( ts <= 0.4 ) ) delta *= 0.1; |
---|
| 422 | if( ( ts > 0.2 ) && ( ts <= 0.3 ) ) delta *= 0.2; |
---|
| 423 | if( ( ts > 0.1 ) && ( ts <= 0.2 ) ) delta *= 0.3; |
---|
| 424 | } |
---|
| 425 | ts = 0.0e0; |
---|
| 426 | /* |
---|
| 427 | out = fopen( outlog, "a" ); |
---|
| 428 | fprintf(out, " alt:%e; delta:%e; time:%e; fin:%e\n",(RA[j]-R0),delta,time,(*FIN)); |
---|
| 429 | fclose( out ); |
---|
| 430 | */ |
---|
| 431 | } |
---|
| 432 | |
---|
| 433 | /* +++++++++++++++++++ */ |
---|
| 434 | /* end of time loop. */ |
---|
| 435 | /* +++++++++++++++++++ */ |
---|
| 436 | |
---|
| 437 | for( i = 0; i <= ST-1; i++ ) |
---|
| 438 | if( ( strcmp(corps[i],"CH4") == 0 ) && ( j == 0 ) ) |
---|
| 439 | fluxCH4 *= ( MASS[i]/(6.022e23*time) ); |
---|
| 440 | |
---|
| 441 | } |
---|
| 442 | |
---|
| 443 | /* **************** */ |
---|
| 444 | /* end of main loop */ |
---|
| 445 | /* **************** */ |
---|
| 446 | |
---|
| 447 | /* Plafond: !! OU !! flux vertical */ |
---|
| 448 | /* ------------------------------------ */ |
---|
| 449 | |
---|
| 450 | for( i = 0; i <= ST-1; i++ ) |
---|
| 451 | if( FTOP[i] != 0.0e0 ) |
---|
| 452 | { |
---|
| 453 | fluxtop[i] = (- FTOP[i]/NB[NLEV-2]) * MASS[i]/6.022e23; |
---|
| 454 | Y[i][NLEV-2] += FTOP[i]/NB[NLEV-2]*(*FIN); |
---|
| 455 | Y[i][NLEV-2] = max(Y[i][NLEV-2],0.0e0); |
---|
| 456 | // on ajuste aussi le niveau dans la derniere couche... |
---|
| 457 | // pour eviter les effets vers le haut |
---|
| 458 | Y[i][NLEV-1] = Y[i][NLEV-2]; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | /* Niveau de N2 */ |
---|
| 462 | /* ------------ */ |
---|
| 463 | |
---|
| 464 | for( j = 0; j <= NLEV-1; j++ ) |
---|
| 465 | { |
---|
| 466 | conv = 0.0e0; |
---|
| 467 | for( i = 0; i <= ST-1; i++ ) if( strcmp(corps[i],"N2") != 0 ) conv += Y[i][j]; |
---|
| 468 | for( i = 0; i <= ST-1; i++ ) if( strcmp(corps[i],"N2") == 0 ) Y[i][j] = 1. - conv; |
---|
| 469 | } |
---|
| 470 | |
---|
| 471 | if( (*aerprod) == 1 ) |
---|
| 472 | { |
---|
| 473 | fdm2d( k_dep, 1, 5, 1 ); |
---|
| 474 | fdm2d( faer, 1, 5, 1 ); |
---|
| 475 | fdm1d( productaer, 0 ); |
---|
| 476 | fdm1d( mmolaer, 0 ); |
---|
| 477 | fdm1d( csurn, 0 ); |
---|
| 478 | fdm1d( csurh, 0 ); |
---|
| 479 | } |
---|
| 480 | |
---|
| 481 | fdm1d( ym1, 0 ); |
---|
| 482 | fdm1d( fl, 0 ); |
---|
| 483 | fdm1d( fp, 0 ); |
---|
| 484 | fdm1d( fd, 0 ); |
---|
| 485 | fdm1d( mu, 0 ); |
---|
| 486 | fdm1d( fluxtop, 0 ); |
---|
| 487 | fdm2d( jac, 0, NC-1, 0 ); |
---|
| 488 | fdm2d( jacd, 0, NC-1, 0 ); |
---|
| 489 | } |
---|