[1] | 1 | ! $Id$ |
---|
| 2 | module interpolation |
---|
| 3 | |
---|
| 4 | ! From Press et al., 1996, version 2.10a |
---|
| 5 | ! B3 Interpolation and Extrapolation |
---|
| 6 | |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | |
---|
| 9 | contains |
---|
| 10 | |
---|
| 11 | pure FUNCTION locate(xx,x) |
---|
| 12 | |
---|
| 13 | REAL, DIMENSION(:), INTENT(IN) :: xx |
---|
| 14 | REAL, INTENT(IN) :: x |
---|
| 15 | INTEGER locate |
---|
| 16 | |
---|
| 17 | ! Given an array xx(1:N), and given a value x, returns a value j, |
---|
| 18 | ! between 0 and N, such that x is between xx(j) and xx(j + 1). xx |
---|
| 19 | ! must be monotonic, either increasing or decreasing. j = 0 or j = |
---|
| 20 | ! N is returned to indicate that x is out of range. This |
---|
| 21 | ! procedure should not be called with a zero-sized array argument. |
---|
| 22 | ! See notes. |
---|
| 23 | |
---|
| 24 | INTEGER n,jl,jm,ju |
---|
| 25 | LOGICAL ascnd |
---|
| 26 | |
---|
| 27 | !---------------------------- |
---|
| 28 | |
---|
| 29 | n=size(xx) |
---|
| 30 | ascnd = (xx(n) >= xx(1)) |
---|
| 31 | ! (True if ascending order of table, false otherwise.) |
---|
| 32 | ! Initialize lower and upper limits: |
---|
| 33 | jl=0 |
---|
| 34 | ju=n+1 |
---|
| 35 | do while (ju-jl > 1) |
---|
| 36 | jm=(ju+jl)/2 ! Compute a midpoint, |
---|
| 37 | if (ascnd .eqv. (x >= xx(jm))) then |
---|
| 38 | jl=jm ! and replace either the lower limit |
---|
| 39 | else |
---|
| 40 | ju=jm ! or the upper limit, as appropriate. |
---|
| 41 | end if |
---|
| 42 | end do |
---|
| 43 | ! {ju == jl + 1} |
---|
| 44 | |
---|
| 45 | ! {(ascnd .and. xx(jl) <= x < xx(jl+1)) |
---|
| 46 | ! .neqv. |
---|
| 47 | ! (.not. ascnd .and. xx(jl+1) <= x < xx(jl))} |
---|
| 48 | |
---|
| 49 | ! Then set the output, being careful with the endpoints: |
---|
| 50 | if (x == xx(1)) then |
---|
| 51 | locate=1 |
---|
| 52 | else if (x == xx(n)) then |
---|
| 53 | locate=n-1 |
---|
| 54 | else |
---|
| 55 | locate=jl |
---|
| 56 | end if |
---|
| 57 | |
---|
| 58 | END FUNCTION locate |
---|
| 59 | |
---|
| 60 | !*************************** |
---|
| 61 | |
---|
| 62 | pure SUBROUTINE hunt(xx,x,jlo) |
---|
| 63 | |
---|
| 64 | ! Given an array xx(1:N ), and given a value x, returns a value |
---|
| 65 | ! jlo such that x is between xx(jlo) and xx(jlo+1). xx must be |
---|
| 66 | ! monotonic, either increasing or decreasing. jlo = 0 or jlo = N is |
---|
| 67 | ! returned to indicate that x is out of range. jlo on input is taken as |
---|
| 68 | ! the initial guess for jlo on output. |
---|
| 69 | ! Modified so that it uses the information "jlo = 0" on input. |
---|
| 70 | |
---|
| 71 | INTEGER, INTENT(INOUT) :: jlo |
---|
| 72 | REAL, INTENT(IN) :: x |
---|
| 73 | REAL, DIMENSION(:), INTENT(IN) :: xx |
---|
| 74 | INTEGER n,inc,jhi,jm |
---|
| 75 | LOGICAL ascnd, hunt_up |
---|
| 76 | |
---|
| 77 | !----------------------------------------------------- |
---|
| 78 | |
---|
| 79 | n=size(xx) |
---|
| 80 | ascnd = (xx(n) >= xx(1)) |
---|
| 81 | ! (True if ascending order of table, false otherwise.) |
---|
| 82 | if (jlo < 0 .or. jlo > n) then |
---|
| 83 | ! Input guess not useful. Go immediately to bisection. |
---|
| 84 | jlo=0 |
---|
| 85 | jhi=n+1 |
---|
| 86 | else |
---|
| 87 | inc=1 ! Set the hunting increment. |
---|
| 88 | if (jlo == 0) then |
---|
| 89 | hunt_up = .true. |
---|
| 90 | else |
---|
| 91 | hunt_up = x >= xx(jlo) .eqv. ascnd |
---|
| 92 | end if |
---|
| 93 | if (hunt_up) then ! Hunt up: |
---|
| 94 | do |
---|
| 95 | jhi=jlo+inc |
---|
| 96 | if (jhi > n) then ! Done hunting, since off end of table. |
---|
| 97 | jhi=n+1 |
---|
| 98 | exit |
---|
| 99 | else |
---|
| 100 | if (x < xx(jhi) .eqv. ascnd) exit |
---|
| 101 | jlo=jhi ! Not done hunting, |
---|
| 102 | inc=inc+inc ! so double the increment |
---|
| 103 | end if |
---|
| 104 | end do ! and try again. |
---|
| 105 | else ! Hunt down: |
---|
| 106 | jhi=jlo |
---|
| 107 | do |
---|
| 108 | jlo=jhi-inc |
---|
| 109 | if (jlo < 1) then ! Done hunting, since off end of table. |
---|
| 110 | jlo=0 |
---|
| 111 | exit |
---|
| 112 | else |
---|
| 113 | if (x >= xx(jlo) .eqv. ascnd) exit |
---|
| 114 | jhi=jlo ! Not done hunting, |
---|
| 115 | inc=inc+inc ! so double the increment |
---|
| 116 | end if |
---|
| 117 | end do ! and try again. |
---|
| 118 | end if |
---|
| 119 | end if ! Done hunting, value bracketed. |
---|
| 120 | |
---|
| 121 | do ! Hunt is done, so begin the final bisection phase: |
---|
| 122 | if (jhi-jlo <= 1) then |
---|
| 123 | if (x == xx(n)) jlo=n-1 |
---|
| 124 | if (x == xx(1)) jlo=1 |
---|
| 125 | exit |
---|
| 126 | else |
---|
| 127 | jm=(jhi+jlo)/2 |
---|
| 128 | if (x >= xx(jm) .eqv. ascnd) then |
---|
| 129 | jlo=jm |
---|
| 130 | else |
---|
| 131 | jhi=jm |
---|
| 132 | end if |
---|
| 133 | end if |
---|
| 134 | end do |
---|
| 135 | |
---|
| 136 | END SUBROUTINE hunt |
---|
| 137 | |
---|
| 138 | end module interpolation |
---|