1 | !WRF:MEDIATION_LAYER:IO |
---|
2 | ! --- |
---|
3 | |
---|
4 | ! This obs-nudging FDDA module (RTFDDA) is developed by the |
---|
5 | ! NCAR/RAL/NSAP (National Security Application Programs), under the |
---|
6 | ! sponsorship of ATEC (Army Test and Evaluation Commands). ATEC is |
---|
7 | ! acknowledged for releasing this capability for WRF community |
---|
8 | ! research applications. |
---|
9 | ! |
---|
10 | ! The NCAR/RAL RTFDDA module was adapted, and significantly modified |
---|
11 | ! from the obs-nudging module in the standard MM5V3.1 which was originally |
---|
12 | ! developed by PSU (Stauffer and Seaman, 1994). |
---|
13 | ! |
---|
14 | ! Yubao Liu (NCAR/RAL): lead developer of the RTFDDA module |
---|
15 | ! Al Bourgeois (NCAR/RAL): lead engineer implementing RTFDDA into WRF-ARW |
---|
16 | ! Nov. 2006 |
---|
17 | ! |
---|
18 | ! References: |
---|
19 | ! |
---|
20 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and J. Hacker, 2005: An |
---|
21 | ! implementation of obs-nudging-based FDDA into WRF for supporting |
---|
22 | ! ATEC test operations. 2005 WRF user workshop. Paper 10.7. |
---|
23 | ! |
---|
24 | ! Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin and W. Yu, 2006: An update |
---|
25 | ! on "obs-nudging"-based FDDA for WRF-ARW: Verification using OSSE |
---|
26 | ! and performance of real-time forecasts. 2006 WRF user workshop. Paper 4.7. |
---|
27 | |
---|
28 | ! |
---|
29 | ! Stauffer, D.R., and N.L. Seaman, 1994: Multi-scale four-dimensional data |
---|
30 | ! assimilation. J. Appl. Meteor., 33, 416-434. |
---|
31 | ! |
---|
32 | ! http://www.rap.ucar.edu/projects/armyrange/references.html |
---|
33 | ! |
---|
34 | |
---|
35 | SUBROUTINE wrf_fddaobs_in (grid ,config_flags) |
---|
36 | |
---|
37 | USE module_domain |
---|
38 | USE module_configure |
---|
39 | USE module_model_constants !rovg |
---|
40 | |
---|
41 | IMPLICIT NONE |
---|
42 | TYPE(domain) :: grid |
---|
43 | TYPE(grid_config_rec_type), INTENT(IN) :: config_flags |
---|
44 | #if ( EM_CORE == 1 ) |
---|
45 | |
---|
46 | ! Local variables |
---|
47 | integer :: ktau ! timestep index corresponding to xtime |
---|
48 | integer :: krest ! restart timestep |
---|
49 | integer :: inest ! nest level |
---|
50 | integer :: infreq ! input frequency |
---|
51 | integer :: nstlev ! nest level |
---|
52 | real :: dtmin ! dt in minutes |
---|
53 | real :: xtime ! forecast time in minutes |
---|
54 | logical :: iprt_in4dob ! print flag |
---|
55 | |
---|
56 | INTEGER ids , ide , jds , jde , kds , kde , & |
---|
57 | ims , ime , jms , jme , kms , kme , & |
---|
58 | ips , ipe , jps , jpe , kps , kpe |
---|
59 | |
---|
60 | |
---|
61 | ! Modified to also call in4dob intially, since subr in4dob is no |
---|
62 | ! longer called from subr fddaobs_init. Note that itimestep is now |
---|
63 | ! the model step BEFORE the model integration step, because this |
---|
64 | ! routine is now called by med_before_solve_io. |
---|
65 | ktau = grid%itimestep ! ktau corresponds to xtime |
---|
66 | krest = grid%fdob%ktaur |
---|
67 | inest = grid%grid_id |
---|
68 | nstlev = grid%fdob%levidn(inest) |
---|
69 | infreq = grid%obs_ionf*(grid%parent_grid_ratio**nstlev) |
---|
70 | iprt_in4dob = grid%obs_ipf_in4dob |
---|
71 | |
---|
72 | IF( (ktau.GT.krest.AND.MOD(ktau,infreq).EQ.0) & |
---|
73 | .OR.(ktau.EQ.krest) ) then |
---|
74 | ! Calculate forecast time. |
---|
75 | dtmin = grid%dt/60. |
---|
76 | xtime = dtmin*grid%itimestep |
---|
77 | |
---|
78 | CALL get_ijk_from_grid ( grid , & |
---|
79 | ids, ide, jds, jde, kds, kde, & |
---|
80 | ims, ime, jms, jme, kms, kme, & |
---|
81 | ips, ipe, jps, jpe, kps, kpe ) |
---|
82 | |
---|
83 | CALL in4dob(inest, xtime, ktau, krest, dtmin, grid%julday, grid%gmt, & |
---|
84 | grid%obs_nudge_opt, grid%obs_nudge_wind, grid%obs_nudge_temp, & |
---|
85 | grid%obs_nudge_mois, grid%obs_nudge_pstr, grid%obs_coef_wind, & |
---|
86 | grid%obs_coef_temp, grid%obs_coef_mois, grid%obs_coef_pstr, & |
---|
87 | grid%obs_rinxy, grid%obs_rinsig, grid%fdob%window, & |
---|
88 | grid%obs_npfi, grid%obs_ionf, grid%obs_nobs_prt, & |
---|
89 | grid%obs_idynin, & |
---|
90 | grid%obs_dtramp, grid%fdob, grid%fdob%varobs, & |
---|
91 | grid%fdob%timeob, grid%fdob%nlevs_ob, grid%fdob%lev_in_ob, & |
---|
92 | grid%fdob%plfo, grid%fdob%elevob, grid%fdob%rio, & |
---|
93 | grid%fdob%rjo, grid%fdob%rko, & |
---|
94 | config_flags%cen_lat, & |
---|
95 | config_flags%cen_lon, & |
---|
96 | config_flags%stand_lon, & |
---|
97 | config_flags%truelat1, config_flags%truelat2, & |
---|
98 | grid%fdob%known_lat, grid%fdob%known_lon, & |
---|
99 | config_flags%dx, config_flags%dy, rovg, t0, & |
---|
100 | ide, jde, & |
---|
101 | grid%fdob%sn_maxcg, grid%fdob%we_maxcg, config_flags%map_proj, & |
---|
102 | model_config_rec%parent_grid_ratio, & |
---|
103 | model_config_rec%i_parent_start(inest), & |
---|
104 | model_config_rec%j_parent_start(inest), & |
---|
105 | model_config_rec%nobs_ndg_vars, grid%max_obs, iprt_in4dob) |
---|
106 | ENDIF |
---|
107 | |
---|
108 | RETURN |
---|
109 | #endif |
---|
110 | END SUBROUTINE wrf_fddaobs_in |
---|
111 | #if ( EM_CORE == 1 ) |
---|
112 | !------------------------------------------------------------------------------ |
---|
113 | ! Begin subroutine in4dob and its subroutines |
---|
114 | !------------------------------------------------------------------------------ |
---|
115 | SUBROUTINE in4dob(inest, xtime, ktau, ktaur, dtmin, julday, gmt, & |
---|
116 | nudge_opt, iswind, istemp, & |
---|
117 | ismois, ispstr, giv, & |
---|
118 | git, giq, gip, & |
---|
119 | rinxy, rinsig, twindo, & |
---|
120 | npfi, ionf, nobs_prt, idynin, & |
---|
121 | dtramp, fdob, varobs, & |
---|
122 | timeob, nlevs_ob, lev_in_ob, & |
---|
123 | plfo, elevob, rio, & |
---|
124 | rjo, rko, & |
---|
125 | cen_lat, & |
---|
126 | cen_lon, & |
---|
127 | stand_lon, & |
---|
128 | true_lat1, true_lat2, & |
---|
129 | known_lat, known_lon, & |
---|
130 | dxm, dym, rovg, t0, e_we, e_sn, & |
---|
131 | sn_maxcg, we_maxcg, map_proj, & |
---|
132 | parent_grid_ratio, & |
---|
133 | i_parent_start, & |
---|
134 | j_parent_start, & |
---|
135 | nndgv, niobf, iprt) |
---|
136 | |
---|
137 | USE module_domain |
---|
138 | USE module_model_constants, ONLY : rcp |
---|
139 | USE module_llxy |
---|
140 | |
---|
141 | IMPLICIT NONE |
---|
142 | |
---|
143 | ! THIS IS SUBROUTINE READS AN OBSERVATION DATA FILE AND |
---|
144 | ! SELECTS ONLY THOSE VALUES OBSERVED AT TIMES THAT FALL |
---|
145 | ! WITHIN A TIME WINDOW (TWINDO) CENTERED ABOUT THE CURRENT |
---|
146 | ! FORECAST TIME (XTIME). THE INCOMING OBS FILES MUST BE |
---|
147 | ! IN CHRONOLOGICAL ORDER. |
---|
148 | ! |
---|
149 | ! NOTE: This routine was originally designed for MM5, which uses |
---|
150 | ! a nonstandard (I,J) coordinate system. For WRF, I is the |
---|
151 | ! east-west running coordinate, and J is the south-north |
---|
152 | ! running coordinate. So "J-slab" here is west-east in |
---|
153 | ! extent, not south-north as for MM5. RIO and RJO have |
---|
154 | ! the opposite orientation here as for MM5. -ajb 06/10/2004 |
---|
155 | |
---|
156 | ! NOTE - IN4DOB IS CALLED ONLY FOR THE COARSE MESH TIMES IN4DOB.10 |
---|
157 | ! - VAROBS(IVAR,N) HOLDS THE OBSERVATIONS. IN4DOB.11 |
---|
158 | ! IVAR=1 UOBS IN4DOB.12 |
---|
159 | ! IVAR=2 VOBS IN4DOB.13 |
---|
160 | ! IVAR=3 TOBS IN4DOB.14 |
---|
161 | ! IVAR=4 QOBS IN4DOB.15 |
---|
162 | ! IVAR=5 PSOBS (CROSS) IN4DOB.16 |
---|
163 | |
---|
164 | INTEGER, intent(in) :: niobf ! maximum number of observations |
---|
165 | INTEGER, intent(in) :: nndgv ! number of nudge variables |
---|
166 | INTEGER, intent(in) :: INEST ! nest level |
---|
167 | REAL, intent(in) :: xtime ! model time in minutes |
---|
168 | INTEGER, intent(in) :: KTAU ! current timestep |
---|
169 | INTEGER, intent(in) :: KTAUR ! restart timestep |
---|
170 | REAL, intent(in) :: dtmin ! dt in minutes |
---|
171 | INTEGER, intent(in) :: julday ! Julian day |
---|
172 | REAL, intent(in) :: gmt ! Greenwich Mean Time |
---|
173 | INTEGER, intent(in) :: nudge_opt ! obs-nudge flag for this nest |
---|
174 | INTEGER, intent(in) :: iswind ! nudge flag for wind |
---|
175 | INTEGER, intent(in) :: istemp ! nudge flag for temperature |
---|
176 | INTEGER, intent(in) :: ismois ! nudge flag for moisture |
---|
177 | INTEGER, intent(in) :: ispstr ! nudge flag for pressure |
---|
178 | REAL, intent(in) :: giv ! coefficient for wind |
---|
179 | REAL, intent(in) :: git ! coefficient for temperature |
---|
180 | REAL, intent(in) :: giq ! coefficient for moisture |
---|
181 | REAL, intent(in) :: gip ! coefficient for pressure |
---|
182 | REAL, intent(in) :: rinxy ! horizontal radius of influence (km) |
---|
183 | REAL, intent(in) :: rinsig ! vertical radius of influence (on sigma) |
---|
184 | REAL, intent(in) :: twindo ! (time window)/2 (min) for nudging |
---|
185 | INTEGER, intent(in) :: npfi ! coarse-grid time-step frequency for diagnostics |
---|
186 | INTEGER, intent(in) :: ionf ! coarse-grid time-step frequency for obs-nudging calcs |
---|
187 | INTEGER, intent(in) :: nobs_prt ! Number of current obs to print grid information for. |
---|
188 | INTEGER, intent(in) :: idynin ! for dynamic initialization using a ramp-down function |
---|
189 | REAL, intent(in) :: dtramp ! time period in minutes for ramping |
---|
190 | TYPE(fdob_type), intent(inout) :: fdob ! derived data type for obs data |
---|
191 | REAL, intent(inout) :: varobs(nndgv,niobf) ! observational values in each variable |
---|
192 | REAL, intent(inout) :: timeob(niobf) ! model times for each observation (hours) |
---|
193 | REAL, intent(inout) :: nlevs_ob(niobf) ! numbers of levels in sounding obs |
---|
194 | REAL, intent(inout) :: lev_in_ob(niobf) ! level in sounding-type obs |
---|
195 | REAL, intent(inout) :: plfo(niobf) ! index for type of obs-platform |
---|
196 | REAL, intent(inout) :: elevob(niobf) ! elevations of observations (meters) |
---|
197 | REAL, intent(inout) :: rio(niobf) ! west-east grid coordinate (non-staggered grid) |
---|
198 | REAL, intent(inout) :: rjo(niobf) ! south-north grid coordinate (non-staggered grid) |
---|
199 | REAL, intent(inout) :: rko(niobf) ! vertical grid coordinate |
---|
200 | REAL, intent(in) :: cen_lat ! center latitude for map projection |
---|
201 | REAL, intent(in) :: cen_lon ! center longiture for map projection |
---|
202 | REAL, intent(in) :: stand_lon ! standard longitude for map projection |
---|
203 | REAL, intent(in) :: true_lat1 ! truelat1 for map projection |
---|
204 | REAL, intent(in) :: true_lat2 ! truelat2 for map projection |
---|
205 | REAL, intent(in) :: known_lat ! latitude of domain origin point (i,j)=(1,1) |
---|
206 | REAL, intent(in) :: known_lon ! longigude of domain origin point (i,j)=(1,1) |
---|
207 | REAL, intent(in) :: dxm ! grid size in x (meters) |
---|
208 | REAL, intent(in) :: dym ! grid size in y (meters) |
---|
209 | REAL, intent(in) :: rovg ! constant rho over g |
---|
210 | REAL, intent(in) :: t0 ! background temperature |
---|
211 | INTEGER, intent(in) :: e_we ! max grid index in south-north coordinate |
---|
212 | INTEGER, intent(in) :: e_sn ! max grid index in west-east coordinate |
---|
213 | INTEGER, intent(in) :: sn_maxcg ! maximum coarse grid south-north coordinate |
---|
214 | INTEGER, intent(in) :: we_maxcg ! maximum coarse grid west-east coordinate |
---|
215 | INTEGER, intent(in) :: map_proj ! map projection index |
---|
216 | INTEGER, intent(in) :: parent_grid_ratio ! parent to nest grid ration |
---|
217 | INTEGER, intent(in) :: i_parent_start ! starting i coordinate in parent domain |
---|
218 | INTEGER, intent(in) :: j_parent_start ! starting j coordinate in parent domain |
---|
219 | LOGICAL, intent(in) :: iprt ! print flag |
---|
220 | |
---|
221 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
222 | integer :: n, ndum, nopen, nlast, nvol, idate, imm, iss |
---|
223 | integer :: nsta ! number of stations held in timeobs array |
---|
224 | integer :: nstaw ! # stations within the actual time window |
---|
225 | integer :: ips ! # stations to report printout |
---|
226 | integer :: meas_count, imc, njend, njc, njcc, julob |
---|
227 | real :: hourob, rjulob |
---|
228 | real :: xhour, tback, tforwd, rjdate1, timanl1, rtimob |
---|
229 | real :: rj, ri, elevation, pressure_data |
---|
230 | real :: pressure_qc, height_data, height_qc, temperature_data |
---|
231 | real :: temperature_qc, u_met_data, u_met_qc, v_met_data |
---|
232 | real :: v_met_qc, rh_data, rh_qc, r_data, slp_data, slp_qc |
---|
233 | real :: ref_pres_data, ref_pres_qc, psfc_data, psfc_qc |
---|
234 | real :: precip_data, precip_qc, tbar, twdop |
---|
235 | real*8 :: tempob |
---|
236 | INTEGER, EXTERNAL :: nvals_le_limit ! for finding #obs with timeobs <= tforwd |
---|
237 | |
---|
238 | ! Local variables |
---|
239 | TYPE (PROJ_INFO) :: obs_proj ! Structure for obs projection information. |
---|
240 | character*14 date_char |
---|
241 | character*40 platform,source,id,namef |
---|
242 | character*2 fonc |
---|
243 | real latitude,longitude |
---|
244 | real lat_prt(100),lon_prt(100) |
---|
245 | logical is_sound,bogus |
---|
246 | LOGICAL OPENED,exist |
---|
247 | integer :: ieof(5),ifon(5) |
---|
248 | data ieof/0,0,0,0,0/ |
---|
249 | data ifon/0,0,0,0,0/ |
---|
250 | integer :: nmove, nvola |
---|
251 | DATA NMOVE/0/,NVOLA/61/ |
---|
252 | |
---|
253 | if(ieof(inest).eq.2.and.fdob%nstat.eq.0)then |
---|
254 | IF (iprt) print *,'returning from in4dob' |
---|
255 | return |
---|
256 | endif |
---|
257 | IF (iprt) print *,'start in4dob ',inest,xtime |
---|
258 | IF(nudge_opt.NE.1)RETURN |
---|
259 | |
---|
260 | ! if start time, or restart time, set obs array to missing value |
---|
261 | IF(KTAU.EQ.0.OR.KTAU.EQ.KTAUR) THEN |
---|
262 | DO N=1,NIOBF |
---|
263 | TIMEOB(N)=99999. |
---|
264 | ENDDO |
---|
265 | ENDIF |
---|
266 | ! set number of obs=0 if at start or restart |
---|
267 | IF(KTAU.EQ.KTAUR)fdob%NSTAT=0 |
---|
268 | NSTA=fdob%NSTAT |
---|
269 | XHOUR=(XTIME-DTMIN)/60. |
---|
270 | XHOUR=AMAX1(XHOUR,0.0) |
---|
271 | |
---|
272 | 10 CONTINUE |
---|
273 | |
---|
274 | ! DEFINE THE MAX LIMITS OF THE WINDOW |
---|
275 | TBACK=XHOUR-fdob%WINDOW |
---|
276 | TFORWD=XHOUR+fdob%WINDOW |
---|
277 | |
---|
278 | if (iprt) write(6,*) 'TBACK = ',tback,' TFORWD = ',tforwd |
---|
279 | |
---|
280 | IF(NSTA.NE.0) THEN |
---|
281 | NDUM=0 |
---|
282 | t_window : DO N=1,NSTA+1 |
---|
283 | IF((TIMEOB(N)-TBACK).LT.0) THEN |
---|
284 | TIMEOB(N)=99999. |
---|
285 | ENDIF |
---|
286 | IF(TIMEOB(N).LT.9.E4) EXIT t_window |
---|
287 | NDUM=N |
---|
288 | ENDDO t_window |
---|
289 | |
---|
290 | ! REMOVE OLD OBS DENOTED BY 99999. AT THE FRONT OF TIMEOB ARRAY |
---|
291 | IF (iprt) print *,'ndum at 20=',ndum |
---|
292 | NDUM=ABS(NDUM) |
---|
293 | NMOVE=NIOBF-NDUM |
---|
294 | IF(NMOVE.GT.0 .AND. NDUM.NE.0 ) THEN |
---|
295 | DO N=1,NMOVE |
---|
296 | VAROBS(1,N)=VAROBS(1,N+NDUM) |
---|
297 | VAROBS(2,N)=VAROBS(2,N+NDUM) |
---|
298 | VAROBS(3,N)=VAROBS(3,N+NDUM) |
---|
299 | VAROBS(4,N)=VAROBS(4,N+NDUM) |
---|
300 | VAROBS(5,N)=VAROBS(5,N+NDUM) |
---|
301 | ! RIO is the west-east coordinate. RJO is south-north. (ajb) |
---|
302 | RJO(N)=RJO(N+NDUM) |
---|
303 | RIO(N)=RIO(N+NDUM) |
---|
304 | RKO(N)=RKO(N+NDUM) |
---|
305 | TIMEOB(N)=TIMEOB(N+NDUM) |
---|
306 | nlevs_ob(n)=nlevs_ob(n+ndum) |
---|
307 | lev_in_ob(n)=lev_in_ob(n+ndum) |
---|
308 | plfo(n)=plfo(n+ndum) |
---|
309 | elevob(n)=elevob(n+ndum) |
---|
310 | ENDDO |
---|
311 | ENDIF |
---|
312 | NOPEN=NMOVE+1 |
---|
313 | IF(NOPEN.LE.NIOBF) THEN |
---|
314 | DO N=NOPEN,NIOBF |
---|
315 | VAROBS(1,N)=99999. |
---|
316 | VAROBS(2,N)=99999. |
---|
317 | VAROBS(3,N)=99999. |
---|
318 | VAROBS(4,N)=99999. |
---|
319 | VAROBS(5,N)=99999. |
---|
320 | RIO(N)=99999. |
---|
321 | RJO(N)=99999. |
---|
322 | RKO(N)=99999. |
---|
323 | TIMEOB(N)=99999. |
---|
324 | nlevs_ob(n)=99999. |
---|
325 | lev_in_ob(n)=99999. |
---|
326 | plfo(n)=99999. |
---|
327 | elevob(n)=99999. |
---|
328 | ENDDO |
---|
329 | ENDIF |
---|
330 | ENDIF |
---|
331 | |
---|
332 | ! Compute map projection info. |
---|
333 | call set_projection(obs_proj, map_proj, cen_lat, cen_lon, & |
---|
334 | true_lat1, true_lat2, stand_lon, & |
---|
335 | known_lat, known_lon, & |
---|
336 | e_we, e_sn, dxm, dym ) |
---|
337 | |
---|
338 | ! FIND THE LAST OBS IN THE LIST |
---|
339 | NLAST=0 |
---|
340 | last_ob : DO N=1,NIOBF |
---|
341 | ! print *,'nlast,n,timeob(n)=',nlast,n,timeob(n) |
---|
342 | IF(TIMEOB(N).GT.9.E4) EXIT last_ob |
---|
343 | NLAST=N |
---|
344 | ENDDO last_ob |
---|
345 | |
---|
346 | ! print *,'in4dob, after 90 ',nlast,ktau,ktaur,nsta |
---|
347 | ! open file if at beginning or restart |
---|
348 | IF(KTAU.EQ.0.OR.KTAU.EQ.KTAUR) THEN |
---|
349 | fdob%RTLAST=-999. |
---|
350 | INQUIRE (NVOLA+INEST-1,OPENED=OPENED) |
---|
351 | IF (.NOT. OPENED) THEN |
---|
352 | ifon(inest)=1 |
---|
353 | write(fonc(1:2),'(i2)')ifon(inest) |
---|
354 | if(fonc(1:1).eq.' ')fonc(1:1)='0' |
---|
355 | INQUIRE (file='OBS_DOMAIN'//CHAR(INEST+ICHAR('0'))//fonc(1:2) & |
---|
356 | ,EXIST=exist) |
---|
357 | if(exist)then |
---|
358 | IF (iprt) THEN |
---|
359 | print *,'opening first fdda obs file, fonc=', & |
---|
360 | fonc,' inest=',inest |
---|
361 | print *,'ifon=',ifon(inest) |
---|
362 | ENDIF |
---|
363 | OPEN(NVOLA+INEST-1, & |
---|
364 | FILE='OBS_DOMAIN'//CHAR(INEST+ICHAR('0'))//fonc(1:2), & |
---|
365 | FORM='FORMATTED',STATUS='OLD') |
---|
366 | else |
---|
367 | ! no first file to open |
---|
368 | IF (iprt) print *,'there are no fdda obs files to open' |
---|
369 | return |
---|
370 | endif |
---|
371 | |
---|
372 | ENDIF |
---|
373 | ENDIF !end if(KTAU.EQ.0.OR.KTAU.EQ.KTAUR) |
---|
374 | ! print *,'at jc check1' |
---|
375 | |
---|
376 | !********************************************************************** |
---|
377 | ! -------------- BIG 100 LOOP OVER N -------------- |
---|
378 | !********************************************************************** |
---|
379 | ! NOW CHECK TO SEE IF EXTRA DATA MUST BE READ IN FROM THE |
---|
380 | ! DATA FILE. CONTINUE READING UNTIL THE REACHING THE EOF |
---|
381 | ! (DATA TIME IS NEGATIVE) OR FIRST TIME PAST TFORWD. THE |
---|
382 | ! LAST OBS CURRENTLY AVAILABLE IS IN N=NMOVE. |
---|
383 | N=NLAST |
---|
384 | IF(N.EQ.0)GOTO 110 |
---|
385 | |
---|
386 | 1001 continue |
---|
387 | |
---|
388 | ! ieof=2 means no more files |
---|
389 | ! print *,'after 1001,n,timeob(n)=',n,timeob(n) |
---|
390 | |
---|
391 | IF(IEOF(inest).GT.1) then |
---|
392 | GOTO 130 |
---|
393 | endif |
---|
394 | |
---|
395 | 100 CONTINUE |
---|
396 | !ajb 20070116 bugfix for situation that first obs is not in the domain |
---|
397 | IF(N.ne.0) THEN |
---|
398 | IF(TIMEOB(N).GT.TFORWD.and.timeob(n).lt.99999.) THEN |
---|
399 | GOTO 130 |
---|
400 | ENDIF |
---|
401 | ENDIF |
---|
402 | |
---|
403 | ! OBSFILE: no more data in the obsfile |
---|
404 | if(ieof(inest).eq.1 )then |
---|
405 | ieof(inest)=2 |
---|
406 | goto 130 |
---|
407 | endif |
---|
408 | |
---|
409 | !********************************************************************** |
---|
410 | ! -------------- 110 SUBLOOP OVER N -------------- |
---|
411 | !********************************************************************** |
---|
412 | ! THE TIME OF THE MOST RECENTLY ACQUIRED OBS IS .LE. TFORWD, |
---|
413 | ! SO CONTINUE READING |
---|
414 | 110 continue |
---|
415 | IF(N.GT.NIOBF-1)GOTO 120 |
---|
416 | ! REPLACE NVOLA WITH LUN 70, AND USE NVOLA AS A FILE COUNTER |
---|
417 | NVOL=NVOLA+INEST-1 |
---|
418 | IF(fdob%IEODI.EQ.1)GOTO 111 |
---|
419 | read(nvol,101,end=111,err=111)date_char |
---|
420 | 101 FORMAT(1x,a14) |
---|
421 | |
---|
422 | n=n+1 |
---|
423 | |
---|
424 | read(date_char(3:10),'(i8)')idate |
---|
425 | read(date_char(11:12),'(i2)')imm |
---|
426 | read(date_char(13:14),'(i2)')iss |
---|
427 | ! output is rjdate (jjjhh.) and timanl (time in minutes since model start) |
---|
428 | call julgmt(idate,rjdate1,timanl1,julday,gmt,0) |
---|
429 | rtimob=rjdate1+real(imm)/60.+real(iss)/3600. |
---|
430 | timeob(n)=rtimob |
---|
431 | timeob(n) = int(timeob(n)*1000)/1000.0 |
---|
432 | |
---|
433 | ! CONVERT TIMEOB FROM JULIAN DATE AND GMT FORM TO FORECAST |
---|
434 | ! TIME IN HOURS (EX. TIMEOB=13002.4 REPRESENTS JULDAY 130 |
---|
435 | ! AND GMT (HOUR) = 2.4) |
---|
436 | JULOB=TIMEOB(N)/100.+0.000001 |
---|
437 | RJULOB=FLOAT(JULOB)*100. |
---|
438 | tempob = (timeob(n)*1000.) |
---|
439 | tempob = int(tempob) |
---|
440 | tempob = tempob/1000. |
---|
441 | timeob(n) = tempob |
---|
442 | HOUROB=TIMEOB(N)-RJULOB |
---|
443 | TIMEOB(N)=FLOAT(JULOB-JULDAY)*24.-GMT+HOUROB |
---|
444 | rtimob=timeob(n) |
---|
445 | |
---|
446 | ! print *,'read in ob ',n,timeob(n),rtimob |
---|
447 | IF(IDYNIN.EQ.1.AND.TIMEOB(N)*60..GT.fdob%DATEND) THEN |
---|
448 | IF (iprt) THEN |
---|
449 | PRINT*,' IN4DOB: FOR INEST = ',INEST,' AT XTIME = ',XTIME, & |
---|
450 | ' TIMEOB = ',TIMEOB(N)*60.,' AND DATEND = ',fdob%DATEND,' :' |
---|
451 | PRINT*,' END-OF-DATA FLAG SET FOR OBS-NUDGING', & |
---|
452 | ' DYNAMIC INITIALIZATION' |
---|
453 | ENDIF |
---|
454 | fdob%IEODI=1 |
---|
455 | TIMEOB(N)=99999. |
---|
456 | rtimob=timeob(n) |
---|
457 | ENDIF |
---|
458 | read(nvol,102)latitude,longitude |
---|
459 | ! save lat and long for printout |
---|
460 | if(n.le.100) then |
---|
461 | lat_prt(n) = latitude |
---|
462 | lon_prt(n) = longitude |
---|
463 | endif |
---|
464 | 102 FORMAT(2x,2(f7.2,3x)) |
---|
465 | |
---|
466 | ! if(ifon.eq.4)print *,'ifon=4',latitude,longitude |
---|
467 | ! this works only for lc projection |
---|
468 | ! yliu: add llxy for all 3 projection |
---|
469 | |
---|
470 | !ajb Arguments ri and rj have been switched from MM5 orientation. |
---|
471 | |
---|
472 | CALL latlon_to_ij(obs_proj, latitude, longitude, ri, rj) |
---|
473 | |
---|
474 | !ajb ri and rj are referenced to the non-staggered grid (not mass-pt!). |
---|
475 | ! (For MM5, they were referenced to the dot grid.) |
---|
476 | |
---|
477 | ri = ri + .5 !ajb Adjust from mass-pt to non-staggered grid. |
---|
478 | rj = rj + .5 !ajb Adjust from mass-pt to non-staggered grid. |
---|
479 | |
---|
480 | rio(n)=ri |
---|
481 | rjo(n)=rj |
---|
482 | |
---|
483 | read(nvol,1021)id,namef |
---|
484 | 1021 FORMAT(2x,2(a40,3x)) |
---|
485 | read(nvol,103)platform,source,elevation,is_sound,bogus,meas_count |
---|
486 | 103 FORMAT( 2x,2(a16,2x),f8.0,2x,2(l4,2x),i5) |
---|
487 | |
---|
488 | ! write(6,*) '----- OBS description ----- ' |
---|
489 | ! write(6,*) 'platform,source,elevation,is_sound,bogus,meas_count:' |
---|
490 | ! write(6,*) platform,source,elevation,is_sound,bogus,meas_count |
---|
491 | |
---|
492 | ! yliu |
---|
493 | elevob(n)=elevation |
---|
494 | ! jc |
---|
495 | ! change platform from synop to profiler when needed |
---|
496 | if(namef(2:9).eq.'PROFILER')platform(7:14)='PROFILER' |
---|
497 | ! yliu |
---|
498 | if(namef(2:6).eq.'ACARS')platform(7:11)='ACARS' |
---|
499 | if(namef(1:7).eq.'SATWNDS') platform(1:11)='SATWNDS ' |
---|
500 | if(namef(1:8).eq.'CLASS DA')platform(7:10)='TEMP' |
---|
501 | ! yliu end |
---|
502 | |
---|
503 | rko(n)=-99. |
---|
504 | !yliu 20050706 |
---|
505 | ! if((platform(7:11).eq.'METAR').or.(platform(7:11).eq.'SPECI').or. |
---|
506 | ! 1 (platform(7:10).eq.'SHIP').or.(platform(7:11).eq.'SYNOP').or. |
---|
507 | ! 1 (platform(1:4).eq.'SAMS')) |
---|
508 | ! 1 rko(n)=1.0 |
---|
509 | if(.NOT. is_sound) rko(n)=1.0 |
---|
510 | !yliu 20050706 end |
---|
511 | |
---|
512 | ! plfo is inFORMATion on what platform. May use this later in adjusting weights |
---|
513 | plfo(n)=99. |
---|
514 | if(platform(7:11).eq.'METAR')plfo(n)=1. |
---|
515 | if(platform(7:11).eq.'SPECI')plfo(n)=2. |
---|
516 | if(platform(7:10).eq.'SHIP')plfo(n)=3. |
---|
517 | if(platform(7:11).eq.'SYNOP')plfo(n)=4. |
---|
518 | if(platform(7:10).eq.'TEMP')plfo(n)=5. |
---|
519 | if(platform(7:11).eq.'PILOT')plfo(n)=6. |
---|
520 | if(platform(1:7).eq.'SATWNDS')plfo(n)=7. |
---|
521 | if(platform(1:4).eq.'SAMS')plfo(n)=8. |
---|
522 | if(platform(7:14).eq.'PROFILER')plfo(n)=9. |
---|
523 | ! yliu: ACARS->SATWINDS |
---|
524 | if(platform(7:11).eq.'ACARS')plfo(n)=7. |
---|
525 | ! yliu: end |
---|
526 | if(plfo(n).eq.99.) then |
---|
527 | IF (iprt) print *,'n=',n,' unknown ob of type',platform |
---|
528 | endif |
---|
529 | |
---|
530 | !====================================================================== |
---|
531 | !====================================================================== |
---|
532 | ! THIS PART READS SOUNDING INFO |
---|
533 | IF(is_sound)THEN |
---|
534 | nlevs_ob(n)=real(meas_count) |
---|
535 | lev_in_ob(n)=1. |
---|
536 | do imc=1,meas_count |
---|
537 | ! write(6,*) '0 inest = ',inest,' n = ',n |
---|
538 | ! the sounding has one header, many levels. This part puts it into |
---|
539 | ! "individual" observations. There's no other way for nudob to deal |
---|
540 | ! with it. |
---|
541 | if(imc.gt.1)then ! sub-loop over N |
---|
542 | n=n+1 |
---|
543 | if(n.gt.niobf)goto 120 |
---|
544 | nlevs_ob(n)=real(meas_count) |
---|
545 | lev_in_ob(n)=real(imc) |
---|
546 | timeob(n)=rtimob |
---|
547 | rio(n)=ri |
---|
548 | rjo(n)=rj |
---|
549 | rko(n)=-99. |
---|
550 | plfo(n)=plfo(n-imc+1) |
---|
551 | elevob(n)=elevation |
---|
552 | endif |
---|
553 | |
---|
554 | read(nvol,104)pressure_data,pressure_qc, & |
---|
555 | height_data,height_qc, & |
---|
556 | temperature_data,temperature_qc, & |
---|
557 | u_met_data,u_met_qc, & |
---|
558 | v_met_data,v_met_qc, & |
---|
559 | rh_data,rh_qc |
---|
560 | 104 FORMAT( 1x,6(f11.3,1x,f11.3,1x)) |
---|
561 | |
---|
562 | ! yliu: Ensemble - add disturbance to upr obs |
---|
563 | ! if(plfo(n).eq.5.or.plfo(n).eq.6.or.plfo(n).eq.9) then FORE07E08 |
---|
564 | ! if(imc.eq.1) then FORE07E08 |
---|
565 | ! call srand(n) |
---|
566 | ! t_rand =- (rand(2)-0.5)*6 |
---|
567 | ! call srand(n+100000) |
---|
568 | ! u_rand =- (rand(2)-0.5)*6 |
---|
569 | ! call srand(n+200000) |
---|
570 | ! v_rand =- (rand(2)-0.5)*6 |
---|
571 | ! endif FORE07E08 |
---|
572 | ! if(temperature_qc.ge.0..and.temperature_qc.lt.30000..and. |
---|
573 | ! & temperature_data .gt. -88880.0 ) |
---|
574 | ! & temperature_data = temperature_data + t_rand |
---|
575 | ! if((u_met_qc.ge.0..and.u_met_qc.lt.30000.).and. |
---|
576 | ! & (v_met_qc.ge.0..and.v_met_qc.lt.30000.).and. |
---|
577 | ! make sure at least 1 of the components is .ne.0 |
---|
578 | ! & (u_met_data.ne.0..or.v_met_data.ne.0.) .and. |
---|
579 | ! & (u_met_data.gt.-88880.0 .and. v_met_data.gt.-88880.0) )then |
---|
580 | ! u_met_data = u_met_data + u_rand |
---|
581 | ! v_met_data = v_met_data + v_rand |
---|
582 | ! endif |
---|
583 | ! endif FORE07E08 |
---|
584 | ! yliu: Ens test - end |
---|
585 | |
---|
586 | |
---|
587 | ! jc |
---|
588 | ! hardwire to switch -777777. qc to 0. here temporarily |
---|
589 | ! -777777. is a sounding level that no qc was done on. |
---|
590 | |
---|
591 | if(temperature_qc.eq.-777777.)temperature_qc=0. |
---|
592 | if(pressure_qc.eq.-777777.)pressure_qc=0. |
---|
593 | if(height_qc.eq.-777777.)height_qc=0. |
---|
594 | if(u_met_qc.eq.-777777.)u_met_qc=0. |
---|
595 | if(v_met_qc.eq.-777777.)v_met_qc=0. |
---|
596 | if(rh_qc.eq.-777777.)rh_qc=0. |
---|
597 | if(temperature_data.eq.-888888.)temperature_qc=-888888. |
---|
598 | if(pressure_data.eq.-888888.)pressure_qc=-888888. |
---|
599 | if(height_data.eq.-888888.)height_qc=-888888. |
---|
600 | if(u_met_data.eq.-888888.)u_met_qc=-888888. |
---|
601 | if(v_met_data.eq.-888888.)v_met_qc=-888888. |
---|
602 | if(rh_data.eq.-888888.)rh_qc=-888888. |
---|
603 | |
---|
604 | ! jc |
---|
605 | ! Hardwire so that only use winds in pilot obs (no winds from temp) and |
---|
606 | ! only use temperatures and rh in temp obs (no temps from pilot obs) |
---|
607 | ! Do this because temp and pilot are treated as 2 platforms, but pilot |
---|
608 | ! has most of the winds, and temp has most of the temps. If use both, |
---|
609 | ! the second will smooth the effect of the first. Usually temps come in after |
---|
610 | ! pilots. pilots usually don't have any temps, but temp obs do have some |
---|
611 | ! winds usually. |
---|
612 | ! plfo=5 is TEMP ob, range sounding is an exception |
---|
613 | !yliu start -- comment out to test with merged PILOT and TEMP and |
---|
614 | ! do not use obs interpolated by little_r |
---|
615 | ! if(plfo(n).eq.5. .and. namef(1:8).ne.'CLASS DA')then |
---|
616 | ! u_met_data=-888888. |
---|
617 | ! v_met_data=-888888. |
---|
618 | ! u_met_qc=-888888. |
---|
619 | ! v_met_qc=-888888. |
---|
620 | ! endif |
---|
621 | if(plfo(n).eq.5..and.(u_met_qc.eq.256..or.v_met_qc.eq.256.))then |
---|
622 | u_met_data=-888888. |
---|
623 | v_met_data=-888888. |
---|
624 | u_met_qc=-888888. |
---|
625 | v_met_qc=-888888. |
---|
626 | endif |
---|
627 | !yliu end |
---|
628 | ! plfo=6 is PILOT ob |
---|
629 | if(plfo(n).eq.6.)then |
---|
630 | temperature_data=-888888. |
---|
631 | rh_data=-888888. |
---|
632 | temperature_qc=-888888. |
---|
633 | rh_qc=-888888. |
---|
634 | endif |
---|
635 | |
---|
636 | !ajb Store potential temperature for WRF |
---|
637 | if(temperature_qc.ge.0..and.temperature_qc.lt.30000.)then |
---|
638 | |
---|
639 | if(pressure_qc.ge.0..and.pressure_qc.lt.30000.)then |
---|
640 | |
---|
641 | varobs(3,n) = & |
---|
642 | temperature_data*(100000./pressure_data)**RCP - t0 |
---|
643 | |
---|
644 | ! write(6,*) 'reading data for N = ',n,' RCP = ',rcp |
---|
645 | ! write(6,*) 'temperature_data = ',temperature_data |
---|
646 | ! write(6,*) 'pressure_data = ',pressure_data |
---|
647 | ! write(6,*) 'varobs(3,n) = ',varobs(3,n) |
---|
648 | |
---|
649 | else |
---|
650 | varobs(3,n)=-888888. |
---|
651 | endif |
---|
652 | |
---|
653 | else |
---|
654 | varobs(3,n)=-888888. |
---|
655 | endif |
---|
656 | |
---|
657 | if(pressure_qc.ge.0..and.pressure_qc.lt.30000.)then |
---|
658 | ! if(pressure_qc.ge.0.)then |
---|
659 | varobs(5,n)=pressure_data |
---|
660 | else |
---|
661 | varobs(5,n)=-888888. |
---|
662 | IF (iprt) THEN |
---|
663 | print *,'********** PROBLEM *************' |
---|
664 | print *,'sounding, p undefined',latitude,longitude |
---|
665 | ENDIF |
---|
666 | endif |
---|
667 | if(varobs(5,n).ge.0.)varobs(5,n)=varobs(5,n)*1.e-3 |
---|
668 | ! don't use data above 80 mb |
---|
669 | if((varobs(5,n).gt.0.).and.(varobs(5,n).le.8.))then |
---|
670 | u_met_data=-888888. |
---|
671 | v_met_data=-888888. |
---|
672 | u_met_qc=-888888. |
---|
673 | v_met_qc=-888888. |
---|
674 | temperature_data=-888888. |
---|
675 | temperature_qc=-888888. |
---|
676 | rh_data=-888888. |
---|
677 | rh_qc=-888888. |
---|
678 | endif |
---|
679 | |
---|
680 | ! yliu: add special processing of NPN and Range profiler |
---|
681 | ! only little_r interpolated and QC-ed data is used |
---|
682 | if(namef(2:9).eq."PROFILER") then |
---|
683 | if((u_met_qc.ge.0..and.u_met_qc.lt.30000.).and. & |
---|
684 | (v_met_qc.ge.0..and.v_met_qc.lt.30000.))then |
---|
685 | !!yliu little_r already rotated the winds |
---|
686 | ! call vect(longitude,u_met_data,v_met_data,xlonc,xlatc,xn) |
---|
687 | varobs(1,n)=u_met_data |
---|
688 | varobs(2,n)=v_met_data |
---|
689 | else |
---|
690 | varobs(1,n)=-888888. |
---|
691 | varobs(2,n)=-888888. |
---|
692 | endif |
---|
693 | else |
---|
694 | if((u_met_qc.ge.0..and.u_met_qc.lt.30000.).and. & |
---|
695 | (v_met_qc.ge.0..and.v_met_qc.lt.30000.))then |
---|
696 | !!yliu little_r already rotated the winds |
---|
697 | ! call vect(longitude,u_met_data,v_met_data,xlonc,xlatc,xn) |
---|
698 | varobs(1,n)=u_met_data |
---|
699 | varobs(2,n)=v_met_data |
---|
700 | else |
---|
701 | varobs(1,n)=-888888. |
---|
702 | varobs(2,n)=-888888. |
---|
703 | endif |
---|
704 | endif |
---|
705 | r_data=-888888. |
---|
706 | |
---|
707 | if(rh_qc.ge.0..and.rh_qc.lt.30000.)then |
---|
708 | if((pressure_qc.ge.0.).and.(temperature_qc.ge.0.).and. & |
---|
709 | (pressure_qc.lt.30000.).and.(temperature_qc.lt.30000.))then |
---|
710 | call rh2r(rh_data,temperature_data,pressure_data*.01, & |
---|
711 | r_data,0) ! yliu, change last arg from 1 to 0 |
---|
712 | else |
---|
713 | ! print *,'rh, but no t or p to convert',temperature_qc, & |
---|
714 | ! pressure_qc,n |
---|
715 | r_data=-888888. |
---|
716 | endif |
---|
717 | endif |
---|
718 | varobs(4,n)=r_data |
---|
719 | enddo ! end do imc=1,meas_count |
---|
720 | ! print *,'--- sdng n=',n,nlevs_ob(n),lev_in_ob(n),timeob(n) |
---|
721 | ! read in non-sounding obs |
---|
722 | |
---|
723 | ELSEIF(.NOT.is_sound)THEN |
---|
724 | nlevs_ob(n)=1. |
---|
725 | lev_in_ob(n)=1. |
---|
726 | read(nvol,105)slp_data,slp_qc, & |
---|
727 | ref_pres_data,ref_pres_qc, & |
---|
728 | height_data,height_qc, & |
---|
729 | temperature_data,temperature_qc, & |
---|
730 | u_met_data,u_met_qc, & |
---|
731 | v_met_data,v_met_qc, & |
---|
732 | rh_data,rh_qc, & |
---|
733 | psfc_data,psfc_qc, & |
---|
734 | precip_data,precip_qc |
---|
735 | 105 FORMAT( 1x,9(f11.3,1x,f11.3,1x)) |
---|
736 | |
---|
737 | ! Ensemble: add disturbance to sfc obs |
---|
738 | ! call srand(n) |
---|
739 | ! t_rand =+ (rand(2)-0.5)*5 |
---|
740 | ! call srand(n+100000) |
---|
741 | ! u_rand =+ (rand(2)-0.5)*5 |
---|
742 | ! call srand(n+200000) |
---|
743 | ! v_rand =+ (rand(2)-0.5)*5 |
---|
744 | ! if(temperature_qc.ge.0..and.temperature_qc.lt.30000. .and. |
---|
745 | ! & temperature_data .gt. -88880.0 ) |
---|
746 | ! & temperature_data = temperature_data + t_rand |
---|
747 | ! if((u_met_qc.ge.0..and.u_met_qc.lt.30000.).and. |
---|
748 | ! & (v_met_qc.ge.0..and.v_met_qc.lt.30000.).and. |
---|
749 | ! make sure at least 1 of the components is .ne.0 |
---|
750 | ! & (u_met_data.ne.0..or.v_met_data.ne.0.) .and. |
---|
751 | ! & (u_met_data.gt.-88880.0 .and. v_met_data.gt.-88880.0) )then |
---|
752 | ! u_met_data = u_met_data + u_rand |
---|
753 | ! v_met_data = v_met_data + v_rand |
---|
754 | ! endif |
---|
755 | ! yliu: Ens test - end |
---|
756 | |
---|
757 | !Lilis |
---|
758 | |
---|
759 | ! calculate psfc if slp is there |
---|
760 | if((psfc_qc.lt.0.).and.(slp_qc.ge.0..and.slp_qc.lt.30000.).and. & |
---|
761 | (temperature_qc.ge.0..and.temperature_qc.lt.30000.).and. & |
---|
762 | (slp_data.gt.90000.))then |
---|
763 | tbar=temperature_data+0.5*elevation*.0065 |
---|
764 | psfc_data=slp_data*exp(-elevation/(rovg*tbar)) |
---|
765 | varobs(5,n)=psfc_data*1.e-3 |
---|
766 | psfc_qc=0. |
---|
767 | endif |
---|
768 | |
---|
769 | !c *No* **Very rough** estimate of psfc from sfc elevation if UUtah ob and elev>1000m |
---|
770 | ! estimate psfc from temp and elevation |
---|
771 | ! Do not know sfc pressure in model at this point. |
---|
772 | ! if((psfc_qc.lt.0.).and.(elevation.gt.1000.).and. |
---|
773 | ! 1 (temperature_qc.ge.0..and.temperature_qc.lt.30000.) |
---|
774 | ! 1 .and.(platform(7:16).eq.'SYNOP PRET'))then |
---|
775 | if((psfc_qc.lt.0.).and. & |
---|
776 | (temperature_qc.ge.0..and.temperature_qc.lt.30000.))then |
---|
777 | tbar=temperature_data+0.5*elevation*.0065 |
---|
778 | psfc_data=100000.*exp(-elevation/(rovg*tbar)) |
---|
779 | varobs(5,n)=psfc_data*1.e-3 |
---|
780 | psfc_qc=0. |
---|
781 | endif |
---|
782 | |
---|
783 | if((psfc_qc.ge.0..and.psfc_qc.lt.30000.).and.(psfc_data.gt.70000. & |
---|
784 | .and.psfc_data.lt.105000.))then |
---|
785 | varobs(5,n)=psfc_data |
---|
786 | else |
---|
787 | varobs(5,n)=-888888. |
---|
788 | endif |
---|
789 | if(varobs(5,n).ge.0.)varobs(5,n)=varobs(5,n)*1.e-3 |
---|
790 | |
---|
791 | !Lilie |
---|
792 | |
---|
793 | |
---|
794 | !ajb Store potential temperature for WRF |
---|
795 | if(temperature_qc.ge.0..and.temperature_qc.lt.30000.)then |
---|
796 | |
---|
797 | if((psfc_qc.ge.0..and.psfc_qc.lt.30000.).and. & |
---|
798 | (psfc_data.gt.70000. .and.psfc_data.lt.105000.))then |
---|
799 | |
---|
800 | varobs(3,n) = & |
---|
801 | temperature_data*(100000./psfc_data)**RCP - t0 |
---|
802 | else |
---|
803 | varobs(3,n)=-888888. |
---|
804 | endif |
---|
805 | else |
---|
806 | varobs(3,n)=-888888. |
---|
807 | endif |
---|
808 | |
---|
809 | ! if((psfc_qc.ge.0..and.psfc_qc.lt.30000.).and.(psfc_data.gt.70000. & |
---|
810 | ! .and.psfc_data.lt.105000.))then |
---|
811 | ! varobs(5,n)=psfc_data |
---|
812 | ! else |
---|
813 | ! varobs(5,n)=-888888. |
---|
814 | ! endif |
---|
815 | ! if(varobs(5,n).ge.0.)varobs(5,n)=varobs(5,n)*1.e-3 |
---|
816 | |
---|
817 | if((u_met_qc.ge.0..and.u_met_qc.lt.30000.).and. & |
---|
818 | (v_met_qc.ge.0..and.v_met_qc.lt.30000.).and. & |
---|
819 | ! make sure at least 1 of the components is .ne.0 |
---|
820 | (u_met_data.ne.0..or.v_met_data.ne.0.))then |
---|
821 | !!yliu little_r already rotated the winds |
---|
822 | !!yliu call vect(longitude,u_met_data,v_met_data,xlonc,xlatc,xn) |
---|
823 | varobs(1,n)=u_met_data |
---|
824 | varobs(2,n)=v_met_data |
---|
825 | else |
---|
826 | varobs(1,n)=-888888. |
---|
827 | varobs(2,n)=-888888. |
---|
828 | endif |
---|
829 | !! calculate psfc if slp is there |
---|
830 | ! if((psfc_qc.lt.0.).and.(slp_qc.ge.0..and.slp_qc.lt.30000.).and. & |
---|
831 | ! (temperature_qc.ge.0..and.temperature_qc.lt.30000.).and. & |
---|
832 | ! (slp_data.gt.90000.))then |
---|
833 | ! tbar=temperature_data+0.5*elevation*.0065 |
---|
834 | ! psfc_data=slp_data*exp(-elevation/(rovg*tbar)) |
---|
835 | ! varobs(5,n)=psfc_data*1.e-3 |
---|
836 | ! psfc_qc=0. |
---|
837 | ! endif |
---|
838 | |
---|
839 | !!c *No* **Very rough** estimate of psfc from sfc elevation if UUtah ob and elev>1000m |
---|
840 | !! estimate psfc from temp and elevation |
---|
841 | !! Do not know sfc pressure in model at this point. |
---|
842 | !! if((psfc_qc.lt.0.).and.(elevation.gt.1000.).and. |
---|
843 | !! 1 (temperature_qc.ge.0..and.temperature_qc.lt.30000.) |
---|
844 | !! 1 .and.(platform(7:16).eq.'SYNOP PRET'))then |
---|
845 | ! if((psfc_qc.lt.0.).and. & |
---|
846 | ! (temperature_qc.ge.0..and.temperature_qc.lt.30000.))then |
---|
847 | ! tbar=temperature_data+0.5*elevation*.0065 |
---|
848 | ! psfc_data=100000.*exp(-elevation/(rovg*tbar)) |
---|
849 | ! varobs(5,n)=psfc_data*1.e-3 |
---|
850 | ! psfc_qc=0. |
---|
851 | ! endif |
---|
852 | |
---|
853 | ! jc |
---|
854 | ! if a ship ob has rh<70%, then throw out |
---|
855 | |
---|
856 | if(plfo(n).eq.3..and.rh_qc.ge.0..and.rh_data.lt.70.)then |
---|
857 | rh_qc=-888888. |
---|
858 | rh_data=-888888. |
---|
859 | endif |
---|
860 | ! |
---|
861 | r_data=-888888. |
---|
862 | if(rh_qc.ge.0..and.rh_qc.lt.30000.)then |
---|
863 | if((psfc_qc.ge.0..and.psfc_qc.lt.30000.) & |
---|
864 | .and.(temperature_qc.ge.0..and.temperature_qc.lt.30000.))then |
---|
865 | ! rh_data=amin1(rh_data,96.) ! yliu: do not allow surface to be saturated |
---|
866 | call rh2r(rh_data,temperature_data,psfc_data*.01, & |
---|
867 | r_data,0) ! yliu, change last arg from 1 to 0 |
---|
868 | else |
---|
869 | ! print *,'rh, but no t or p',temperature_data, |
---|
870 | ! 1 psfc_data,n |
---|
871 | r_data=-888888. |
---|
872 | endif |
---|
873 | endif |
---|
874 | varobs(4,n)=r_data |
---|
875 | ELSE |
---|
876 | IF (iprt) THEN |
---|
877 | print *,' ====== ' |
---|
878 | print *,' NO Data Found ' |
---|
879 | ENDIF |
---|
880 | ENDIF !end if(is_sound) |
---|
881 | ! END OF SFC OBS INPUT SECTION |
---|
882 | !====================================================================== |
---|
883 | !====================================================================== |
---|
884 | ! check if ob time is too early (only applies to beginning) |
---|
885 | IF(RTIMOB.LT.TBACK-fdob%WINDOW)then |
---|
886 | IF (iprt) print *,'ob too early' |
---|
887 | n=n-1 |
---|
888 | GOTO 110 |
---|
889 | ENDIF |
---|
890 | |
---|
891 | ! check if this ob is a duplicate |
---|
892 | ! this check has to be before other checks |
---|
893 | njend=n-1 |
---|
894 | if(is_sound)njend=n-meas_count |
---|
895 | do njc=1,njend |
---|
896 | ! Check that time, lat, lon, and platform all match exactly. |
---|
897 | ! Platforms 1-4 (surface obs) can match with each other. Otherwise, |
---|
898 | ! platforms have to match exactly. |
---|
899 | if( (timeob(n).eq.timeob(njc)) .and. & |
---|
900 | (rio(n).eq.rio(njc)) .and. & |
---|
901 | (rjo(n).eq.rjo(njc)) .and. & |
---|
902 | (plfo(njc).ne.99.) ) then |
---|
903 | !yliu: if two sfc obs are departed less than 1km, consider they are redundant |
---|
904 | ! (abs(rio(n)-rio(njc))*dscg.gt.1000.) & |
---|
905 | ! .or. (abs(rjo(n)-rjo(njc))*dscg.gt.1000.) & |
---|
906 | ! .or. (plfo(njc).eq.99.) )goto 801 |
---|
907 | !yliu end |
---|
908 | ! If platforms different, and either > 4, jump out |
---|
909 | if( ( (plfo(n).le.4.).and.(plfo(njc).le.4.) ) .or. & |
---|
910 | (plfo(n).eq.plfo(njc)) ) then |
---|
911 | |
---|
912 | ! if not a sounding, and levels are the same then replace first occurrence |
---|
913 | if((.not.is_sound).and.(rko(njc).eq.rko(n))) then |
---|
914 | ! print *,'dup single ob-replace ',n,inest, |
---|
915 | ! plfo(n),plfo(njc) |
---|
916 | ! this is the sfc ob replacement part |
---|
917 | VAROBS(1,njc)=VAROBS(1,n) |
---|
918 | VAROBS(2,njc)=VAROBS(2,n) |
---|
919 | VAROBS(3,njc)=VAROBS(3,n) |
---|
920 | VAROBS(4,njc)=VAROBS(4,n) |
---|
921 | VAROBS(5,njc)=VAROBS(5,n) |
---|
922 | ! don't need to switch these because they're the same |
---|
923 | ! RIO(njc)=RIO(n) |
---|
924 | ! RJO(njc)=RJO(n) |
---|
925 | ! RKO(njc)=RKO(n) |
---|
926 | ! TIMEOB(njc)=TIMEOB(n) |
---|
927 | ! nlevs_ob(njc)=nlevs_ob(n) |
---|
928 | ! lev_in_ob(njc)=lev_in_ob(n) |
---|
929 | ! plfo(njc)=plfo(n) |
---|
930 | ! end sfc ob replacement part |
---|
931 | |
---|
932 | n=n-1 |
---|
933 | goto 100 |
---|
934 | ! It's harder to fix the soundings, since the number of levels may be different |
---|
935 | ! The easiest thing to do is to just set the first occurrence to all missing, and |
---|
936 | ! keep the second occurrence, or vice versa. |
---|
937 | ! For temp or profiler keep the second, for pilot keep the one with more levs |
---|
938 | ! This is for a temp or prof sounding, equal to same |
---|
939 | ! also if a pilot, but second one has more obs |
---|
940 | elseif( (is_sound).and.(plfo(njc).eq.plfo(n)) .and. & |
---|
941 | ( (plfo(njc).eq.5.).or.(plfo(njc).eq.9.).or. & |
---|
942 | ( (plfo(njc).eq.6.).and. & |
---|
943 | (nlevs_ob(n).ge.nlevs_ob(njc)) ) ) )then |
---|
944 | IF (iprt) THEN |
---|
945 | print *,'duplicate sounding - eliminate first occurrence', & |
---|
946 | n,inest,meas_count,nlevs_ob(njc), & |
---|
947 | latitude,longitude,plfo(njc) |
---|
948 | ENDIF |
---|
949 | if(lev_in_ob(njc).ne.1.) then |
---|
950 | IF (iprt) THEN |
---|
951 | print *, 'problem ******* - dup sndg ', & |
---|
952 | lev_in_ob(njc),nlevs_ob(njc) |
---|
953 | ENDIF |
---|
954 | endif |
---|
955 | ! n=n-meas_count |
---|
956 | ! set the first sounding ob to missing |
---|
957 | do njcc=njc,njc+nint(nlevs_ob(njc))-1 |
---|
958 | VAROBS(1,njcc)=-888888. |
---|
959 | VAROBS(2,njcc)=-888888. |
---|
960 | VAROBS(3,njcc)=-888888. |
---|
961 | VAROBS(4,njcc)=-888888. |
---|
962 | VAROBS(5,njcc)=-888888. |
---|
963 | plfo(njcc)=99. |
---|
964 | enddo |
---|
965 | goto 100 |
---|
966 | ! if a pilot, but first one has more obs |
---|
967 | elseif( (is_sound).and.(plfo(njc).eq.plfo(n)) .and. & |
---|
968 | (plfo(njc).eq.6.).and. & |
---|
969 | (nlevs_ob(n).lt.nlevs_ob(njc)) )then |
---|
970 | IF (iprt) THEN |
---|
971 | print *, & |
---|
972 | 'duplicate pilot sounding - eliminate second occurrence', & |
---|
973 | n,inest,meas_count,nlevs_ob(njc), & |
---|
974 | latitude,longitude,plfo(njc) |
---|
975 | ENDIF |
---|
976 | if(lev_in_ob(njc).ne.1.) then |
---|
977 | IF (iprt) THEN |
---|
978 | print *, 'problem ******* - dup sndg ', & |
---|
979 | lev_in_ob(njc),nlevs_ob(njc) |
---|
980 | ENDIF |
---|
981 | endif |
---|
982 | n=n-meas_count |
---|
983 | |
---|
984 | !ajb Reset timeob for discarded indices. |
---|
985 | do imc = n+1, n+meas_count |
---|
986 | timeob(imc) = 99999. |
---|
987 | enddo |
---|
988 | goto 100 |
---|
989 | ! This is for a single-level satellite upper air ob - replace first |
---|
990 | elseif( (is_sound).and. & |
---|
991 | (nlevs_ob(njc).eq.1.).and. & |
---|
992 | (nlevs_ob(n).eq.1.).and. & |
---|
993 | (varobs(5,njc).eq.varobs(5,n)).and. & |
---|
994 | (plfo(njc).eq.7.).and.(plfo(n).eq.7.) ) then |
---|
995 | IF (iprt) print *, & |
---|
996 | 'duplicate single lev sat-wind ob - replace first',n, & |
---|
997 | inest,meas_count,varobs(5,n) |
---|
998 | ! this is the single ua ob replacement part |
---|
999 | VAROBS(1,njc)=VAROBS(1,n) |
---|
1000 | VAROBS(2,njc)=VAROBS(2,n) |
---|
1001 | VAROBS(3,njc)=VAROBS(3,n) |
---|
1002 | VAROBS(4,njc)=VAROBS(4,n) |
---|
1003 | VAROBS(5,njc)=VAROBS(5,n) |
---|
1004 | ! don't need to switch these because they're the same |
---|
1005 | ! RIO(njc)=RIO(n) |
---|
1006 | ! RJO(njc)=RJO(n) |
---|
1007 | ! RKO(njc)=RKO(n) |
---|
1008 | ! TIMEOB(njc)=TIMEOB(n) |
---|
1009 | ! nlevs_ob(njc)=nlevs_ob(n) |
---|
1010 | ! lev_in_ob(njc)=lev_in_ob(n) |
---|
1011 | ! plfo(njc)=plfo(n) |
---|
1012 | ! end single ua ob replacement part |
---|
1013 | n=n-1 |
---|
1014 | goto 100 |
---|
1015 | else |
---|
1016 | IF (iprt) THEN |
---|
1017 | print *,'duplicate location, but no match otherwise',n,njc, & |
---|
1018 | plfo(n),varobs(5,n),nlevs_ob(n),lev_in_ob(n), & |
---|
1019 | plfo(njc),varobs(5,njc),nlevs_ob(njc),lev_in_ob(njc) |
---|
1020 | ENDIF |
---|
1021 | endif |
---|
1022 | endif |
---|
1023 | endif |
---|
1024 | ! end of njc do loop |
---|
1025 | enddo |
---|
1026 | |
---|
1027 | ! check if ob is a sams ob that came in via UUtah - discard |
---|
1028 | if( plfo(n).eq.4..and.(platform(7:16).eq.'SYNOP PRET').and. & |
---|
1029 | (id(7:15).eq.'METNET= 3') )then |
---|
1030 | ! print *,'elim metnet=3',latitude,longitude,rtimob |
---|
1031 | n=n-1 |
---|
1032 | goto 100 |
---|
1033 | endif |
---|
1034 | |
---|
1035 | ! check if ob is in the domain |
---|
1036 | if( (ri.lt.2.).or.(ri.gt.real(e_we-1)).or.(rj.lt.2.).or. & |
---|
1037 | (rj.gt.real(e_sn-1)) ) then |
---|
1038 | ! if (iprt) write(6,*) 'Obs out of coarse mesh domain' |
---|
1039 | ! write(6,*) 'we_maxcg-1 = ',real(we_maxcg-1) |
---|
1040 | ! write(6,*) 'sn_maxcg-1 = ',real(sn_maxcg-1) |
---|
1041 | |
---|
1042 | ! n=n-1 |
---|
1043 | ! if(is_sound)n=n-meas_count+1 |
---|
1044 | |
---|
1045 | n=n-meas_count |
---|
1046 | !ajb Reset timeob for discarded indices. |
---|
1047 | do imc = n+1, n+meas_count |
---|
1048 | timeob(imc) = 99999. |
---|
1049 | enddo |
---|
1050 | goto 100 |
---|
1051 | endif |
---|
1052 | |
---|
1053 | ! check if an upper air ob is too high |
---|
1054 | ! the ptop here is hardwired |
---|
1055 | ! this check has to come after other checks - usually the last few |
---|
1056 | ! upper air obs are too high |
---|
1057 | ! if(is_sound)then |
---|
1058 | ! njc=meas_count |
---|
1059 | ! do jcj=meas_count,1,-1 |
---|
1060 | ! 6. is 60 mb - hardwired |
---|
1061 | ! if((varobs(5,n).lt.6.).and.(varobs(5,n).gt.0.))then |
---|
1062 | ! print *,'obs too high - eliminate,n,p=',n,varobs(5,n) |
---|
1063 | ! n=n-1 |
---|
1064 | ! else |
---|
1065 | ! if(varobs(5,n).gt.0.)goto 100 |
---|
1066 | ! endif |
---|
1067 | ! enddo |
---|
1068 | ! endif |
---|
1069 | ! |
---|
1070 | IF(TIMEOB(N).LT.fdob%RTLAST) THEN |
---|
1071 | IF (iprt) THEN |
---|
1072 | PRINT *,'2 OBS ARE NOT IN CHRONOLOGICAL ORDER' |
---|
1073 | PRINT *,'NEW YEAR?' |
---|
1074 | print *,'timeob,rtlast,n=',timeob(n),fdob%rtlast,n |
---|
1075 | ENDIF |
---|
1076 | STOP 111 |
---|
1077 | ELSE |
---|
1078 | fdob%RTLAST=TIMEOB(N) |
---|
1079 | ENDIF |
---|
1080 | GOTO 100 |
---|
1081 | 111 CONTINUE |
---|
1082 | !********************************************************************** |
---|
1083 | ! -------------- END BIG 100 LOOP OVER N -------------- |
---|
1084 | !********************************************************************** |
---|
1085 | IF (iprt) write(6,5403) NVOL,XTIME |
---|
1086 | IEOF(inest)=1 |
---|
1087 | |
---|
1088 | close(NVOLA+INEST-1) |
---|
1089 | IF (iprt) print *,'closed fdda file for inest=',inest,nsta |
---|
1090 | |
---|
1091 | ! if(nsta.eq.1.and.timeob(1).gt.9.e4)nsta=0 |
---|
1092 | goto 1001 |
---|
1093 | |
---|
1094 | ! THE OBSERVATION ARRAYS ARE FULL AND THE MOST RECENTLY |
---|
1095 | ! ACQUIRED OBS STILL HAS TIMEOB .LE. TFORWD. SO START |
---|
1096 | ! DECREASING THE SIZE OF THE WINDOW |
---|
1097 | ! get here if too many obs |
---|
1098 | 120 CONTINUE |
---|
1099 | IF (iprt) THEN |
---|
1100 | write(6,121) N,NIOBF |
---|
1101 | write(6,122) |
---|
1102 | ENDIF |
---|
1103 | STOP 122 |
---|
1104 | fdob%WINDOW=fdob%WINDOW-0.1*TWINDO |
---|
1105 | IF(TWINDO.LT.0)STOP 120 |
---|
1106 | ! IF THE WINDOW BECOMES NEGATIVE, THE INCOMING DATA IS |
---|
1107 | ! PROBABLY GARBLED. STOP. |
---|
1108 | GOTO 10 |
---|
1109 | ! |
---|
1110 | ! READ CYCLE IS COMPLETED. DETERMINE THE NUMBER OF OBS IN |
---|
1111 | ! THE CURRENT WINDOW |
---|
1112 | ! |
---|
1113 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
1114 | ! BUT FIRST, WHEN KTAU.EQ.0 (OR IN GENERAL, KTAUR), DISCARD THE |
---|
1115 | ! "OLD" OBS FIRST... |
---|
1116 | 130 CONTINUE |
---|
1117 | |
---|
1118 | ! get here if at end of file, or if obs time is beyond what we |
---|
1119 | ! need right now |
---|
1120 | IF(KTAU.EQ.KTAUR)THEN |
---|
1121 | NSTA=0 |
---|
1122 | keep_obs : DO N=1,NIOBF |
---|
1123 | |
---|
1124 | ! try to keep all obs, but just don't use yet |
---|
1125 | ! (don't want to throw away last obs read in - especially if |
---|
1126 | ! its a sounding, in which case it looks like many obs) |
---|
1127 | IF(TIMEOB(N).GT.9.e4) EXIT keep_obs |
---|
1128 | if(timeob(n).gt.tforwd) then |
---|
1129 | if(iprt) write(6,951)inest,n,timeob(n),tforwd |
---|
1130 | 951 FORMAT('saving ob beyond window,inest,n,timeob,tforwd=', & |
---|
1131 | 2i5,2f13.4) |
---|
1132 | endif |
---|
1133 | NSTA=N |
---|
1134 | ENDDO keep_obs |
---|
1135 | |
---|
1136 | NDUM=0 |
---|
1137 | ! make time=99999. if ob is too old |
---|
1138 | ! print *,'tback,nsta=',tback,nsta |
---|
1139 | old_obs : DO N=1,NSTA+1 |
---|
1140 | IF((TIMEOB(N)-TBACK).LT.0)THEN |
---|
1141 | TIMEOB(N)=99999. |
---|
1142 | ENDIF |
---|
1143 | ! print *,'n,ndum,timeob=',n,ndum,timeob(n) |
---|
1144 | IF(TIMEOB(N).LT.9.E4) EXIT old_obs |
---|
1145 | NDUM=N |
---|
1146 | ENDDO old_obs |
---|
1147 | |
---|
1148 | ! REMOVE OLD OBS DENOTED BY 99999. AT THE FRONT OF TIMEOB ARRAY |
---|
1149 | IF (iprt) THEN |
---|
1150 | print *,'after 190 ndum=',ndum,nsta |
---|
1151 | ENDIF |
---|
1152 | NDUM=ABS(NDUM) |
---|
1153 | NMOVE=NIOBF-NDUM |
---|
1154 | IF( NMOVE.GT.0 .AND. NDUM.NE.0) THEN |
---|
1155 | DO N=1,NMOVE |
---|
1156 | VAROBS(1,N)=VAROBS(1,N+NDUM) |
---|
1157 | VAROBS(2,N)=VAROBS(2,N+NDUM) |
---|
1158 | VAROBS(3,N)=VAROBS(3,N+NDUM) |
---|
1159 | VAROBS(4,N)=VAROBS(4,N+NDUM) |
---|
1160 | VAROBS(5,N)=VAROBS(5,N+NDUM) |
---|
1161 | RJO(N)=RJO(N+NDUM) |
---|
1162 | RIO(N)=RIO(N+NDUM) |
---|
1163 | RKO(N)=RKO(N+NDUM) |
---|
1164 | TIMEOB(N)=TIMEOB(N+NDUM) |
---|
1165 | nlevs_ob(n)=nlevs_ob(n+ndum) |
---|
1166 | lev_in_ob(n)=lev_in_ob(n+ndum) |
---|
1167 | plfo(n)=plfo(n+ndum) |
---|
1168 | ENDDO |
---|
1169 | ENDIF |
---|
1170 | ! moved obs up. now fill remaining space with 99999. |
---|
1171 | NOPEN=NMOVE+1 |
---|
1172 | IF(NOPEN.LE.NIOBF) THEN |
---|
1173 | DO N=NOPEN,NIOBF |
---|
1174 | VAROBS(1,N)=99999. |
---|
1175 | VAROBS(2,N)=99999. |
---|
1176 | VAROBS(3,N)=99999. |
---|
1177 | VAROBS(4,N)=99999. |
---|
1178 | VAROBS(5,N)=99999. |
---|
1179 | RIO(N)=99999. |
---|
1180 | RJO(N)=99999. |
---|
1181 | RKO(N)=99999. |
---|
1182 | TIMEOB(N)=99999. |
---|
1183 | ENDDO |
---|
1184 | ENDIF |
---|
1185 | ENDIF |
---|
1186 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
1187 | NSTA=0 |
---|
1188 | ! print *,'nsta at restart setting is ',nsta |
---|
1189 | ! recalculate nsta after moving things around |
---|
1190 | recalc : DO N=1,NIOBF |
---|
1191 | ! try to save all obs - don't throw away latest read in |
---|
1192 | IF(TIMEOB(N).GT.9.e4) EXIT recalc |
---|
1193 | NSTA=N |
---|
1194 | ! nsta=n-1 ! yliu test |
---|
1195 | ENDDO recalc |
---|
1196 | |
---|
1197 | ! Find the number of stations that are actually within the time window. |
---|
1198 | nstaw = nvals_le_limit(nsta, timeob, tforwd) |
---|
1199 | |
---|
1200 | ! Print obs information, according to nobs_prt, but limit to 100 max. |
---|
1201 | if (iprt) then |
---|
1202 | ips = min(nstaw,nobs_prt,100) |
---|
1203 | if(ips.gt.0) then |
---|
1204 | write(6,'(/a,i4,a,i2)') 'MASS-PT LOCATIONS FOR FIRST',ips, & |
---|
1205 | ' OBSERVATIONS FOR NEST ',inest |
---|
1206 | write(6,*) ' OBS# I J LAT LON TIME(hrs)' |
---|
1207 | endif |
---|
1208 | ! Note: rio and rjo are referenced to non-staggered grid (not mass-point!) |
---|
1209 | ! Hence subtract .5 from each to get mass-point coords. |
---|
1210 | do n=1,ips |
---|
1211 | write(6,'(2x,i4,2f8.3,2f8.2,3x,f8.5)') & |
---|
1212 | n,rio(n)-.5,rjo(n)-.5,lat_prt(n),lon_prt(n),timeob(n) |
---|
1213 | enddo |
---|
1214 | endif |
---|
1215 | |
---|
1216 | IF (iprt) write(6,160) KTAU,XTIME,NSTAW |
---|
1217 | IF(KTAU.EQ.KTAUR)THEN |
---|
1218 | IF(nudge_opt.EQ.1)THEN |
---|
1219 | TWDOP=TWINDO*60. |
---|
1220 | IF (iprt) THEN |
---|
1221 | write(6,1449) INEST,RINXY,RINSIG,TWDOP |
---|
1222 | IF(ISWIND.EQ.1) write(6,1450) GIV |
---|
1223 | IF(ISTEMP.EQ.1) write(6,1451) GIT |
---|
1224 | IF(ISMOIS.EQ.1) write(6,1452) GIQ |
---|
1225 | IF(ISPSTR.EQ.1) write(6,1453) GIP |
---|
1226 | ENDIF |
---|
1227 | ENDIF |
---|
1228 | ENDIF |
---|
1229 | IF(KTAU.EQ.KTAUR)THEN |
---|
1230 | IF (iprt) THEN |
---|
1231 | write(6,553) |
---|
1232 | write(6,554) |
---|
1233 | ENDIF |
---|
1234 | IF(fdob%IWTSIG.NE.1)THEN |
---|
1235 | IF (iprt) THEN |
---|
1236 | write(6,555) |
---|
1237 | write(6,556) fdob%RINFMN*RINXY,fdob%RINFMX*RINXY,fdob%PFREE*10. |
---|
1238 | ENDIF |
---|
1239 | IF(fdob%RINFMN.GT.fdob%RINFMX)STOP 556 |
---|
1240 | ! IS MINIMUM GREATER THAN MAXIMUM? |
---|
1241 | IF (iprt) write(6,557) fdob%DPSMX*10.,fdob%DCON |
---|
1242 | IF(fdob%DPSMX.GT.10.)STOP 557 |
---|
1243 | ENDIF |
---|
1244 | ENDIF |
---|
1245 | ! IS DPSMX IN CB? |
---|
1246 | |
---|
1247 | IF(KTAU.EQ.KTAUR)THEN |
---|
1248 | IF (iprt) write(6,601) INEST,IONF |
---|
1249 | ENDIF |
---|
1250 | fdob%NSTAT=NSTA |
---|
1251 | fdob%NSTAW=NSTAW |
---|
1252 | |
---|
1253 | 555 FORMAT(1X,' ABOVE THE SURFACE LAYER, OBS NUDGING IS PERFORMED', & |
---|
1254 | ' ON PRESSURE LEVELS,') |
---|
1255 | 556 FORMAT(1X,' WHERE RINXY VARIES LINEARLY FROM ',E11.3,' KM AT', & |
---|
1256 | ' THE SURFACE TO ',E11.3,' KM AT ',F7.2,' MB AND ABOVE') |
---|
1257 | 557 FORMAT(1X,' IN THE SURFACE LAYER, WXY IS A FUNCTION OF ', & |
---|
1258 | 'DPSMX = ',F7.2,' MB WITH DCON = ',E11.3, & |
---|
1259 | ' - SEE SUBROUTINE NUDOB') |
---|
1260 | 601 FORMAT('0','FOR EFFICIENCY, THE OBS NUDGING FREQUENCY ', & |
---|
1261 | 'FOR MESH #',I2,' IS ',1I2,' CGM TIMESTEPS ',/) |
---|
1262 | 121 FORMAT('0',' WARNING: NOBS = ',I4,' IS GREATER THAN NIOBF = ', & |
---|
1263 | I4,': INCREASE PARAMETER NIOBF') |
---|
1264 | 5403 FORMAT(1H0,'-------------EOF REACHED FOR NVOL = ',I3, & |
---|
1265 | ' AND XTIME = ',F10.2,'-------------------') |
---|
1266 | 122 FORMAT(1X,' ...OR THE CODE WILL REDUCE THE TIME WINDOW') |
---|
1267 | 160 FORMAT('0','****** CALL IN4DOB AT KTAU = ',I5,' AND XTIME = ', & |
---|
1268 | F10.2,': NSTA = ',I7,' ******') |
---|
1269 | 1449 FORMAT(1H0,'*****NUDGING INDIVIDUAL OBS ON MESH #',I2, & |
---|
1270 | ' WITH RINXY = ', & |
---|
1271 | E11.3,' KM, RINSIG = ',E11.3,' AND TWINDO (HALF-PERIOD) = ', & |
---|
1272 | E11.3,' MIN') |
---|
1273 | 1450 FORMAT(1X,'NUDGING IND. OBS WINDS WITH GIV = ',E11.3) |
---|
1274 | 1451 FORMAT(1X,'NUDGING IND. OBS TEMPERATURE WITH GIT = ',E11.3) |
---|
1275 | 1452 FORMAT(1X,'NUDGING IND. OBS MOISTURE WITH GIQ = ',E11.3) |
---|
1276 | 1453 FORMAT(1X,'NUDGING IND. OBS SURFACE PRESSURE WITH GIP = ,'E11.3) |
---|
1277 | 553 FORMAT(1X,'BY DEFAULT: OBS NUDGING OF TEMPERATURE AND MOISTURE ', & |
---|
1278 | 'IS RESTRICTED TO ABOVE THE BOUNDARY LAYER') |
---|
1279 | 554 FORMAT(1X,'...WHILE OBS NUDGING OF WIND IS INDEPENDENT OF THE ', & |
---|
1280 | 'BOUNDARY LAYER') |
---|
1281 | |
---|
1282 | RETURN |
---|
1283 | END SUBROUTINE in4dob |
---|
1284 | |
---|
1285 | SUBROUTINE julgmt(mdate,julgmtn,timanl,julday,gmt,ind) |
---|
1286 | ! CONVERT MDATE YYMMDDHH TO JULGMT (JULIAN DAY * 100. +GMT) |
---|
1287 | ! AND TO TIMANL (TIME IN MINUTES WITH RESPECT TO MODEL TIME) |
---|
1288 | ! IF IND=0 INPUT MDATE, OUTPUT JULGMTN AND TIMANL |
---|
1289 | ! IF IND=1 INPUT TIMANL, OUTPUT JULGMTN |
---|
1290 | ! IF IND=2 INPUT JULGMTN, OUTPUT TIMANL |
---|
1291 | INTEGER, intent(in) :: MDATE |
---|
1292 | REAL, intent(out) :: JULGMTN |
---|
1293 | REAL, intent(out) :: TIMANL |
---|
1294 | INTEGER, intent(in) :: JULDAY |
---|
1295 | REAL, intent(in) :: GMT |
---|
1296 | INTEGER, intent(in) :: IND |
---|
1297 | |
---|
1298 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
1299 | real :: MO(12), rjulanl, houranl, rhr |
---|
1300 | |
---|
1301 | integer :: iyr, idate1, imo, idy, ihr, my1, my2, my3, ileap |
---|
1302 | integer :: juldayn, juldanl, idymax, mm |
---|
1303 | |
---|
1304 | |
---|
1305 | IF(IND.EQ.2)GOTO 150 |
---|
1306 | IYR=INT(MDATE/1000000.+0.001) |
---|
1307 | IDATE1=MDATE-IYR*1000000 |
---|
1308 | IMO=INT(IDATE1/10000.+0.001) |
---|
1309 | IDY=INT((IDATE1-IMO*10000.)/100.+0.001) |
---|
1310 | IHR=IDATE1-IMO*10000-IDY*100 |
---|
1311 | MO(1)=31 |
---|
1312 | MO(2)=28 |
---|
1313 | ! IS THE YEAR A LEAP YEAR? (IN THIS CENTURY) |
---|
1314 | IYR=IYR+1900 |
---|
1315 | MY1=MOD(IYR,4) |
---|
1316 | MY2=MOD(IYR,100) |
---|
1317 | MY3=MOD(IYR,400) |
---|
1318 | ILEAP=0 |
---|
1319 | ! jc |
---|
1320 | ! IF(MY1.EQ.0.AND.MY2.NE.0.OR.MY3.EQ.0)THEN |
---|
1321 | IF(MY1.EQ.0)THEN |
---|
1322 | ILEAP=1 |
---|
1323 | MO(2)=29 |
---|
1324 | ENDIF |
---|
1325 | IF(IND.EQ.1)GOTO 200 |
---|
1326 | MO(3)=31 |
---|
1327 | MO(4)=30 |
---|
1328 | MO(5)=31 |
---|
1329 | MO(6)=30 |
---|
1330 | MO(7)=31 |
---|
1331 | MO(8)=31 |
---|
1332 | MO(9)=30 |
---|
1333 | MO(10)=31 |
---|
1334 | MO(11)=30 |
---|
1335 | MO(12)=31 |
---|
1336 | JULDAYN=0 |
---|
1337 | DO 100 MM=1,IMO-1 |
---|
1338 | JULDAYN=JULDAYN+MO(MM) |
---|
1339 | 100 CONTINUE |
---|
1340 | |
---|
1341 | IF(IHR.GE.24)THEN |
---|
1342 | IDY=IDY+1 |
---|
1343 | IHR=IHR-24 |
---|
1344 | ENDIF |
---|
1345 | JULGMTN=(JULDAYN+IDY)*100.+IHR |
---|
1346 | ! CONVERT JULGMT TO TIMANL WRT MODEL TIME IN MINUTES (XTIME) |
---|
1347 | 150 CONTINUE |
---|
1348 | JULDANL=INT(JULGMTN/100.+0.000001) |
---|
1349 | RJULANL=FLOAT(JULDANL)*100. |
---|
1350 | HOURANL=JULGMTN-RJULANL |
---|
1351 | TIMANL=(FLOAT(JULDANL-JULDAY)*24.-GMT+HOURANL)*60. |
---|
1352 | RETURN |
---|
1353 | 200 CONTINUE |
---|
1354 | RHR=GMT+TIMANL/60.+0.000001 |
---|
1355 | IDY=JULDAY |
---|
1356 | IDYMAX=365+ILEAP |
---|
1357 | 300 IF(RHR.GE.24.0)THEN |
---|
1358 | RHR=RHR-24.0 |
---|
1359 | IDY=IDY+1 |
---|
1360 | GOTO 300 |
---|
1361 | ENDIF |
---|
1362 | IF(IDY.GT.IDYMAX)IDY=IDY-IDYMAX |
---|
1363 | JULGMTN=FLOAT(IDY)*100.+RHR |
---|
1364 | RETURN |
---|
1365 | END SUBROUTINE julgmt |
---|
1366 | |
---|
1367 | SUBROUTINE rh2r(rh,t,p,r,iice) |
---|
1368 | |
---|
1369 | ! convert rh to r |
---|
1370 | ! if iice=1, use saturation with respect to ice |
---|
1371 | ! rh is 0-100. |
---|
1372 | ! r is g/g |
---|
1373 | ! t is K |
---|
1374 | ! p is mb |
---|
1375 | ! |
---|
1376 | REAL, intent(in) :: rh |
---|
1377 | REAL, intent(in) :: t |
---|
1378 | REAL, intent(in) :: p |
---|
1379 | REAL, intent(out) :: r |
---|
1380 | INTEGER, intent(in) :: iice |
---|
1381 | |
---|
1382 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
1383 | real eps, e0, eslcon1, eslcon2, esicon1, esicon2, t0, rh1 |
---|
1384 | real esat, rsat |
---|
1385 | |
---|
1386 | eps=0.62197 |
---|
1387 | e0=6.1078 |
---|
1388 | eslcon1=17.2693882 |
---|
1389 | eslcon2=35.86 |
---|
1390 | esicon1=21.8745584 |
---|
1391 | esicon2=7.66 |
---|
1392 | t0=260. |
---|
1393 | |
---|
1394 | ! print *,'rh2r input=',rh,t,p |
---|
1395 | rh1=rh*.01 |
---|
1396 | |
---|
1397 | if(iice.eq.1.and.t.le.t0)then |
---|
1398 | esat=e0*exp(esicon1*(t-273.16)/(t-esicon2)) |
---|
1399 | else |
---|
1400 | esat=e0*exp(eslcon1*(t-273.16)/(t-eslcon2)) |
---|
1401 | endif |
---|
1402 | rsat=eps*esat/(p-esat) |
---|
1403 | ! print *,'rsat,esat=',rsat,esat |
---|
1404 | r=rh1*rsat |
---|
1405 | |
---|
1406 | ! print *,'rh2r rh,t,p,r=',rh1,t,p,r |
---|
1407 | |
---|
1408 | return |
---|
1409 | END SUBROUTINE rh2r |
---|
1410 | |
---|
1411 | SUBROUTINE rh2rb(rh,t,p,r,iice) |
---|
1412 | |
---|
1413 | ! convert rh to r |
---|
1414 | ! if iice=1, use daturation with respect to ice |
---|
1415 | ! rh is 0-100. |
---|
1416 | ! r is g/g |
---|
1417 | ! t is K |
---|
1418 | ! p is mb |
---|
1419 | |
---|
1420 | REAL, intent(in) :: rh |
---|
1421 | REAL, intent(in) :: t |
---|
1422 | REAL, intent(in) :: p |
---|
1423 | REAL, intent(out) :: r |
---|
1424 | INTEGER, intent(in) :: iice |
---|
1425 | |
---|
1426 | !*** DECLARATIONS FOR IMPLICIT NONE |
---|
1427 | real eps, e0, eslcon1, eslcon2, esicon1, esicon2, t0, rh1 |
---|
1428 | real esat, rsat |
---|
1429 | |
---|
1430 | eps=0.622 |
---|
1431 | e0=6.112 |
---|
1432 | eslcon1=17.67 |
---|
1433 | eslcon2=29.65 |
---|
1434 | esicon1=22.514 |
---|
1435 | esicon2=6.15e3 |
---|
1436 | t0=273.15 |
---|
1437 | |
---|
1438 | print *,'rh2r input=',rh,t,p |
---|
1439 | rh1=rh*.01 |
---|
1440 | |
---|
1441 | if(iice.eq.1.and.t.le.t0)then |
---|
1442 | esat=e0*exp(esicon1-esicon2/t) |
---|
1443 | else |
---|
1444 | esat=e0*exp(eslcon1*(t-t0)/(t-eslcon2)) |
---|
1445 | endif |
---|
1446 | rsat=eps*esat/(p-esat) |
---|
1447 | ! print *,'rsat,esat=',rsat,esat |
---|
1448 | r=rh1*eps*rsat/(eps+rsat*(1.-rh1)) |
---|
1449 | |
---|
1450 | print *,'rh2r rh,t,p,r=',rh1,t,p,r |
---|
1451 | |
---|
1452 | return |
---|
1453 | END SUBROUTINE rh2rb |
---|
1454 | |
---|
1455 | SUBROUTINE set_projection (obs_proj, map_proj, cen_lat, cen_lon, & |
---|
1456 | true_lat1, true_lat2, stand_lon, & |
---|
1457 | known_lat, known_lon, & |
---|
1458 | e_we, e_sn, dxm, dym ) |
---|
1459 | |
---|
1460 | USE module_llxy |
---|
1461 | |
---|
1462 | !************************************************************************* |
---|
1463 | ! Purpose: Set map projection information which will be used to map the |
---|
1464 | ! observation (lat,lon) location to its corresponding (x,y) |
---|
1465 | ! location on the WRF (coarse) grid. using the selected map |
---|
1466 | ! projection (e.g., Lambert, Mercator, Polar Stereo, etc). |
---|
1467 | !************************************************************************* |
---|
1468 | |
---|
1469 | IMPLICIT NONE |
---|
1470 | |
---|
1471 | TYPE(PROJ_INFO), intent(out) :: obs_proj ! structure for obs projection info. |
---|
1472 | INTEGER, intent(in) :: map_proj ! map projection index |
---|
1473 | REAL, intent(in) :: cen_lat ! center latitude for map projection |
---|
1474 | REAL, intent(in) :: cen_lon ! center longiture for map projection |
---|
1475 | REAL, intent(in) :: true_lat1 ! truelat1 for map projection |
---|
1476 | REAL, intent(in) :: true_lat2 ! truelat2 for map projection |
---|
1477 | REAL, intent(in) :: stand_lon ! standard longitude for map projection |
---|
1478 | INTEGER, intent(in) :: e_we ! max grid index in south-north coordinate |
---|
1479 | INTEGER, intent(in) :: e_sn ! max grid index in west-east coordinate |
---|
1480 | REAL, intent(in) :: known_lat ! latitude of domain origin point (i,j)=(1,1) |
---|
1481 | REAL, intent(in) :: known_lon ! longigude of domain origin point (i,j)=(1,1) |
---|
1482 | REAL, intent(in) :: dxm ! grid size in x (meters) |
---|
1483 | REAL, intent(in) :: dym ! grid size in y (meters) |
---|
1484 | |
---|
1485 | ! Set up map transformation structure |
---|
1486 | CALL map_init(obs_proj) |
---|
1487 | |
---|
1488 | ! Mercator |
---|
1489 | IF (map_proj == PROJ_MERC) THEN |
---|
1490 | CALL map_set(PROJ_MERC, obs_proj, & |
---|
1491 | truelat1 = true_lat1, & |
---|
1492 | lat1 = known_lat, & |
---|
1493 | lon1 = known_lon, & |
---|
1494 | knowni = 1., & |
---|
1495 | knownj = 1., & |
---|
1496 | dx = dxm) |
---|
1497 | |
---|
1498 | ! Lambert conformal |
---|
1499 | ELSE IF (map_proj == PROJ_LC) THEN |
---|
1500 | CALL map_set(PROJ_LC, obs_proj, & |
---|
1501 | truelat1 = true_lat1, & |
---|
1502 | truelat2 = true_lat2, & |
---|
1503 | stdlon = stand_lon, & |
---|
1504 | lat1 = known_lat, & |
---|
1505 | lon1 = known_lon, & |
---|
1506 | knowni = 1., & |
---|
1507 | knownj = 1., & |
---|
1508 | dx = dxm) |
---|
1509 | |
---|
1510 | ! Polar stereographic |
---|
1511 | ELSE IF (map_proj == PROJ_PS) THEN |
---|
1512 | CALL map_set(PROJ_PS, obs_proj, & |
---|
1513 | truelat1 = true_lat1, & |
---|
1514 | stdlon = stand_lon, & |
---|
1515 | lat1 = known_lat, & |
---|
1516 | lon1 = known_lon, & |
---|
1517 | knowni = 1., & |
---|
1518 | knownj = 1., & |
---|
1519 | dx = dxm) |
---|
1520 | ! Cassini (global ARW) |
---|
1521 | ELSE IF (map_proj == PROJ_CASSINI) THEN |
---|
1522 | CALL map_set(PROJ_CASSINI, obs_proj, & |
---|
1523 | latinc = dym*360.0/(2.0*EARTH_RADIUS_M*PI), & |
---|
1524 | loninc = dxm*360.0/(2.0*EARTH_RADIUS_M*PI), & |
---|
1525 | lat1 = known_lat, & |
---|
1526 | lon1 = known_lon, & |
---|
1527 | ! We still need to get POLE_LAT and POLE_LON metadata variables before |
---|
1528 | ! this will work for rotated poles. |
---|
1529 | lat0 = 90.0, & |
---|
1530 | lon0 = 0.0, & |
---|
1531 | knowni = 1., & |
---|
1532 | knownj = 1., & |
---|
1533 | stdlon = stand_lon) |
---|
1534 | |
---|
1535 | ! Rotated latitude-longitude |
---|
1536 | ELSE IF (map_proj == PROJ_ROTLL) THEN |
---|
1537 | CALL map_set(PROJ_ROTLL, obs_proj, & |
---|
1538 | ! I have no idea how this should work for NMM nested domains |
---|
1539 | ixdim = e_we-1, & |
---|
1540 | jydim = e_sn-1, & |
---|
1541 | phi = real(e_sn-2)*dym/2.0, & |
---|
1542 | lambda = real(e_we-2)*dxm, & |
---|
1543 | lat1 = cen_lat, & |
---|
1544 | lon1 = cen_lon, & |
---|
1545 | latinc = dym, & |
---|
1546 | loninc = dxm, & |
---|
1547 | stagger = HH) |
---|
1548 | |
---|
1549 | END IF |
---|
1550 | |
---|
1551 | ! write(6,*) 'ajb init: map_proj = ',map_proj |
---|
1552 | ! write(6,*) 'ajb: after setting map:' |
---|
1553 | ! write(6,*) 'truelat1 = ',obs_proj%truelat1 |
---|
1554 | ! write(6,*) 'truelat2 = ',obs_proj%truelat2 |
---|
1555 | ! write(6,*) 'stdlon = ',obs_proj%stdlon |
---|
1556 | ! write(6,*) 'lat1 = ',obs_proj%lat1 |
---|
1557 | ! write(6,*) 'lon1 = ',obs_proj%lon1 |
---|
1558 | ! write(6,*) 'knowni = ',obs_proj%knowni |
---|
1559 | ! write(6,*) 'knownj = ',obs_proj%knownj |
---|
1560 | ! write(6,*) 'dx = ',obs_proj%dx |
---|
1561 | |
---|
1562 | END SUBROUTINE set_projection |
---|
1563 | |
---|
1564 | INTEGER FUNCTION nvals_le_limit(isize, values, limit) |
---|
1565 | !------------------------------------------------------------------------------ |
---|
1566 | ! PURPOSE: Return the number of values in a (real) non-decreasing array that |
---|
1567 | ! are less than or equal to the specified upper limit. |
---|
1568 | ! NOTE: It is important that the array is non-decreasing! |
---|
1569 | ! |
---|
1570 | !------------------------------------------------------------------------------ |
---|
1571 | IMPLICIT NONE |
---|
1572 | |
---|
1573 | INTEGER, INTENT(IN) :: isize ! Size of input array |
---|
1574 | REAL, INTENT(IN) :: values(isize) ! Input array of reals |
---|
1575 | REAL, INTENT(IN) :: limit ! Upper limit |
---|
1576 | |
---|
1577 | ! Local variables |
---|
1578 | integer :: n |
---|
1579 | |
---|
1580 | ! Search the array from largest to smallest values. |
---|
1581 | find_nvals: DO n = isize, 1, -1 |
---|
1582 | if(values(n).le.limit) EXIT find_nvals |
---|
1583 | ENDDO find_nvals |
---|
1584 | nvals_le_limit = n |
---|
1585 | |
---|
1586 | RETURN |
---|
1587 | END FUNCTION nvals_le_limit |
---|
1588 | |
---|
1589 | #endif |
---|
1590 | !----------------------------------------------------------------------- |
---|
1591 | ! End subroutines for in4dob |
---|
1592 | !----------------------------------------------------------------------- |
---|