[2759] | 1 | !!WRF:MODEL_LAYER:PHYSICS |
---|
| 2 | ! |
---|
| 3 | MODULE module_sf_gfs |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | CONTAINS |
---|
| 7 | |
---|
| 8 | !------------------------------------------------------------------- |
---|
| 9 | SUBROUTINE SF_GFS(U3D,V3D,T3D,QV3D,P3D, & |
---|
| 10 | CP,ROVCP,R,XLV,PSFC,CHS,CHS2,CQS2,CPM, & |
---|
| 11 | ZNT,UST,PSIM,PSIH, & |
---|
| 12 | XLAND,HFX,QFX,LH,TSK,FLHC,FLQC, & |
---|
| 13 | QGH,QSFC,U10,V10, & |
---|
| 14 | GZ1OZ0,WSPD,BR,ISFFLX, & |
---|
| 15 | EP1,EP2,KARMAN,itimestep, & |
---|
| 16 | ids,ide, jds,jde, kds,kde, & |
---|
| 17 | ims,ime, jms,jme, kms,kme, & |
---|
| 18 | its,ite, jts,jte, kts,kte ) |
---|
| 19 | !------------------------------------------------------------------- |
---|
| 20 | USE MODULE_GFS_MACHINE, ONLY : kind_phys |
---|
| 21 | USE MODULE_GFS_FUNCPHYS , ONLY : gfuncphys,fpvs |
---|
| 22 | !------------------------------------------------------------------- |
---|
| 23 | IMPLICIT NONE |
---|
| 24 | !------------------------------------------------------------------- |
---|
| 25 | !-- U3D 3D u-velocity interpolated to theta points (m/s) |
---|
| 26 | !-- V3D 3D v-velocity interpolated to theta points (m/s) |
---|
| 27 | !-- T3D temperature (K) |
---|
| 28 | !-- QV3D 3D water vapor mixing ratio (Kg/Kg) |
---|
| 29 | !-- P3D 3D pressure (Pa) |
---|
| 30 | !-- CP heat capacity at constant pressure for dry air (J/kg/K) |
---|
| 31 | !-- ROVCP R/CP |
---|
| 32 | !-- R gas constant for dry air (J/kg/K) |
---|
| 33 | !-- XLV latent heat of vaporization for water (J/kg) |
---|
| 34 | !-- PSFC surface pressure (Pa) |
---|
| 35 | !-- ZNT roughness length (m) |
---|
| 36 | !-- UST u* in similarity theory (m/s) |
---|
| 37 | !-- PSIM similarity stability function for momentum |
---|
| 38 | !-- PSIH similarity stability function for heat |
---|
| 39 | !-- XLAND land mask (1 for land, 2 for water) |
---|
| 40 | !-- HFX upward heat flux at the surface (W/m^2) |
---|
| 41 | !-- QFX upward moisture flux at the surface (kg/m^2/s) |
---|
| 42 | !-- LH net upward latent heat flux at surface (W/m^2) |
---|
| 43 | !-- TSK surface temperature (K) |
---|
| 44 | !-- FLHC exchange coefficient for heat (m/s) |
---|
| 45 | !-- FLQC exchange coefficient for moisture (m/s) |
---|
| 46 | !-- QGH lowest-level saturated mixing ratio |
---|
| 47 | !-- U10 diagnostic 10m u wind |
---|
| 48 | !-- V10 diagnostic 10m v wind |
---|
| 49 | !-- GZ1OZ0 log(z/z0) where z0 is roughness length |
---|
| 50 | !-- WSPD wind speed at lowest model level (m/s) |
---|
| 51 | !-- BR bulk Richardson number in surface layer |
---|
| 52 | !-- ISFFLX isfflx=1 for surface heat and moisture fluxes |
---|
| 53 | !-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless) |
---|
| 54 | !-- KARMAN Von Karman constant |
---|
| 55 | !-- ids start index for i in domain |
---|
| 56 | !-- ide end index for i in domain |
---|
| 57 | !-- jds start index for j in domain |
---|
| 58 | !-- jde end index for j in domain |
---|
| 59 | !-- kds start index for k in domain |
---|
| 60 | !-- kde end index for k in domain |
---|
| 61 | !-- ims start index for i in memory |
---|
| 62 | !-- ime end index for i in memory |
---|
| 63 | !-- jms start index for j in memory |
---|
| 64 | !-- jme end index for j in memory |
---|
| 65 | !-- kms start index for k in memory |
---|
| 66 | !-- kme end index for k in memory |
---|
| 67 | !-- its start index for i in tile |
---|
| 68 | !-- ite end index for i in tile |
---|
| 69 | !-- jts start index for j in tile |
---|
| 70 | !-- jte end index for j in tile |
---|
| 71 | !-- kts start index for k in tile |
---|
| 72 | !-- kte end index for k in tile |
---|
| 73 | !------------------------------------------------------------------- |
---|
| 74 | |
---|
| 75 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde, & |
---|
| 76 | ims,ime, jms,jme, kms,kme, & |
---|
| 77 | its,ite, jts,jte, kts,kte, & |
---|
| 78 | ISFFLX,itimestep |
---|
| 79 | |
---|
| 80 | REAL, INTENT(IN) :: & |
---|
| 81 | CP, & |
---|
| 82 | EP1, & |
---|
| 83 | EP2, & |
---|
| 84 | KARMAN, & |
---|
| 85 | R, & |
---|
| 86 | ROVCP, & |
---|
| 87 | XLV |
---|
| 88 | |
---|
| 89 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN) :: & |
---|
| 90 | P3D, & |
---|
| 91 | QV3D, & |
---|
| 92 | T3D, & |
---|
| 93 | U3D, & |
---|
| 94 | V3D |
---|
| 95 | |
---|
| 96 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: & |
---|
| 97 | TSK, & |
---|
| 98 | PSFC, & |
---|
| 99 | XLAND |
---|
| 100 | |
---|
| 101 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: & |
---|
| 102 | BR, & |
---|
| 103 | CHS, & |
---|
| 104 | CHS2, & |
---|
| 105 | CPM, & |
---|
| 106 | CQS2, & |
---|
| 107 | FLHC, & |
---|
| 108 | FLQC, & |
---|
| 109 | GZ1OZ0, & |
---|
| 110 | HFX, & |
---|
| 111 | LH, & |
---|
| 112 | PSIM, & |
---|
| 113 | PSIH, & |
---|
| 114 | QFX, & |
---|
| 115 | QGH, & |
---|
| 116 | QSFC, & |
---|
| 117 | UST, & |
---|
| 118 | ZNT, & |
---|
| 119 | WSPD |
---|
| 120 | |
---|
| 121 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: & |
---|
| 122 | U10, & |
---|
| 123 | V10 |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | !--------------------------- LOCAL VARS ------------------------------ |
---|
| 127 | |
---|
| 128 | REAL :: ESAT |
---|
| 129 | |
---|
| 130 | REAL (kind=kind_phys) :: & |
---|
| 131 | RHOX |
---|
| 132 | |
---|
| 133 | REAL (kind=kind_phys), DIMENSION(its:ite) :: & |
---|
| 134 | CH, & |
---|
| 135 | CM, & |
---|
| 136 | DDVEL, & |
---|
| 137 | DRAIN, & |
---|
| 138 | EP, & |
---|
| 139 | EVAP, & |
---|
| 140 | FH, & |
---|
| 141 | FH2, & |
---|
| 142 | FM, & |
---|
| 143 | HFLX, & |
---|
| 144 | PH, & |
---|
| 145 | PM, & |
---|
| 146 | PRSL1, & |
---|
| 147 | PRSLKI, & |
---|
| 148 | PS, & |
---|
| 149 | Q1, & |
---|
| 150 | Q2M, & |
---|
| 151 | QSS, & |
---|
| 152 | QSURF, & |
---|
| 153 | RB, & |
---|
| 154 | RCL, & |
---|
| 155 | RHO1, & |
---|
| 156 | SLIMSK, & |
---|
| 157 | STRESS, & |
---|
| 158 | T1, & |
---|
| 159 | T2M, & |
---|
| 160 | THGB, & |
---|
| 161 | THX, & |
---|
| 162 | TSKIN, & |
---|
| 163 | SHELEG, & |
---|
| 164 | U1, & |
---|
| 165 | U10M, & |
---|
| 166 | USTAR, & |
---|
| 167 | V1, & |
---|
| 168 | V10M, & |
---|
| 169 | WIND, & |
---|
| 170 | Z0RL, & |
---|
| 171 | Z1 |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | INTEGER :: & |
---|
| 175 | I, & |
---|
| 176 | IM, & |
---|
| 177 | J, & |
---|
| 178 | K, & |
---|
| 179 | KM |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | if(itimestep.eq.0) then |
---|
| 183 | CALL GFUNCPHYS |
---|
| 184 | endif |
---|
| 185 | |
---|
| 186 | IM=ITE-ITS+1 |
---|
| 187 | KM=KTE-KTS+1 |
---|
| 188 | |
---|
| 189 | DO J=jts,jte |
---|
| 190 | |
---|
| 191 | DO i=its,ite |
---|
| 192 | DDVEL(I)=0. |
---|
| 193 | RCL(i)=1. |
---|
| 194 | PRSL1(i)=P3D(i,kts,j)*.001 |
---|
| 195 | PS(i)=PSFC(i,j)*.001 |
---|
| 196 | Q1(I) = QV3D(i,kts,j) |
---|
| 197 | ! QSURF(I)=QSFC(I,J) |
---|
| 198 | QSURF(I)=0. |
---|
| 199 | SHELEG(I)=0. |
---|
| 200 | SLIMSK(i)=ABS(XLAND(i,j)-2.) |
---|
| 201 | TSKIN(i)=TSK(i,j) |
---|
| 202 | T1(I) = T3D(i,kts,j) |
---|
| 203 | U1(I) = U3D(i,kts,j) |
---|
| 204 | USTAR(I) = UST(i,j) |
---|
| 205 | V1(I) = V3D(i,kts,j) |
---|
| 206 | Z0RL(I) = ZNT(i,j)*100. |
---|
| 207 | ENDDO |
---|
| 208 | |
---|
| 209 | DO i=its,ite |
---|
| 210 | PRSLKI(i)=(PS(I)/PRSL1(I))**ROVCP |
---|
| 211 | THGB(I)=TSKIN(i)*(100./PS(I))**ROVCP |
---|
| 212 | THX(I)=T1(i)*(100./PRSL1(I))**ROVCP |
---|
| 213 | RHO1(I)=PRSL1(I)*1000./(R*T1(I)*(1.+EP1*Q1(I))) |
---|
| 214 | Q1(I)=Q1(I)/(1.+Q1(I)) |
---|
| 215 | ENDDO |
---|
| 216 | |
---|
| 217 | |
---|
| 218 | CALL PROGTM(IM,KM,PS,U1,V1,T1,Q1, & |
---|
| 219 | SHELEG,TSKIN,QSURF, & |
---|
| 220 | !WRF SMC,STC,DM,SOILTYP,SIGMAF,VEGTYPE,CANOPY,DLWFLX, & |
---|
| 221 | !WRF SLRAD,SNOWMT,DELT, & |
---|
| 222 | Z0RL, & |
---|
| 223 | !WRF TG3,GFLUX,F10M, & |
---|
| 224 | U10M,V10M,T2M,Q2M, & |
---|
| 225 | !WRF ZSOIL, & |
---|
| 226 | CM,CH,RB, & |
---|
| 227 | !WRF RHSCNPY,RHSMC,AIM,BIM,CIM, & |
---|
| 228 | RCL,PRSL1,PRSLKI,SLIMSK, & |
---|
| 229 | DRAIN,EVAP,HFLX,STRESS,EP, & |
---|
| 230 | FM,FH,USTAR,WIND,DDVEL, & |
---|
| 231 | PM,PH,FH2,QSS,Z1 ) |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | DO i=its,ite |
---|
| 235 | U10(i,j)=U10M(i) |
---|
| 236 | V10(i,j)=V10M(i) |
---|
| 237 | BR(i,j)=RB(i) |
---|
| 238 | CHS(I,J)=CH(I)*WIND(I) |
---|
| 239 | CHS2(I,J)=USTAR(I)*KARMAN/FH2(I) |
---|
| 240 | CPM(I,J)=CP*(1.+0.8*QV3D(i,kts,j)) |
---|
| 241 | esat = fpvs(t1(i)) |
---|
| 242 | QGH(I,J)=ep2*esat/(1000.*ps(i)-esat) |
---|
| 243 | QSFC(I,J)=qss(i) |
---|
| 244 | PSIH(i,j)=PH(i) |
---|
| 245 | PSIM(i,j)=PM(i) |
---|
| 246 | UST(i,j)=ustar(i) |
---|
| 247 | WSPD(i,j)=WIND(i) |
---|
| 248 | ZNT(i,j)=Z0RL(i)*.01 |
---|
| 249 | ENDDO |
---|
| 250 | |
---|
| 251 | DO i=its,ite |
---|
| 252 | FLHC(i,j)=CPM(I,J)*RHO1(I)*CHS(I,J) |
---|
| 253 | FLQC(i,j)=RHO1(I)*CHS(I,J) |
---|
| 254 | GZ1OZ0(i,j)=LOG(Z1(I)/(Z0RL(I)*.01)) |
---|
| 255 | CQS2(i,j)=CHS2(I,J) |
---|
| 256 | ENDDO |
---|
| 257 | |
---|
| 258 | IF (ISFFLX.EQ.0) THEN |
---|
| 259 | DO i=its,ite |
---|
| 260 | HFX(i,j)=0. |
---|
| 261 | LH(i,j)=0. |
---|
| 262 | QFX(i,j)=0. |
---|
| 263 | ENDDO |
---|
| 264 | ELSE |
---|
| 265 | DO i=its,ite |
---|
| 266 | IF(XLAND(I,J)-1.5.GT.0.)THEN |
---|
| 267 | HFX(I,J)=FLHC(I,J)*(THGB(I)-THX(I)) |
---|
| 268 | ELSEIF(XLAND(I,J)-1.5.LT.0.)THEN |
---|
| 269 | HFX(I,J)=FLHC(I,J)*(THGB(I)-THX(I)) |
---|
| 270 | HFX(I,J)=AMAX1(HFX(I,J),-250.) |
---|
| 271 | ENDIF |
---|
| 272 | QFX(I,J)=FLQC(I,J)*(QSFC(I,J)-Q1(I)) |
---|
| 273 | QFX(I,J)=AMAX1(QFX(I,J),0.) |
---|
| 274 | LH(I,J)=XLV*QFX(I,J) |
---|
| 275 | ENDDO |
---|
| 276 | ENDIF |
---|
| 277 | |
---|
| 278 | |
---|
| 279 | ENDDO |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | END SUBROUTINE SF_GFS |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | !------------------------------------------------------------------- |
---|
| 286 | |
---|
| 287 | SUBROUTINE PROGTM(IM,KM,PS,U1,V1,T1,Q1, & |
---|
| 288 | & SHELEG,TSKIN,QSURF, & |
---|
| 289 | !WRF & SMC,STC,DM,SOILTYP,SIGMAF,VEGTYPE,CANOPY, & |
---|
| 290 | !WRF & DLWFLX,SLRAD,SNOWMT,DELT, & |
---|
| 291 | & Z0RL, & |
---|
| 292 | !WRF & TG3,GFLUX,F10M, & |
---|
| 293 | & U10M,V10M,T2M,Q2M, & |
---|
| 294 | !WRF & ZSOIL, & |
---|
| 295 | & CM, CH, RB, & |
---|
| 296 | !WRF & RHSCNPY,RHSMC,AIM,BIM,CIM, & |
---|
| 297 | & RCL,PRSL1,PRSLKI,SLIMSK, & |
---|
| 298 | & DRAIN,EVAP,HFLX,STRESS,EP, & |
---|
| 299 | & FM,FH,USTAR,WIND,DDVEL, & |
---|
| 300 | & PM,PH,FH2,QSS,Z1 ) |
---|
| 301 | ! |
---|
| 302 | |
---|
| 303 | USE MODULE_GFS_MACHINE, ONLY : kind_phys |
---|
| 304 | USE MODULE_GFS_FUNCPHYS, ONLY : fpvs |
---|
| 305 | USE MODULE_GFS_PHYSCONS, grav => con_g, SBC => con_sbc, HVAP => con_HVAP & |
---|
| 306 | &, CP => con_CP, HFUS => con_HFUS, JCAL => con_JCAL & |
---|
| 307 | &, EPS => con_eps, EPSM1 => con_epsm1, t0c => con_t0c & |
---|
| 308 | &, RVRDM1 => con_FVirt, RD => con_RD |
---|
| 309 | implicit none |
---|
| 310 | ! |
---|
| 311 | ! include 'constant.h' |
---|
| 312 | ! |
---|
| 313 | integer IM, km |
---|
| 314 | ! |
---|
| 315 | real(kind=kind_phys), parameter :: cpinv=1.0/cp, HVAPI=1.0/HVAP |
---|
| 316 | real(kind=kind_phys) DELT |
---|
| 317 | INTEGER SOILTYP(IM), VEGTYPE(IM) |
---|
| 318 | real(kind=kind_phys) PS(IM), U1(IM), V1(IM), & |
---|
| 319 | & T1(IM), Q1(IM), SHELEG(IM), & |
---|
| 320 | & TSKIN(IM), QSURF(IM), SMC(IM,KM), & |
---|
| 321 | & STC(IM,KM), DM(IM), SIGMAF(IM), & |
---|
| 322 | & CANOPY(IM), DLWFLX(IM), SLRAD(IM), & |
---|
| 323 | & SNOWMT(IM), Z0RL(IM), TG3(IM), & |
---|
| 324 | & GFLUX(IM), F10M(IM), U10M(IM), & |
---|
| 325 | & V10M(IM), T2M(IM), Q2M(IM), & |
---|
| 326 | & ZSOIL(IM,KM), CM(IM), CH(IM), & |
---|
| 327 | & RB(IM), RHSCNPY(IM), RHSMC(IM,KM), & |
---|
| 328 | & AIM(IM,KM), BIM(IM,KM), CIM(IM,KM), & |
---|
| 329 | & RCL(IM), PRSL1(IM), PRSLKI(IM), & |
---|
| 330 | & SLIMSK(IM), DRAIN(IM), EVAP(IM), & |
---|
| 331 | & HFLX(IM), RNET(IM), EP(IM), & |
---|
| 332 | & FM(IM), FH(IM), USTAR(IM), & |
---|
| 333 | & WIND(IM), DDVEL(IM), STRESS(IM) |
---|
| 334 | ! |
---|
| 335 | ! Locals |
---|
| 336 | ! |
---|
| 337 | integer k,i |
---|
| 338 | ! |
---|
| 339 | real(kind=kind_phys) CANFAC(IM), & |
---|
| 340 | & DDZ(IM), DDZ2(IM), DELTA(IM), & |
---|
| 341 | & DEW(IM), DF1(IM), DFT0(IM), & |
---|
| 342 | & DFT2(IM), DFT1(IM), & |
---|
| 343 | & DMDZ(IM), DMDZ2(IM), DTDZ1(IM), & |
---|
| 344 | & DTDZ2(IM), DTV(IM), EC(IM), & |
---|
| 345 | & EDIR(IM), ETPFAC(IM), & |
---|
| 346 | & FACTSNW(IM), FH2(IM), FM10(IM), & |
---|
| 347 | & FX(IM), GX(IM), & |
---|
| 348 | & HCPCT(IM), HL1(IM), HL12(IM), & |
---|
| 349 | & HLINF(IM), PARTLND(IM), PH(IM), & |
---|
| 350 | & PH2(IM), PM(IM), PM10(IM), & |
---|
| 351 | & PSURF(IM), Q0(IM), QS1(IM), & |
---|
| 352 | & QSS(IM), RAT(IM), RCAP(IM), & |
---|
| 353 | & RCH(IM), RHO(IM), RS(IM), & |
---|
| 354 | & RSMALL(IM), SLWD(IM), SMCZ(IM), & |
---|
| 355 | & SNET(IM), SNOEVP(IM), SNOWD(IM), & |
---|
| 356 | & T1O(IM), T2MO(IM), TERM1(IM), & |
---|
| 357 | & TERM2(IM), THETA1(IM), THV1(IM), & |
---|
| 358 | & TREF(IM), TSURF(IM), TV1(IM), & |
---|
| 359 | & TVS(IM), TSURFO(IM), TWILT(IM), & |
---|
| 360 | & XX(IM), XRCL(IM), YY(IM), & |
---|
| 361 | & Z0(IM), Z0MAX(IM), Z1(IM), & |
---|
| 362 | & ZTMAX(IM), ZZ(IM), PS1(IM) |
---|
| 363 | ! |
---|
| 364 | real(kind=kind_phys) a0, a0p, a1, a1p, aa, aa0, & |
---|
| 365 | & aa1, adtv, alpha, arnu, b1, b1p, & |
---|
| 366 | & b2, b2p, bb, bb0, bb1, bb2, & |
---|
| 367 | & bfact, ca, cc, cc1, cc2, cfactr, & |
---|
| 368 | & ch2o, charnock, cice, convrad, cq, csoil, & |
---|
| 369 | & ctfil1,ctfil2, delt2, df2, dfsnow, & |
---|
| 370 | & elocp, eth, ff, FMS, & |
---|
| 371 | !WRF & fhs, funcdf, funckt,g, hl0, hl0inf, & |
---|
| 372 | & fhs, g, hl0, hl0inf, & |
---|
| 373 | & hl110, hlt, hltinf,OLINF, rcq, rcs, & |
---|
| 374 | & rct, restar, rhoh2o,rnu, RSI, & |
---|
| 375 | & rss, scanop, sig2k, sigma, smcdry, & |
---|
| 376 | & t12, t14, tflx, tgice, topt, & |
---|
| 377 | & val, vis, zbot, snomin, tem |
---|
| 378 | ! |
---|
| 379 | ! |
---|
| 380 | |
---|
| 381 | PARAMETER (CHARNOCK=.014,CA=.4)!C CA IS THE VON KARMAN CONSTANT |
---|
| 382 | PARAMETER (G=grav,sigma=sbc) |
---|
| 383 | |
---|
| 384 | PARAMETER (ALPHA=5.,A0=-3.975,A1=12.32,B1=-7.755,B2=6.041) |
---|
| 385 | PARAMETER (A0P=-7.941,A1P=24.75,B1P=-8.705,B2P=7.899,VIS=1.4E-5) |
---|
| 386 | PARAMETER (AA1=-1.076,BB1=.7045,CC1=-.05808) |
---|
| 387 | PARAMETER (BB2=-.1954,CC2=.009999) |
---|
| 388 | PARAMETER (ELOCP=HVAP/CP,DFSNOW=.31,CH2O=4.2E6,CSOIL=1.26E6) |
---|
| 389 | PARAMETER (SCANOP=.5,CFACTR=.5,ZBOT=-3.,TGICE=271.2) |
---|
| 390 | PARAMETER (CICE=1880.*917.,topt=298.) |
---|
| 391 | PARAMETER (RHOH2O=1000.,CONVRAD=JCAL*1.E4/60.) |
---|
| 392 | PARAMETER (CTFIL1=.5,CTFIL2=1.-CTFIL1) |
---|
| 393 | PARAMETER (RNU=1.51E-5,ARNU=.135*RNU) |
---|
| 394 | parameter (snomin=1.0e-9) |
---|
| 395 | ! |
---|
| 396 | LOGICAL FLAG(IM), FLAGSNW(IM) |
---|
| 397 | !WRF real(kind=kind_phys) KT1(IM), KT2(IM), KTSOIL, & |
---|
| 398 | real(kind=kind_phys) KT1(IM), KT2(IM), & |
---|
| 399 | & ET(IM,KM), & |
---|
| 400 | & STSOIL(IM,KM), AI(IM,KM), BI(IM,KM), & |
---|
| 401 | & CI(IM,KM), RHSTC(IM,KM) |
---|
| 402 | real(kind=kind_phys) rsmax(13), rgl(13), rsmin(13), hs(13), & |
---|
| 403 | & smmax(9), smdry(9), smref(9), smwlt(9) |
---|
| 404 | |
---|
| 405 | ! |
---|
| 406 | ! the 13 vegetation types are: |
---|
| 407 | ! |
---|
| 408 | ! 1 ... broadleave-evergreen trees (tropical forest) |
---|
| 409 | ! 2 ... broadleave-deciduous trees |
---|
| 410 | ! 3 ... broadleave and needle leave trees (mixed forest) |
---|
| 411 | ! 4 ... needleleave-evergreen trees |
---|
| 412 | ! 5 ... needleleave-deciduous trees (larch) |
---|
| 413 | ! 6 ... broadleave trees with groundcover (savanna) |
---|
| 414 | ! 7 ... groundcover only (perenial) |
---|
| 415 | ! 8 ... broadleave shrubs with perenial groundcover |
---|
| 416 | ! 9 ... broadleave shrubs with bare soil |
---|
| 417 | ! 10 ... dwarf trees and shrubs with ground cover (trunda) |
---|
| 418 | ! 11 ... bare soil |
---|
| 419 | ! 12 ... cultivations (use parameters from type 7) |
---|
| 420 | ! 13 ... glacial |
---|
| 421 | ! |
---|
| 422 | data rsmax/13*5000./ |
---|
| 423 | data rsmin/150.,100.,125.,150.,100.,70.,40., & |
---|
| 424 | & 300.,400.,150.,999.,40.,999./ |
---|
| 425 | data rgl/5*30.,65.,4*100.,999.,100.,999./ |
---|
| 426 | data hs/41.69,54.53,51.93,47.35,47.35,54.53,36.35, & |
---|
| 427 | & 3*42.00,999.,36.35,999./ |
---|
| 428 | data smmax/.421,.464,.468,.434,.406,.465,.404,.439,.421/ |
---|
| 429 | data smdry/.07,.14,.22,.08,.18,.16,.12,.10,.07/ |
---|
| 430 | data smref/.283,.387,.412,.312,.338,.382,.315,.329,.283/ |
---|
| 431 | data smwlt/.029,.119,.139,.047,.010,.103,.069,.066,.029/ |
---|
| 432 | ! |
---|
| 433 | !!! save rsmax, rsmin, rgl, hs, smmax, smdry, smref, smwlt |
---|
| 434 | ! |
---|
| 435 | |
---|
| 436 | !WRF DELT2 = DELT * 2. |
---|
| 437 | ! |
---|
| 438 | ! ESTIMATE SIGMA ** K AT 2 M |
---|
| 439 | ! |
---|
| 440 | SIG2K = 1. - 4. * G * 2. / (CP * 280.) |
---|
| 441 | ! |
---|
| 442 | ! INITIALIZE VARIABLES. ALL UNITS ARE SUPPOSEDLY M.K.S. UNLESS SPECIFIE |
---|
| 443 | ! PSURF IS IN PASCALS |
---|
| 444 | ! WIND IS WIND SPEED, THETA1 IS ADIABATIC SURFACE TEMP FROM LEVEL 1 |
---|
| 445 | ! RHO IS DENSITY, QS1 IS SAT. HUM. AT LEVEL1 AND QSS IS SAT. HUM. AT |
---|
| 446 | ! SURFACE |
---|
| 447 | ! CONVERT SLRAD TO THE CIVILIZED UNIT FROM LANGLEY MINUTE-1 K-4 |
---|
| 448 | ! SURFACE ROUGHNESS LENGTH IS CONVERTED TO M FROM CM |
---|
| 449 | ! |
---|
| 450 | !! |
---|
| 451 | ! qs1 = fpvs(t1) |
---|
| 452 | ! qss = fpvs(tskin) |
---|
| 453 | DO I=1,IM |
---|
| 454 | XRCL(I) = SQRT(RCL(I)) |
---|
| 455 | PSURF(I) = 1000. * PS(I) |
---|
| 456 | PS1(I) = 1000. * PRSL1(I) |
---|
| 457 | ! SLWD(I) = SLRAD(I) * CONVRAD |
---|
| 458 | !WRF SLWD(I) = SLRAD(I) |
---|
| 459 | ! |
---|
| 460 | ! DLWFLX has been given a negative sign for downward longwave |
---|
| 461 | ! snet is the net shortwave flux |
---|
| 462 | ! |
---|
| 463 | !WRF SNET(I) = -SLWD(I) - DLWFLX(I) |
---|
| 464 | WIND(I) = XRCL(I) * SQRT(U1(I) * U1(I) + V1(I) * V1(I)) & |
---|
| 465 | & + MAX(0.0_kind_phys, MIN(DDVEL(I), 30.0_kind_phys)) |
---|
| 466 | WIND(I) = MAX(WIND(I),1._kind_phys) |
---|
| 467 | Q0(I) = MAX(Q1(I),1.E-8_kind_phys) |
---|
| 468 | TSURF(I) = TSKIN(I) |
---|
| 469 | THETA1(I) = T1(I) * PRSLKI(I) |
---|
| 470 | TV1(I) = T1(I) * (1. + RVRDM1 * Q0(I)) |
---|
| 471 | THV1(I) = THETA1(I) * (1. + RVRDM1 * Q0(I)) |
---|
| 472 | TVS(I) = TSURF(I) * (1. + RVRDM1 * Q0(I)) |
---|
| 473 | RHO(I) = PS1(I) / (RD * TV1(I)) |
---|
| 474 | !jfe QS1(I) = 1000. * FPVS(T1(I)) |
---|
| 475 | qs1(i) = fpvs(t1(i)) |
---|
| 476 | QS1(I) = EPS * QS1(I) / (PS1(I) + EPSM1 * QS1(I)) |
---|
| 477 | QS1(I) = MAX(QS1(I), 1.E-8_kind_phys) |
---|
| 478 | Q0(I) = min(QS1(I),Q0(I)) |
---|
| 479 | !jfe QSS(I) = 1000. * FPVS(TSURF(I)) |
---|
| 480 | qss(i) = fpvs(tskin(i)) |
---|
| 481 | QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
| 482 | ! RS = PLANTR |
---|
| 483 | RS(I) = 0. |
---|
| 484 | !WRF if(VEGTYPE(I).gt.0.) RS(I) = rsmin(VEGTYPE(I)) |
---|
| 485 | Z0(I) = .01 * Z0RL(i) |
---|
| 486 | !WRF CANOPY(I)= MAX(CANOPY(I),0._kind_phys) |
---|
| 487 | DM(I) = 1. |
---|
| 488 | !WRF |
---|
| 489 | GOTO 1111 |
---|
| 490 | !WRF |
---|
| 491 | FACTSNW(I) = 10. |
---|
| 492 | IF(SLIMSK(I).EQ.2.) FACTSNW(I) = 3. |
---|
| 493 | ! |
---|
| 494 | ! SNOW DEPTH IN WATER EQUIVALENT IS CONVERTED FROM MM TO M UNIT |
---|
| 495 | ! |
---|
| 496 | SNOWD(I) = SHELEG(I) / 1000. |
---|
| 497 | FLAGSNW(I) = .FALSE. |
---|
| 498 | ! |
---|
| 499 | ! WHEN SNOW DEPTH IS LESS THAN 1 MM, A PATCHY SNOW IS ASSUMED AND |
---|
| 500 | ! SOIL IS ALLOWED TO INTERACT WITH THE ATMOSPHERE. |
---|
| 501 | ! WE SHOULD EVENTUALLY MOVE TO A LINEAR COMBINATION OF SOIL AND |
---|
| 502 | ! SNOW UNDER THE CONDITION OF PATCHY SNOW. |
---|
| 503 | ! |
---|
| 504 | IF(SNOWD(I).GT..001.OR.SLIMSK(I).EQ.2.) RS(I) = 0. |
---|
| 505 | IF(SNOWD(I).GT..001) FLAGSNW(I) = .TRUE. |
---|
| 506 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 507 | !##DG PRINT *, ' WIND,TV1,TVS,Q1,QS1,SNOW,SLIMSK=', |
---|
| 508 | !##DG& WIND,TV1,TVS,Q1,QS1,SNOWD,SLIMSK |
---|
| 509 | !##DG PRINT *, ' SNET, SLWD =', SNET, SLWD(I) |
---|
| 510 | !##DG ENDIF |
---|
| 511 | IF(SLIMSK(I).EQ.0.) THEN |
---|
| 512 | ZSOIL(I,1) = 0. |
---|
| 513 | ELSEIF(SLIMSK(I).EQ.1.) THEN |
---|
| 514 | ZSOIL(I,1) = -.10 |
---|
| 515 | ELSE |
---|
| 516 | ZSOIL(I,1) = -3. / KM |
---|
| 517 | ENDIF |
---|
| 518 | !WRF |
---|
| 519 | 1111 CONTINUE |
---|
| 520 | !WRF |
---|
| 521 | ENDDO |
---|
| 522 | |
---|
| 523 | !! |
---|
| 524 | !WRF |
---|
| 525 | GOTO 2222 |
---|
| 526 | !WRF |
---|
| 527 | DO K = 2, KM |
---|
| 528 | DO I=1,IM |
---|
| 529 | IF(SLIMSK(I).EQ.0.) THEN |
---|
| 530 | ZSOIL(I,K) = 0. |
---|
| 531 | ELSEIF(SLIMSK(I).EQ.1.) THEN |
---|
| 532 | ZSOIL(I,K) = ZSOIL(I,K-1) & |
---|
| 533 | & + (-2. - ZSOIL(I,1)) / (KM - 1) |
---|
| 534 | ELSE |
---|
| 535 | ZSOIL(I,K) = - 3. * FLOAT(K) / FLOAT(KM) |
---|
| 536 | ENDIF |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | !WRF |
---|
| 540 | 2222 CONTINUE |
---|
| 541 | !WRF |
---|
| 542 | !! |
---|
| 543 | DO I=1,IM |
---|
| 544 | Z1(I) = -RD * TV1(I) * LOG(PS1(I)/PSURF(I)) / G |
---|
| 545 | DRAIN(I) = 0. |
---|
| 546 | ENDDO |
---|
| 547 | |
---|
| 548 | !! |
---|
| 549 | DO K = 1, KM |
---|
| 550 | DO I=1,IM |
---|
| 551 | ET(I,K) = 0. |
---|
| 552 | RHSMC(I,K) = 0. |
---|
| 553 | AIM(I,K) = 0. |
---|
| 554 | BIM(I,K) = 1. |
---|
| 555 | CIM(I,K) = 0. |
---|
| 556 | STSOIL(I,K) = STC(I,K) |
---|
| 557 | ENDDO |
---|
| 558 | ENDDO |
---|
| 559 | |
---|
| 560 | DO I=1,IM |
---|
| 561 | EDIR(I) = 0. |
---|
| 562 | EC(I) = 0. |
---|
| 563 | EVAP(I) = 0. |
---|
| 564 | EP(I) = 0. |
---|
| 565 | SNOWMT(I) = 0. |
---|
| 566 | GFLUX(I) = 0. |
---|
| 567 | RHSCNPY(I) = 0. |
---|
| 568 | FX(I) = 0. |
---|
| 569 | ETPFAC(I) = 0. |
---|
| 570 | CANFAC(I) = 0. |
---|
| 571 | ENDDO |
---|
| 572 | ! |
---|
| 573 | ! COMPUTE STABILITY DEPENDENT EXCHANGE COEFFICIENTS |
---|
| 574 | ! |
---|
| 575 | ! THIS PORTION OF THE CODE IS PRESENTLY SUPPRESSED |
---|
| 576 | ! |
---|
| 577 | DO I=1,IM |
---|
| 578 | IF(SLIMSK(I).EQ.0.) THEN |
---|
| 579 | USTAR(I) = SQRT(G * Z0(I) / CHARNOCK) |
---|
| 580 | ENDIF |
---|
| 581 | ! |
---|
| 582 | ! COMPUTE STABILITY INDICES (RB AND HLINF) |
---|
| 583 | ! |
---|
| 584 | |
---|
| 585 | Z0MAX(I) = MIN(Z0(I),0.1 * Z1(I)) |
---|
| 586 | ZTMAX(I) = Z0MAX(I) |
---|
| 587 | IF(SLIMSK(I).EQ.0.) THEN |
---|
| 588 | RESTAR = USTAR(I) * Z0MAX(I) / VIS |
---|
| 589 | RESTAR = MAX(RESTAR,.000001_kind_phys) |
---|
| 590 | ! RESTAR = ALOG(RESTAR) |
---|
| 591 | ! RESTAR = MIN(RESTAR,5.) |
---|
| 592 | ! RESTAR = MAX(RESTAR,-5.) |
---|
| 593 | ! RAT(I) = AA1 + BB1 * RESTAR + CC1 * RESTAR ** 2 |
---|
| 594 | ! RAT(I) = RAT(I) / (1. + BB2 * RESTAR |
---|
| 595 | ! & + CC2 * RESTAR ** 2) |
---|
| 596 | ! Rat taken from Zeng, Zhao and Dickinson 1997 |
---|
| 597 | RAT(I) = 2.67 * restar ** .25 - 2.57 |
---|
| 598 | RAT(I) = min(RAT(I),7._kind_phys) |
---|
| 599 | ZTMAX(I) = Z0MAX(I) * EXP(-RAT(I)) |
---|
| 600 | ENDIF |
---|
| 601 | ENDDO |
---|
| 602 | |
---|
| 603 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 604 | !##DG PRINT *, ' z0max, ztmax, restar, RAT(I) =', |
---|
| 605 | !##DG & z0max, ztmax, restar, RAT(I) |
---|
| 606 | !##DG ENDIF |
---|
| 607 | DO I = 1, IM |
---|
| 608 | DTV(I) = THV1(I) - TVS(I) |
---|
| 609 | ADTV = ABS(DTV(I)) |
---|
| 610 | ADTV = MAX(ADTV,.001_kind_phys) |
---|
| 611 | DTV(I) = SIGN(1._kind_phys,DTV(I)) * ADTV |
---|
| 612 | RB(I) = G * DTV(I) * Z1(I) / (.5 * (THV1(I) + TVS(I)) & |
---|
| 613 | & * WIND(I) * WIND(I)) |
---|
| 614 | RB(I) = MAX(RB(I),-5000._kind_phys) |
---|
| 615 | ! FM(I) = LOG((Z0MAX(I)+Z1(I)) / Z0MAX(I)) |
---|
| 616 | ! FH(I) = LOG((ZTMAX(I)+Z1(I)) / ZTMAX(I)) |
---|
| 617 | FM(I) = LOG((Z1(I)) / Z0MAX(I)) |
---|
| 618 | FH(I) = LOG((Z1(I)) / ZTMAX(I)) |
---|
| 619 | HLINF(I) = RB(I) * FM(I) * FM(I) / FH(I) |
---|
| 620 | FM10(I) = LOG((Z0MAX(I)+10.) / Z0MAX(I)) |
---|
| 621 | FH2(I) = LOG((ZTMAX(I)+2.) / ZTMAX(I)) |
---|
| 622 | ENDDO |
---|
| 623 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 624 | !##DG PRINT *, ' DTV, RB(I), FM(I), FH(I), HLINF =', |
---|
| 625 | !##DG & dtv, rb, FM(I), FH(I), hlinf |
---|
| 626 | !##DG ENDIF |
---|
| 627 | ! |
---|
| 628 | ! STABLE CASE |
---|
| 629 | ! |
---|
| 630 | DO I = 1, IM |
---|
| 631 | IF(DTV(I).GE.0.) THEN |
---|
| 632 | HL1(I) = HLINF(I) |
---|
| 633 | ENDIF |
---|
| 634 | IF(DTV(I).GE.0..AND.HLINF(I).GT..25) THEN |
---|
| 635 | HL0INF = Z0MAX(I) * HLINF(I) / Z1(I) |
---|
| 636 | HLTINF = ZTMAX(I) * HLINF(I) / Z1(I) |
---|
| 637 | AA = SQRT(1. + 4. * ALPHA * HLINF(I)) |
---|
| 638 | AA0 = SQRT(1. + 4. * ALPHA * HL0INF) |
---|
| 639 | BB = AA |
---|
| 640 | BB0 = SQRT(1. + 4. * ALPHA * HLTINF) |
---|
| 641 | PM(I) = AA0 - AA + LOG((AA + 1.) / (AA0 + 1.)) |
---|
| 642 | PH(I) = BB0 - BB + LOG((BB + 1.) / (BB0 + 1.)) |
---|
| 643 | FMS = FM(I) - PM(I) |
---|
| 644 | FHS = FH(I) - PH(I) |
---|
| 645 | HL1(I) = FMS * FMS * RB(I) / FHS |
---|
| 646 | ENDIF |
---|
| 647 | ENDDO |
---|
| 648 | ! |
---|
| 649 | ! SECOND ITERATION |
---|
| 650 | ! |
---|
| 651 | DO I = 1, IM |
---|
| 652 | IF(DTV(I).GE.0.) THEN |
---|
| 653 | HL0 = Z0MAX(I) * HL1(I) / Z1(I) |
---|
| 654 | HLT = ZTMAX(I) * HL1(I) / Z1(I) |
---|
| 655 | AA = SQRT(1. + 4. * ALPHA * HL1(I)) |
---|
| 656 | AA0 = SQRT(1. + 4. * ALPHA * HL0) |
---|
| 657 | BB = AA |
---|
| 658 | BB0 = SQRT(1. + 4. * ALPHA * HLT) |
---|
| 659 | PM(I) = AA0 - AA + LOG((AA + 1.) / (AA0 + 1.)) |
---|
| 660 | PH(I) = BB0 - BB + LOG((BB + 1.) / (BB0 + 1.)) |
---|
| 661 | HL110 = HL1(I) * 10. / Z1(I) |
---|
| 662 | AA = SQRT(1. + 4. * ALPHA * HL110) |
---|
| 663 | PM10(I) = AA0 - AA + LOG((AA + 1.) / (AA0 + 1.)) |
---|
| 664 | HL12(I) = HL1(I) * 2. / Z1(I) |
---|
| 665 | ! AA = SQRT(1. + 4. * ALPHA * HL12(I)) |
---|
| 666 | BB = SQRT(1. + 4. * ALPHA * HL12(I)) |
---|
| 667 | PH2(I) = BB0 - BB + LOG((BB + 1.) / (BB0 + 1.)) |
---|
| 668 | ENDIF |
---|
| 669 | ENDDO |
---|
| 670 | !! |
---|
| 671 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 672 | !##DG PRINT *, ' HL1(I), PM, PH =', |
---|
| 673 | !##DG & HL1(I), pm, ph |
---|
| 674 | !##DG ENDIF |
---|
| 675 | ! |
---|
| 676 | ! UNSTABLE CASE |
---|
| 677 | ! |
---|
| 678 | ! |
---|
| 679 | ! CHECK FOR UNPHYSICAL OBUKHOV LENGTH |
---|
| 680 | ! |
---|
| 681 | DO I=1,IM |
---|
| 682 | IF(DTV(I).LT.0.) THEN |
---|
| 683 | OLINF = Z1(I) / HLINF(I) |
---|
| 684 | IF(ABS(OLINF).LE.50. * Z0MAX(I)) THEN |
---|
| 685 | HLINF(I) = -Z1(I) / (50. * Z0MAX(I)) |
---|
| 686 | ENDIF |
---|
| 687 | ENDIF |
---|
| 688 | ENDDO |
---|
| 689 | ! |
---|
| 690 | ! GET PM AND PH |
---|
| 691 | ! |
---|
| 692 | DO I = 1, IM |
---|
| 693 | IF(DTV(I).LT.0..AND.HLINF(I).GE.-.5) THEN |
---|
| 694 | HL1(I) = HLINF(I) |
---|
| 695 | PM(I) = (A0 + A1 * HL1(I)) * HL1(I) & |
---|
| 696 | & / (1. + B1 * HL1(I) + B2 * HL1(I) * HL1(I)) |
---|
| 697 | PH(I) = (A0P + A1P * HL1(I)) * HL1(I) & |
---|
| 698 | & / (1. + B1P * HL1(I) + B2P * HL1(I) * HL1(I)) |
---|
| 699 | HL110 = HL1(I) * 10. / Z1(I) |
---|
| 700 | PM10(I) = (A0 + A1 * HL110) * HL110 & |
---|
| 701 | & / (1. + B1 * HL110 + B2 * HL110 * HL110) |
---|
| 702 | HL12(I) = HL1(I) * 2. / Z1(I) |
---|
| 703 | PH2(I) = (A0P + A1P * HL12(I)) * HL12(I) & |
---|
| 704 | & / (1. + B1P * HL12(I) + B2P * HL12(I) * HL12(I)) |
---|
| 705 | ENDIF |
---|
| 706 | IF(DTV(I).LT.0.AND.HLINF(I).LT.-.5) THEN |
---|
| 707 | HL1(I) = -HLINF(I) |
---|
| 708 | PM(I) = LOG(HL1(I)) + 2. * HL1(I) ** (-.25) - .8776 |
---|
| 709 | PH(I) = LOG(HL1(I)) + .5 * HL1(I) ** (-.5) + 1.386 |
---|
| 710 | HL110 = HL1(I) * 10. / Z1(I) |
---|
| 711 | PM10(I) = LOG(HL110) + 2. * HL110 ** (-.25) - .8776 |
---|
| 712 | HL12(I) = HL1(I) * 2. / Z1(I) |
---|
| 713 | PH2(I) = LOG(HL12(I)) + .5 * HL12(I) ** (-.5) + 1.386 |
---|
| 714 | ENDIF |
---|
| 715 | ENDDO |
---|
| 716 | ! |
---|
| 717 | ! FINISH THE EXCHANGE COEFFICIENT COMPUTATION TO PROVIDE FM AND FH |
---|
| 718 | ! |
---|
| 719 | DO I = 1, IM |
---|
| 720 | |
---|
| 721 | FM(I) = FM(I) - PM(I) |
---|
| 722 | FH(I) = FH(I) - PH(I) |
---|
| 723 | FM10(I) = FM10(I) - PM10(I) |
---|
| 724 | FH2(I) = FH2(I) - PH2(I) |
---|
| 725 | CM(I) = CA * CA / (FM(I) * FM(I)) |
---|
| 726 | CH(I) = CA * CA / (FM(I) * FH(I)) |
---|
| 727 | CQ = CH(I) |
---|
| 728 | STRESS(I) = CM(I) * WIND(I) * WIND(I) |
---|
| 729 | USTAR(I) = SQRT(STRESS(I)) |
---|
| 730 | ! USTAR(I) = SQRT(CM(I) * WIND(I) * WIND(I)) |
---|
| 731 | ENDDO |
---|
| 732 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 733 | !##DG PRINT *, ' FM, FH, CM, CH(I), USTAR =', |
---|
| 734 | !##DG & FM, FH, CM, ch, USTAR |
---|
| 735 | !##DG ENDIF |
---|
| 736 | ! |
---|
| 737 | ! UPDATE Z0 OVER OCEAN |
---|
| 738 | ! |
---|
| 739 | DO I = 1, IM |
---|
| 740 | IF(SLIMSK(I).EQ.0.) THEN |
---|
| 741 | Z0(I) = (CHARNOCK / G) * USTAR(I) ** 2 |
---|
| 742 | ! NEW IMPLEMENTATION OF Z0 |
---|
| 743 | ! CC = USTAR(I) * Z0 / RNU |
---|
| 744 | ! PP = CC / (1. + CC) |
---|
| 745 | ! FF = G * ARNU / (CHARNOCK * USTAR(I) ** 3) |
---|
| 746 | ! Z0 = ARNU / (USTAR(I) * FF ** PP) |
---|
| 747 | Z0(I) = MIN(Z0(I),.1_kind_phys) |
---|
| 748 | Z0(I) = MAX(Z0(I),1.E-7_kind_phys) |
---|
| 749 | Z0RL(I) = 100. * Z0(I) |
---|
| 750 | ENDIF |
---|
| 751 | ENDDO |
---|
| 752 | |
---|
| 753 | GOTO 5555 |
---|
| 754 | ! |
---|
| 755 | ! RCP = RHO CP CH V |
---|
| 756 | ! |
---|
| 757 | DO I = 1, IM |
---|
| 758 | RCH(I) = RHO(I) * CP * CH(I) * WIND(I) |
---|
| 759 | ENDDO |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | ! |
---|
| 763 | ! SENSIBLE AND LATENT HEAT FLUX OVER OPEN WATER |
---|
| 764 | ! |
---|
| 765 | DO I = 1, IM |
---|
| 766 | IF(SLIMSK(I).EQ.0.) THEN |
---|
| 767 | EVAP(I) = ELOCP * RCH(I) * (QSS(I) - Q1(I)) |
---|
| 768 | DM(I) = 1. |
---|
| 769 | QSURF(I) = QSS(I) |
---|
| 770 | ENDIF |
---|
| 771 | ENDDO |
---|
| 772 | |
---|
| 773 | ! |
---|
| 774 | ! COMPUTE SOIL/SNOW/ICE HEAT FLUX IN PREPARATION FOR SURFACE ENERGY |
---|
| 775 | ! BALANCE CALCULATION |
---|
| 776 | ! |
---|
| 777 | DO I = 1, IM |
---|
| 778 | GFLUX(I) = 0. |
---|
| 779 | IF(SLIMSK(I).EQ.1.) THEN |
---|
| 780 | SMCZ(I) = .5 * (SMC(I,1) + .20) |
---|
| 781 | DFT0(I) = KTSOIL(SMCZ(I),SOILTYP(I)) |
---|
| 782 | ELSEIF(SLIMSK(I).EQ.2.) THEN |
---|
| 783 | ! DF FOR ICE IS TAKEN FROM MAYKUT AND UNTERSTEINER |
---|
| 784 | ! DF IS IN SI UNIT OF W K-1 M-1 |
---|
| 785 | DFT0(I) = 2.2 |
---|
| 786 | ENDIF |
---|
| 787 | ENDDO |
---|
| 788 | !! |
---|
| 789 | DO I=1,IM |
---|
| 790 | IF(SLIMSK(I).NE.0.) THEN |
---|
| 791 | ! IF(SNOWD(I).GT..001) THEN |
---|
| 792 | IF(FLAGSNW(I)) THEN |
---|
| 793 | ! |
---|
| 794 | ! WHEN SNOW COVERED, GROUND HEAT FLUX COMES FROM SNOW |
---|
| 795 | ! |
---|
| 796 | TFLX = MIN(T1(I), TSURF(I)) |
---|
| 797 | GFLUX(I) = -DFSNOW * (TFLX - STSOIL(I,1)) & |
---|
| 798 | & / (FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) |
---|
| 799 | ELSE |
---|
| 800 | GFLUX(I) = DFT0(I) * (STSOIL(I,1) - TSURF(I)) & |
---|
| 801 | & / (-.5 * ZSOIL(I,1)) |
---|
| 802 | ENDIF |
---|
| 803 | GFLUX(I) = MAX(GFLUX(I),-200._kind_phys) |
---|
| 804 | GFLUX(I) = MIN(GFLUX(I),+200._kind_phys) |
---|
| 805 | ENDIF |
---|
| 806 | ENDDO |
---|
| 807 | DO I = 1, IM |
---|
| 808 | FLAG(I) = SLIMSK(I).NE.0. |
---|
| 809 | PARTLND(I) = 1. |
---|
| 810 | IF(SNOWD(I).GT.0..AND.SNOWD(I).LE..001) THEN |
---|
| 811 | PARTLND(I) = 1. - SNOWD(I) / .001 |
---|
| 812 | ENDIF |
---|
| 813 | ENDDO |
---|
| 814 | DO I = 1, IM |
---|
| 815 | SNOEVP(I) = 0. |
---|
| 816 | if(SNOWD(I).gt..001) PARTLND(I) = 0. |
---|
| 817 | ENDDO |
---|
| 818 | ! |
---|
| 819 | ! COMPUTE POTENTIAL EVAPORATION FOR LAND AND SEA ICE |
---|
| 820 | ! |
---|
| 821 | DO I = 1, IM |
---|
| 822 | IF(FLAG(I)) THEN |
---|
| 823 | T12 = T1(I) * T1(I) |
---|
| 824 | T14 = T12 * T12 |
---|
| 825 | ! |
---|
| 826 | ! RCAP = FNET - SIGMA T**4 + GFLX - RHO CP CH V (T1-THETA1) |
---|
| 827 | ! |
---|
| 828 | RCAP(I) = -SLWD(I) - SIGMA * T14 + GFLUX(I) & |
---|
| 829 | & - RCH(I) * (T1(I) - THETA1(I)) |
---|
| 830 | ! |
---|
| 831 | ! RSMALL = 4 SIGMA T**3 / RCH(I) + 1 |
---|
| 832 | ! |
---|
| 833 | RSMALL(I) = 4. * SIGMA * T1(I) * T12 / RCH(I) + 1. |
---|
| 834 | ! |
---|
| 835 | ! DELTA = L / CP * DQS/DT |
---|
| 836 | ! |
---|
| 837 | DELTA(I) = ELOCP * EPS * HVAP * QS1(I) / (RD * T12) |
---|
| 838 | ! |
---|
| 839 | ! POTENTIAL EVAPOTRANSPIRATION ( WATTS / M**2 ) AND |
---|
| 840 | ! POTENTIAL EVAPORATION |
---|
| 841 | ! |
---|
| 842 | TERM1(I) = ELOCP * RSMALL(I) * RCH(I)*(QS1(I)-Q0(I)) |
---|
| 843 | TERM2(I) = RCAP(I) * DELTA(I) |
---|
| 844 | EP(I) = (ELOCP * RSMALL(I) * RCH(I) * (QS1(I) - Q0(I)) & |
---|
| 845 | & + RCAP(I) * DELTA(I)) |
---|
| 846 | EP(I) = EP(I) / (RSMALL(I) + DELTA(I)) |
---|
| 847 | ENDIF |
---|
| 848 | ENDDO |
---|
| 849 | ! |
---|
| 850 | ! ACTUAL EVAPORATION OVER LAND IN THREE PARTS : EDIR, ET, AND EC |
---|
| 851 | ! |
---|
| 852 | ! DIRECT EVAPORATION FROM SOIL, THE UNIT GOES FROM M S-1 TO KG M-2 S-1 |
---|
| 853 | ! |
---|
| 854 | DO I = 1, IM |
---|
| 855 | FLAG(I) = SLIMSK(I).EQ.1..AND.EP(I).GT.0. |
---|
| 856 | ENDDO |
---|
| 857 | DO I = 1, IM |
---|
| 858 | IF(FLAG(I)) THEN |
---|
| 859 | DF1(I) = FUNCDF(SMC(I,1),SOILTYP(I)) |
---|
| 860 | KT1(I) = FUNCKT(SMC(I,1),SOILTYP(I)) |
---|
| 861 | endif |
---|
| 862 | if(FLAG(I).and.STC(I,1).lt.t0c) then |
---|
| 863 | DF1(I) = 0. |
---|
| 864 | KT1(I) = 0. |
---|
| 865 | endif |
---|
| 866 | IF(FLAG(I)) THEN |
---|
| 867 | ! TREF = .75 * THSAT(SOILTYP(I)) |
---|
| 868 | TREF(I) = smref(SOILTYP(I)) |
---|
| 869 | ! TWILT = TWLT(SOILTYP(I)) |
---|
| 870 | TWILT(I) = smwlt(SOILTYP(I)) |
---|
| 871 | smcdry = smdry(SOILTYP(I)) |
---|
| 872 | ! FX(I) = -2. * DF1(I) * (SMC(I,1) - .23) / ZSOIL(I,1) |
---|
| 873 | ! & - KT1(I) |
---|
| 874 | FX(I) = -2. * DF1(I) * (SMC(I,1) - smcdry) / ZSOIL(I,1) & |
---|
| 875 | & - KT1(I) |
---|
| 876 | FX(I) = MIN(FX(I), EP(I)/HVAP) |
---|
| 877 | FX(I) = MAX(FX(I),0._kind_phys) |
---|
| 878 | ! |
---|
| 879 | ! SIGMAF IS THE FRACTION OF AREA COVERED BY VEGETATION |
---|
| 880 | ! |
---|
| 881 | EDIR(I) = FX(I) * (1. - SIGMAF(I)) * PARTLND(I) |
---|
| 882 | ENDIF |
---|
| 883 | ENDDO |
---|
| 884 | ! |
---|
| 885 | ! calculate stomatal resistance |
---|
| 886 | ! |
---|
| 887 | DO I = 1, IM |
---|
| 888 | if(FLAG(I)) then |
---|
| 889 | ! |
---|
| 890 | ! resistance due to PAR. We use net solar flux as proxy at the present time |
---|
| 891 | ! |
---|
| 892 | ff = .55 * 2. * SNET(I) / rgl(VEGTYPE(I)) |
---|
| 893 | rcs = (ff + RS(I)/rsmax(VEGTYPE(I))) / (1. + ff) |
---|
| 894 | rcs = max(rcs,.0001_kind_phys) |
---|
| 895 | rct = 1. |
---|
| 896 | rcq = 1. |
---|
| 897 | ! |
---|
| 898 | ! resistance due to thermal effect |
---|
| 899 | ! |
---|
| 900 | ! rct = 1. - .0016 * (topt - theta1) ** 2 |
---|
| 901 | ! rct = max(rct,.0001) |
---|
| 902 | ! |
---|
| 903 | ! resistance due to humidity |
---|
| 904 | ! |
---|
| 905 | ! rcq = 1. / (1. + hs(VEGTYPE(I)) * (QS1(I) - Q0(I))) |
---|
| 906 | ! rcq = max(rcq,.0001) |
---|
| 907 | ! |
---|
| 908 | ! compute resistance without the effect of soil moisture |
---|
| 909 | ! |
---|
| 910 | RS(I) = RS(I) / (rcs * rct * rcq) |
---|
| 911 | endif |
---|
| 912 | ENDDO |
---|
| 913 | ! |
---|
| 914 | ! TRANSPIRATION FROM ALL LEVELS OF THE SOIL |
---|
| 915 | ! |
---|
| 916 | DO I = 1, IM |
---|
| 917 | IF(FLAG(I)) THEN |
---|
| 918 | CANFAC(I) = (CANOPY(I) / SCANOP) ** CFACTR |
---|
| 919 | endif |
---|
| 920 | IF(FLAG(I)) THEN |
---|
| 921 | ETPFAC(I) = SIGMAF(I) & |
---|
| 922 | & * (1. - CANFAC(I)) / HVAP |
---|
| 923 | GX(I) = (SMC(I,1) - TWILT(I)) / (TREF(I) - TWILT(I)) |
---|
| 924 | GX(I) = MAX(GX(I),0._kind_phys) |
---|
| 925 | GX(I) = MIN(GX(I),1._kind_phys) |
---|
| 926 | ! |
---|
| 927 | ! resistance due to soil moisture deficit |
---|
| 928 | ! |
---|
| 929 | rss = GX(I) * (ZSOIL(I,1) / ZSOIL(I,km)) |
---|
| 930 | rss = max(rss,.0001_kind_phys) |
---|
| 931 | RSI = RS(I) / rss |
---|
| 932 | ! |
---|
| 933 | ! transpiration a la Monteith |
---|
| 934 | ! |
---|
| 935 | eth = (TERM1(I) + TERM2(I)) / & |
---|
| 936 | & (DELTA(I) + RSMALL(I) * (1. + RSI * CH(I) * WIND(I))) |
---|
| 937 | ET(I,1) = ETPFAC(I) * eth & |
---|
| 938 | & * PARTLND(I) |
---|
| 939 | ENDIF |
---|
| 940 | ENDDO |
---|
| 941 | !! |
---|
| 942 | DO K = 2, KM |
---|
| 943 | DO I=1,IM |
---|
| 944 | IF(FLAG(I)) THEN |
---|
| 945 | GX(I) = (SMC(I,K) - TWILT(I)) / (TREF(I) - TWILT(I)) |
---|
| 946 | GX(I) = MAX(GX(I),0._kind_phys) |
---|
| 947 | GX(I) = MIN(GX(I),1._kind_phys) |
---|
| 948 | ! |
---|
| 949 | ! resistance due to soil moisture deficit |
---|
| 950 | ! |
---|
| 951 | rss = GX(I) * ((ZSOIL(I,k) - ZSOIL(I,k-1))/ZSOIL(I,km)) |
---|
| 952 | rss = max(rss,1.e-6_kind_phys) |
---|
| 953 | RSI = RS(I) / rss |
---|
| 954 | ! |
---|
| 955 | ! transpiration a la Monteith |
---|
| 956 | ! |
---|
| 957 | eth = (TERM1(I) + TERM2(I)) / & |
---|
| 958 | & (DELTA(I) + RSMALL(I) * (1. + RSI * CH(I) * WIND(I))) |
---|
| 959 | ET(I,K) = eth & |
---|
| 960 | & * ETPFAC(I) * PARTLND(I) |
---|
| 961 | ENDIF |
---|
| 962 | ENDDO |
---|
| 963 | ENDDO |
---|
| 964 | !! |
---|
| 965 | 400 CONTINUE |
---|
| 966 | ! |
---|
| 967 | ! CANOPY RE-EVAPORATION |
---|
| 968 | ! |
---|
| 969 | DO I=1,IM |
---|
| 970 | IF(FLAG(I)) THEN |
---|
| 971 | EC(I) = SIGMAF(I) * CANFAC(I) * EP(I) / HVAP |
---|
| 972 | EC(I) = EC(I) * PARTLND(I) |
---|
| 973 | EC(I) = min(EC(I),CANOPY(I)/delt) |
---|
| 974 | ENDIF |
---|
| 975 | ENDDO |
---|
| 976 | ! |
---|
| 977 | ! SUM UP TOTAL EVAPORATION |
---|
| 978 | ! |
---|
| 979 | DO I = 1, IM |
---|
| 980 | IF(FLAG(I)) THEN |
---|
| 981 | EVAP(I) = EDIR(I) + EC(I) |
---|
| 982 | ENDIF |
---|
| 983 | ENDDO |
---|
| 984 | !! |
---|
| 985 | DO K = 1, KM |
---|
| 986 | DO I=1,IM |
---|
| 987 | IF(FLAG(I)) THEN |
---|
| 988 | EVAP(I) = EVAP(I) + ET(I,K) |
---|
| 989 | ENDIF |
---|
| 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | !! |
---|
| 993 | ! |
---|
| 994 | ! RETURN EVAP UNIT FROM KG M-2 S-1 TO WATTS M-2 |
---|
| 995 | ! |
---|
| 996 | DO I=1,IM |
---|
| 997 | IF(FLAG(I)) THEN |
---|
| 998 | EVAP(I) = MIN(EVAP(I)*HVAP,EP(I)) |
---|
| 999 | ENDIF |
---|
| 1000 | ENDDO |
---|
| 1001 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 1002 | !##DG PRINT *, 'FX(I), SIGMAF, EDIR(I), ETPFAC=', FX(I)*HVAP,SIGMAF, |
---|
| 1003 | !##DG& EDIR(I)*HVAP,ETPFAC*HVAP |
---|
| 1004 | !##DG PRINT *, ' ET =', (ET(K)*HVAP,K=1,KM) |
---|
| 1005 | !##DG PRINT *, ' CANFAC(I), EC(I), EVAP', CANFAC(I),EC(I)*HVAP,EVAP |
---|
| 1006 | !##DG ENDIF |
---|
| 1007 | ! |
---|
| 1008 | ! EVAPORATION OVER BARE SEA ICE |
---|
| 1009 | ! |
---|
| 1010 | DO I = 1, IM |
---|
| 1011 | ! IF(SLIMSK(I).EQ.2.AND.SNOWD(I).LE..001) THEN |
---|
| 1012 | IF(SLIMSK(I).EQ.2.) THEN |
---|
| 1013 | EVAP(I) = PARTLND(I) * EP(I) |
---|
| 1014 | ENDIF |
---|
| 1015 | ENDDO |
---|
| 1016 | ! |
---|
| 1017 | ! TREAT DOWNWARD MOISTURE FLUX SITUATION |
---|
| 1018 | ! (EVAP WAS PRESET TO ZERO SO NO UPDATE NEEDED) |
---|
| 1019 | ! DEW IS CONVERTED FROM KG M-2 TO M TO CONFORM TO PRECIP UNIT |
---|
| 1020 | ! |
---|
| 1021 | DO I = 1, IM |
---|
| 1022 | FLAG(I) = SLIMSK(I).NE.0..AND.EP(I).LE.0. |
---|
| 1023 | DEW(I) = 0. |
---|
| 1024 | ENDDO |
---|
| 1025 | DO I = 1, IM |
---|
| 1026 | IF(FLAG(I)) THEN |
---|
| 1027 | DEW(I) = -EP(I) * DELT / (HVAP * RHOH2O) |
---|
| 1028 | EVAP(I) = EP(I) |
---|
| 1029 | DEW(I) = DEW(I) * PARTLND(I) |
---|
| 1030 | EVAP(I) = EVAP(I) * PARTLND(I) |
---|
| 1031 | DM(I) = 1. |
---|
| 1032 | ENDIF |
---|
| 1033 | ENDDO |
---|
| 1034 | ! |
---|
| 1035 | ! SNOW COVERED LAND AND SEA ICE |
---|
| 1036 | ! |
---|
| 1037 | DO I = 1, IM |
---|
| 1038 | FLAG(I) = SLIMSK(I).NE.0..AND.SNOWD(I).GT.0. |
---|
| 1039 | ENDDO |
---|
| 1040 | ! |
---|
| 1041 | ! CHANGE OF SNOW DEPTH DUE TO EVAPORATION OR SUBLIMATION |
---|
| 1042 | ! |
---|
| 1043 | ! CONVERT EVAP FROM KG M-2 S-1 TO M S-1 TO DETERMINE THE REDUCTION OF S |
---|
| 1044 | ! |
---|
| 1045 | DO I = 1, IM |
---|
| 1046 | IF(FLAG(I)) THEN |
---|
| 1047 | BFACT = SNOWD(I) / (DELT * EP(I) / (HVAP * RHOH2O)) |
---|
| 1048 | BFACT = MIN(BFACT,1._kind_phys) |
---|
| 1049 | ! |
---|
| 1050 | ! THE EVAPORATION OF SNOW |
---|
| 1051 | ! |
---|
| 1052 | IF(EP(I).LE.0.) BFACT = 1. |
---|
| 1053 | IF(SNOWD(I).LE..001) THEN |
---|
| 1054 | ! EVAP = (SNOWD(I)/.001)*BFACT*EP(I) + EVAP |
---|
| 1055 | ! SNOEVP(I) = bfact * EP(I) * (1. - PARTLND(I)) |
---|
| 1056 | ! EVAP = EVAP + SNOEVP(I) |
---|
| 1057 | SNOEVP(I) = bfact * EP(I) |
---|
| 1058 | ! EVAP = EVAP + SNOEVP(I) * (1. - PARTLND(I)) |
---|
| 1059 | EVAP(I)=EVAP(I)+SNOEVP(I)*(1.-PARTLND(I)) |
---|
| 1060 | ELSE |
---|
| 1061 | ! EVAP(I) = BFACT * EP(I) |
---|
| 1062 | SNOEVP(I) = bfact * EP(I) |
---|
| 1063 | EVAP(I) = SNOEVP(I) |
---|
| 1064 | ENDIF |
---|
| 1065 | TSURF(I) = T1(I) + & |
---|
| 1066 | & (RCAP(I) - GFLUX(I) - DFSNOW * (T1(I) - STSOIL(I,1)) & |
---|
| 1067 | & /(FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) & |
---|
| 1068 | ! & + THETA1 - T1 & |
---|
| 1069 | ! & - BFACT * EP(I)) / (RSMALL(I) * RCH(I) & |
---|
| 1070 | & - SNOEVP(I)) / (RSMALL(I) * RCH(I) & |
---|
| 1071 | & + DFSNOW / (FACTSNW(I)* MAX(SNOWD(I),.001_kind_phys))) |
---|
| 1072 | ! SNOWD(I) = SNOWD(I) - BFACT * EP(I) * DELT / (RHOH2O * HVAP) |
---|
| 1073 | SNOWD(I) = SNOWD(I) - SNOEVP(I) * delt / (rhoh2o * hvap) |
---|
| 1074 | SNOWD(I) = MAX(SNOWD(I),0._kind_phys) |
---|
| 1075 | ENDIF |
---|
| 1076 | ENDDO |
---|
| 1077 | ! |
---|
| 1078 | ! SNOW MELT (M) |
---|
| 1079 | ! |
---|
| 1080 | 500 CONTINUE |
---|
| 1081 | DO I = 1, IM |
---|
| 1082 | FLAG(I) = SLIMSK(I).NE.0. & |
---|
| 1083 | & .AND.SNOWD(I).GT..0 |
---|
| 1084 | ENDDO |
---|
| 1085 | DO I = 1, IM |
---|
| 1086 | IF(FLAG(I).AND.TSURF(I).GT.T0C) THEN |
---|
| 1087 | SNOWMT(I) = RCH(I) * RSMALL(I) * DELT & |
---|
| 1088 | & * (TSURF(I) - T0C) / (RHOH2O * HFUS) |
---|
| 1089 | SNOWMT(I) = min(SNOWMT(I),SNOWD(I)) |
---|
| 1090 | SNOWD(I) = SNOWD(I) - SNOWMT(I) |
---|
| 1091 | SNOWD(I) = MAX(SNOWD(I),0._kind_phys) |
---|
| 1092 | TSURF(I) = MAX(T0C,TSURF(I) & |
---|
| 1093 | & -HFUS*SNOWMT(I)*RHOH2O/(RCH(I)*RSMALL(I)*DELT)) |
---|
| 1094 | ENDIF |
---|
| 1095 | ENDDO |
---|
| 1096 | ! |
---|
| 1097 | ! We need to re-evaluate evaporation because of snow melt |
---|
| 1098 | ! the skin temperature is now bounded to 0 deg C |
---|
| 1099 | ! |
---|
| 1100 | ! qss = fpvs(tsurf) |
---|
| 1101 | DO I = 1, IM |
---|
| 1102 | ! IF (SNOWD(I) .GT. 0.0) THEN |
---|
| 1103 | IF (SNOWD(I) .GT. snomin) THEN |
---|
| 1104 | !jfe QSS(I) = 1000. * FPVS(TSURF(I)) |
---|
| 1105 | qss(i) = fpvs(tsurf(i)) |
---|
| 1106 | QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
| 1107 | EVAP(I) = elocp * RCH(I) * (QSS(I) - Q0(I)) |
---|
| 1108 | ENDIF |
---|
| 1109 | ENDDO |
---|
| 1110 | ! |
---|
| 1111 | ! PREPARE TENDENCY TERMS FOR THE SOIL MOISTURE FIELD WITHOUT PRECIPITAT |
---|
| 1112 | ! THE UNIT OF MOISTURE FLUX NEEDS TO BECOME M S-1 FOR SOIL MOISTURE |
---|
| 1113 | ! HENCE THE FACTOR OF RHOH2O |
---|
| 1114 | ! |
---|
| 1115 | DO I = 1, IM |
---|
| 1116 | FLAG(I) = SLIMSK(I).EQ.1. |
---|
| 1117 | if(FLAG(I)) then |
---|
| 1118 | DF1(I) = FUNCDF(SMCZ(I),SOILTYP(I)) |
---|
| 1119 | KT1(I) = FUNCKT(SMCZ(I),SOILTYP(I)) |
---|
| 1120 | endif |
---|
| 1121 | if(FLAG(I).and.STC(I,1).lt.t0c) then |
---|
| 1122 | DF1(I) = 0. |
---|
| 1123 | KT1(I) = 0. |
---|
| 1124 | endif |
---|
| 1125 | IF(FLAG(I)) THEN |
---|
| 1126 | RHSCNPY(I) = -EC(I) + SIGMAF(I) * RHOH2O * DEW(I) / DELT |
---|
| 1127 | SMCZ(I) = MAX(SMC(I,1), SMC(I,2)) |
---|
| 1128 | DMDZ(I) = (SMC(I,1) - SMC(I,2)) / (-.5 * ZSOIL(I,2)) |
---|
| 1129 | RHSMC(I,1) = (DF1(I) * DMDZ(I) + KT1(I) & |
---|
| 1130 | & + (EDIR(I) + ET(I,1))) / (ZSOIL(I,1) * RHOH2O) |
---|
| 1131 | RHSMC(I,1) = RHSMC(I,1) - (1. - SIGMAF(I)) * DEW(I) / & |
---|
| 1132 | & ( ZSOIL(I,1) * delt) |
---|
| 1133 | DDZ(I) = 1. / (-.5 * ZSOIL(I,2)) |
---|
| 1134 | ! |
---|
| 1135 | ! AIM, BIM, AND CIM ARE THE ELEMENTS OF THE TRIDIAGONAL MATRIX FOR THE |
---|
| 1136 | ! IMPLICIT UPDATE OF THE SOIL MOISTURE |
---|
| 1137 | ! |
---|
| 1138 | AIM(I,1) = 0. |
---|
| 1139 | BIM(I,1) = DF1(I) * DDZ(I) / (-ZSOIL(I,1) * RHOH2O) |
---|
| 1140 | CIM(I,1) = -BIM(I,1) |
---|
| 1141 | ENDIF |
---|
| 1142 | ENDDO |
---|
| 1143 | !! |
---|
| 1144 | DO K = 2, KM |
---|
| 1145 | IF(K.LT.KM) THEN |
---|
| 1146 | DO I=1,IM |
---|
| 1147 | IF(FLAG(I)) THEN |
---|
| 1148 | DF2 = FUNCDF(SMCZ(I),SOILTYP(I)) |
---|
| 1149 | KT2(I) = FUNCKT(SMCZ(I),SOILTYP(I)) |
---|
| 1150 | ENDIF |
---|
| 1151 | IF(FLAG(I).and.STC(I,k).lt.t0c) THEN |
---|
| 1152 | df2 = 0. |
---|
| 1153 | KT2(I) = 0. |
---|
| 1154 | ENDIF |
---|
| 1155 | IF(FLAG(I)) THEN |
---|
| 1156 | DMDZ2(I) = (SMC(I,K) - SMC(I,K+1)) & |
---|
| 1157 | & / (.5 * (ZSOIL(I,K-1) - ZSOIL(I,K+1))) |
---|
| 1158 | SMCZ(I) = MAX(SMC(I,K), SMC(I,K+1)) |
---|
| 1159 | RHSMC(I,K) = (DF2 * DMDZ2(I) + KT2(I) & |
---|
| 1160 | & - DF1(I) * DMDZ(I) - KT1(I) + ET(I,K)) & |
---|
| 1161 | & / (RHOH2O*(ZSOIL(I,K) - ZSOIL(I,K-1))) |
---|
| 1162 | DDZ2(I) = 2. / (ZSOIL(I,K-1) - ZSOIL(I,K+1)) |
---|
| 1163 | CIM(I,K) = -DF2 * DDZ2(I) & |
---|
| 1164 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K))*RHOH2O) |
---|
| 1165 | ENDIF |
---|
| 1166 | ENDDO |
---|
| 1167 | ELSE |
---|
| 1168 | DO I = 1, IM |
---|
| 1169 | IF(FLAG(I)) THEN |
---|
| 1170 | KT2(I) = FUNCKT(SMC(I,K),SOILTYP(I)) |
---|
| 1171 | ENDIF |
---|
| 1172 | if(FLAG(I).and.STC(I,k).lt.t0c) KT2(I) = 0. |
---|
| 1173 | IF(FLAG(I)) THEN |
---|
| 1174 | RHSMC(I,K) = (KT2(I) & |
---|
| 1175 | & - DF1(I) * DMDZ(I) - KT1(I) + ET(I,K)) & |
---|
| 1176 | & / (RHOH2O*(ZSOIL(I,K) - ZSOIL(I,K-1))) |
---|
| 1177 | DRAIN(I) = KT2(I) |
---|
| 1178 | CIM(I,K) = 0. |
---|
| 1179 | ENDIF |
---|
| 1180 | ENDDO |
---|
| 1181 | ENDIF |
---|
| 1182 | DO I = 1, IM |
---|
| 1183 | IF(FLAG(I)) THEN |
---|
| 1184 | AIM(I,K) = -DF1(I) * DDZ(I) & |
---|
| 1185 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K))*RHOH2O) |
---|
| 1186 | BIM(I,K) = -(AIM(I,K) + CIM(I,K)) |
---|
| 1187 | DF1(I) = DF2 |
---|
| 1188 | KT1(I) = KT2(I) |
---|
| 1189 | DMDZ(I) = DMDZ2(I) |
---|
| 1190 | DDZ(I) = DDZ2(I) |
---|
| 1191 | ENDIF |
---|
| 1192 | ENDDO |
---|
| 1193 | ENDDO |
---|
| 1194 | !! |
---|
| 1195 | 600 CONTINUE |
---|
| 1196 | ! |
---|
| 1197 | ! UPDATE SOIL TEMPERATURE AND SEA ICE TEMPERATURE |
---|
| 1198 | ! |
---|
| 1199 | DO I=1,IM |
---|
| 1200 | FLAG(I) = SLIMSK(I).NE.0. |
---|
| 1201 | ENDDO |
---|
| 1202 | ! |
---|
| 1203 | ! SURFACE TEMPERATURE IS PART OF THE UPDATE WHEN SNOW IS ABSENT |
---|
| 1204 | ! |
---|
| 1205 | DO I=1,IM |
---|
| 1206 | ! IF(FLAG(I).AND.SNOWD(I).LE..001) THEN |
---|
| 1207 | IF(FLAG(I).AND..NOT.FLAGSNW(I)) THEN |
---|
| 1208 | YY(I) = T1(I) + & |
---|
| 1209 | ! & (RCAP(I)-GFLUX(I) + THETA1 - T1(I) & |
---|
| 1210 | & (RCAP(I)-GFLUX(I) & |
---|
| 1211 | & - EVAP(I)) / (RSMALL(I) * RCH(I)) |
---|
| 1212 | ZZ(I) = 1. + DFT0(I) / (-.5 * ZSOIL(I,1) * RCH(I) * RSMALL(I)) |
---|
| 1213 | XX(I) = DFT0(I) * (STSOIL(I,1) - YY(I)) / & |
---|
| 1214 | & (.5 * ZSOIL(I,1) * ZZ(I)) |
---|
| 1215 | ENDIF |
---|
| 1216 | ! IF(FLAG(I).AND.SNOWD(I).GT..001) THEN |
---|
| 1217 | IF(FLAG(I).AND.FLAGSNW(I)) THEN |
---|
| 1218 | YY(I) = STSOIL(I,1) |
---|
| 1219 | ! |
---|
| 1220 | ! HEAT FLUX FROM SNOW IS EXPLICIT IN TIME |
---|
| 1221 | ! |
---|
| 1222 | ZZ(I) = 1. |
---|
| 1223 | XX(I) = DFSNOW * (STSOIL(I,1) - TSURF(I)) & |
---|
| 1224 | & / (-FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) |
---|
| 1225 | ENDIF |
---|
| 1226 | ENDDO |
---|
| 1227 | ! |
---|
| 1228 | ! COMPUTE THE FORCING AND THE IMPLICIT MATRIX ELEMENTS FOR UPDATE |
---|
| 1229 | ! |
---|
| 1230 | ! CH2O IS THE HEAT CAPACITY OF WATER AND CSOIL IS THE HEAT CAPACITY OF |
---|
| 1231 | ! |
---|
| 1232 | DO I = 1, IM |
---|
| 1233 | IF(FLAG(I)) THEN |
---|
| 1234 | SMCZ(I) = MAX(SMC(I,1), SMC(I,2)) |
---|
| 1235 | DTDZ1(I) = (STSOIL(I,1) - STSOIL(I,2)) / (-.5 * ZSOIL(I,2)) |
---|
| 1236 | IF(SLIMSK(I).EQ.1.) THEN |
---|
| 1237 | DFT1(I) = KTSOIL(SMCZ(I),SOILTYP(I)) |
---|
| 1238 | HCPCT(I) = SMC(I,1) * CH2O + (1. - SMC(I,1)) * CSOIL |
---|
| 1239 | ELSE |
---|
| 1240 | DFT1(I) = DFT0(I) |
---|
| 1241 | HCPCT(I) = CICE |
---|
| 1242 | ENDIF |
---|
| 1243 | DFT2(I) = DFT1(I) |
---|
| 1244 | DDZ(I) = 1. / (-.5 * ZSOIL(I,2)) |
---|
| 1245 | ! |
---|
| 1246 | ! AI, BI, AND CI ARE THE ELEMENTS OF THE TRIDIAGONAL MATRIX FOR THE |
---|
| 1247 | ! IMPLICIT UPDATE OF THE SOIL TEMPERATURE |
---|
| 1248 | ! |
---|
| 1249 | AI(I,1) = 0. |
---|
| 1250 | BI(I,1) = DFT1(I) * DDZ(I) / (-ZSOIL(I,1) * HCPCT(I)) |
---|
| 1251 | CI(I,1) = -BI(I,1) |
---|
| 1252 | BI(I,1) = BI(I,1) & |
---|
| 1253 | & + DFT0(I) / (.5 * ZSOIL(I,1) **2 * HCPCT(I) * ZZ(I)) |
---|
| 1254 | ! SS = DFT0(I) * (STSOIL(I,1) - YY(I)) & |
---|
| 1255 | ! & / (.5 * ZSOIL(I,1) * ZZ(I)) |
---|
| 1256 | ! RHSTC(1) = (DFT1(I) * DTDZ1(I) - SS) |
---|
| 1257 | RHSTC(I,1) = (DFT1(I) * DTDZ1(I) - XX(I)) & |
---|
| 1258 | & / (ZSOIL(I,1) * HCPCT(I)) |
---|
| 1259 | ENDIF |
---|
| 1260 | ENDDO |
---|
| 1261 | !! |
---|
| 1262 | DO K = 2, KM |
---|
| 1263 | DO I=1,IM |
---|
| 1264 | IF(SLIMSK(I).EQ.1.) THEN |
---|
| 1265 | HCPCT(I) = SMC(I,K) * CH2O + (1. - SMC(I,K)) * CSOIL |
---|
| 1266 | ELSEIF(SLIMSK(I).EQ.2.) THEN |
---|
| 1267 | HCPCT(I) = CICE |
---|
| 1268 | ENDIF |
---|
| 1269 | ENDDO |
---|
| 1270 | IF(K.LT.KM) THEN |
---|
| 1271 | DO I = 1, IM |
---|
| 1272 | IF(FLAG(I)) THEN |
---|
| 1273 | DTDZ2(I) = (STSOIL(I,K) - STSOIL(I,K+1)) & |
---|
| 1274 | & / (.5 * (ZSOIL(I,K-1) - ZSOIL(I,K+1))) |
---|
| 1275 | SMCZ(I) = MAX(SMC(I,K), SMC(I,K+1)) |
---|
| 1276 | IF(SLIMSK(I).EQ.1.) THEN |
---|
| 1277 | DFT2(I) = KTSOIL(SMCZ(I),SOILTYP(I)) |
---|
| 1278 | ENDIF |
---|
| 1279 | DDZ2(I) = 2. / (ZSOIL(I,K-1) - ZSOIL(I,K+1)) |
---|
| 1280 | CI(I,K) = -DFT2(I) * DDZ2(I) & |
---|
| 1281 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K)) * HCPCT(I)) |
---|
| 1282 | ENDIF |
---|
| 1283 | ENDDO |
---|
| 1284 | ELSE |
---|
| 1285 | ! |
---|
| 1286 | ! AT THE BOTTOM, CLIMATOLOGY IS ASSUMED AT 2M DEPTH FOR LAND AND |
---|
| 1287 | ! FREEZING TEMPERATURE IS ASSUMED FOR SEA ICE AT Z(KM) |
---|
| 1288 | DO I = 1, IM |
---|
| 1289 | IF(SLIMSK(I).EQ.1.) THEN |
---|
| 1290 | DTDZ2(I) = (STSOIL(I,K) - TG3(I)) & |
---|
| 1291 | & / (.5 * (ZSOIL(I,K-1) + ZSOIL(I,K)) - ZBOT) |
---|
| 1292 | DFT2(I) = KTSOIL(SMC(I,K),SOILTYP(I)) |
---|
| 1293 | CI(I,K) = 0. |
---|
| 1294 | ENDIF |
---|
| 1295 | IF(SLIMSK(I).EQ.2.) THEN |
---|
| 1296 | DTDZ2(I) = (STSOIL(I,K) - TGICE) & |
---|
| 1297 | & / (.5 * ZSOIL(I,K-1) - .5 * ZSOIL(I,K)) |
---|
| 1298 | DFT2(I) = DFT1(I) |
---|
| 1299 | CI(I,K) = 0. |
---|
| 1300 | ENDIF |
---|
| 1301 | ENDDO |
---|
| 1302 | ENDIF |
---|
| 1303 | DO I = 1, IM |
---|
| 1304 | IF(FLAG(I)) THEN |
---|
| 1305 | RHSTC(I,K) = (DFT2(I) * DTDZ2(I) - DFT1(I) * DTDZ1(I)) & |
---|
| 1306 | & / ((ZSOIL(I,K) - ZSOIL(I,K-1)) * HCPCT(I)) |
---|
| 1307 | AI(I,K) = -DFT1(I) * DDZ(I) & |
---|
| 1308 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K)) * HCPCT(I)) |
---|
| 1309 | BI(I,K) = -(AI(I,K) + CI(I,K)) |
---|
| 1310 | DFT1(I) = DFT2(I) |
---|
| 1311 | DTDZ1(I) = DTDZ2(I) |
---|
| 1312 | DDZ(I) = DDZ2(I) |
---|
| 1313 | ENDIF |
---|
| 1314 | ENDDO |
---|
| 1315 | ENDDO |
---|
| 1316 | !! |
---|
| 1317 | 700 CONTINUE |
---|
| 1318 | ! |
---|
| 1319 | ! SOLVE THE TRI-DIAGONAL MATRIX |
---|
| 1320 | ! |
---|
| 1321 | DO K = 1, KM |
---|
| 1322 | DO I=1,IM |
---|
| 1323 | IF(FLAG(I)) THEN |
---|
| 1324 | RHSTC(I,K) = RHSTC(I,K) * DELT2 |
---|
| 1325 | AI(I,K) = AI(I,K) * DELT2 |
---|
| 1326 | BI(I,K) = 1. + BI(I,K) * DELT2 |
---|
| 1327 | CI(I,K) = CI(I,K) * DELT2 |
---|
| 1328 | ENDIF |
---|
| 1329 | ENDDO |
---|
| 1330 | ENDDO |
---|
| 1331 | ! FORWARD ELIMINATION |
---|
| 1332 | DO I=1,IM |
---|
| 1333 | IF(FLAG(I)) THEN |
---|
| 1334 | CI(I,1) = -CI(I,1) / BI(I,1) |
---|
| 1335 | RHSTC(I,1) = RHSTC(I,1) / BI(I,1) |
---|
| 1336 | ENDIF |
---|
| 1337 | ENDDO |
---|
| 1338 | !! |
---|
| 1339 | DO K = 2, KM |
---|
| 1340 | DO I=1,IM |
---|
| 1341 | IF(FLAG(I)) THEN |
---|
| 1342 | CC = 1. / (BI(I,K) + AI(I,K) * CI(I,K-1)) |
---|
| 1343 | CI(I,K) = -CI(I,K) * CC |
---|
| 1344 | RHSTC(I,K) = (RHSTC(I,K) - AI(I,K) * RHSTC(I,K-1)) * CC |
---|
| 1345 | ENDIF |
---|
| 1346 | ENDDO |
---|
| 1347 | ENDDO |
---|
| 1348 | !! |
---|
| 1349 | ! BACKWARD SUBSTITUTTION |
---|
| 1350 | DO I=1,IM |
---|
| 1351 | IF(FLAG(I)) THEN |
---|
| 1352 | CI(I,KM) = RHSTC(I,KM) |
---|
| 1353 | ENDIF |
---|
| 1354 | ENDDO |
---|
| 1355 | !! |
---|
| 1356 | DO K = KM-1, 1 |
---|
| 1357 | DO I=1,IM |
---|
| 1358 | IF(FLAG(I)) THEN |
---|
| 1359 | CI(I,K) = CI(I,K) * CI(I,K+1) + RHSTC(I,K) |
---|
| 1360 | ENDIF |
---|
| 1361 | ENDDO |
---|
| 1362 | ENDDO |
---|
| 1363 | ! |
---|
| 1364 | ! UPDATE SOIL AND ICE TEMPERATURE |
---|
| 1365 | ! |
---|
| 1366 | DO K = 1, KM |
---|
| 1367 | DO I=1,IM |
---|
| 1368 | IF(FLAG(I)) THEN |
---|
| 1369 | STSOIL(I,K) = STSOIL(I,K) + CI(I,K) |
---|
| 1370 | ENDIF |
---|
| 1371 | ENDDO |
---|
| 1372 | ENDDO |
---|
| 1373 | ! |
---|
| 1374 | ! UPDATE SURFACE TEMPERATURE FOR SNOW FREE SURFACES |
---|
| 1375 | ! |
---|
| 1376 | DO I=1,IM |
---|
| 1377 | ! IF(SLIMSK(I).NE.0..AND.SNOWD(I).LE..001) THEN |
---|
| 1378 | IF(SLIMSK(I).NE.0..AND..NOT.FLAGSNW(I)) THEN |
---|
| 1379 | TSURF(I) = (YY(I) + (ZZ(I) - 1.) * STSOIL(I,1)) / ZZ(I) |
---|
| 1380 | ENDIF |
---|
| 1381 | ! IF(SLIMSK(I).EQ.2..AND.SNOWD(I).LE..001) THEN |
---|
| 1382 | IF(SLIMSK(I).EQ.2..AND..NOT.FLAGSNW(I)) THEN |
---|
| 1383 | TSURF(I) = MIN(TSURF(I),T0C) |
---|
| 1384 | ENDIF |
---|
| 1385 | ENDDO |
---|
| 1386 | !! |
---|
| 1387 | DO K = 1, KM |
---|
| 1388 | DO I=1,IM |
---|
| 1389 | IF(SLIMSK(I).EQ.2) THEN |
---|
| 1390 | STSOIL(I,K) = MIN(STSOIL(I,K),T0C) |
---|
| 1391 | ENDIF |
---|
| 1392 | ENDDO |
---|
| 1393 | ENDDO |
---|
| 1394 | ! |
---|
| 1395 | ! TIME FILTER FOR SOIL AND SKIN TEMPERATURE |
---|
| 1396 | ! |
---|
| 1397 | DO I=1,IM |
---|
| 1398 | IF(SLIMSK(I).NE.0.) THEN |
---|
| 1399 | TSKIN(I) = CTFIL1 * TSURF(I) + CTFIL2 * TSKIN(I) |
---|
| 1400 | ENDIF |
---|
| 1401 | ENDDO |
---|
| 1402 | DO K = 1, KM |
---|
| 1403 | DO I=1,IM |
---|
| 1404 | IF(SLIMSK(I).NE.0.) THEN |
---|
| 1405 | STC(I,K) = CTFIL1 * STSOIL(I,K) + CTFIL2 * STC(I,K) |
---|
| 1406 | ENDIF |
---|
| 1407 | ENDDO |
---|
| 1408 | ENDDO |
---|
| 1409 | ! |
---|
| 1410 | ! GFLUX CALCULATION |
---|
| 1411 | ! |
---|
| 1412 | DO I=1,IM |
---|
| 1413 | FLAG(I) = SLIMSK(I).NE.0. & |
---|
| 1414 | ! & .AND.SNOWD(I).GT..001 & |
---|
| 1415 | & .AND.FLAGSNW(I) |
---|
| 1416 | ENDDO |
---|
| 1417 | DO I = 1, IM |
---|
| 1418 | IF(FLAG(I)) THEN |
---|
| 1419 | GFLUX(I) = -DFSNOW * (TSKIN(I) - STC(I,1)) & |
---|
| 1420 | & / (FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) |
---|
| 1421 | ENDIF |
---|
| 1422 | ENDDO |
---|
| 1423 | DO I = 1, IM |
---|
| 1424 | ! IF(SLIMSK(I).NE.0..AND.SNOWD(I).LE..001) THEN |
---|
| 1425 | IF( SLIMSK(I).NE.0..AND..NOT.FLAGSNW(I)) THEN |
---|
| 1426 | GFLUX(I) = DFT0(I) * (STC(I,1) - TSKIN(I)) & |
---|
| 1427 | & / (-.5 * ZSOIL(I,1)) |
---|
| 1428 | ENDIF |
---|
| 1429 | ENDDO |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | 5555 CONTINUE |
---|
| 1433 | |
---|
| 1434 | ! |
---|
| 1435 | ! CALCULATE SENSIBLE HEAT FLUX |
---|
| 1436 | ! |
---|
| 1437 | !WRF DO I = 1, IM |
---|
| 1438 | !WRF HFLX(I) = RCH(I) * (TSKIN(I) - THETA1(I)) |
---|
| 1439 | !WRF ENDDO |
---|
| 1440 | ! |
---|
| 1441 | ! THE REST OF THE OUTPUT |
---|
| 1442 | ! |
---|
| 1443 | !WRF DO I = 1, IM |
---|
| 1444 | !WRF QSURF(I) = Q1(I) + EVAP(I) / (ELOCP * RCH(I)) |
---|
| 1445 | !WRF DM(I) = 1. |
---|
| 1446 | ! |
---|
| 1447 | ! CONVERT SNOW DEPTH BACK TO MM OF WATER EQUIVALENT |
---|
| 1448 | ! |
---|
| 1449 | !WRF SHELEG(I) = SNOWD(I) * 1000. |
---|
| 1450 | !WRF ENDDO |
---|
| 1451 | ! |
---|
| 1452 | |
---|
| 1453 | DO I = 1, IM |
---|
| 1454 | F10M(I) = FM10(I) / FM(I) |
---|
| 1455 | F10M(I) = min(F10M(I),1._kind_phys) |
---|
| 1456 | U10M(I) = F10M(I) * XRCL(I) * U1(I) |
---|
| 1457 | V10M(I) = F10M(I) * XRCL(I) * V1(I) |
---|
| 1458 | !WRF T2M(I) = TSKIN(I) * (1. - FH2(I) / FH(I)) & |
---|
| 1459 | !WRF & + THETA1(I) * FH2(I) / FH(I) |
---|
| 1460 | !WRF T2M(I) = T2M(I) * SIG2K |
---|
| 1461 | ! Q2M(I) = QSURF(I) * (1. - FH2(I) / FH(I)) & |
---|
| 1462 | ! & + Q1(I) * FH2(I) / FH(I) |
---|
| 1463 | ! T2M(I) = T1 |
---|
| 1464 | ! Q2M(I) = Q1 |
---|
| 1465 | !WRF IF(EVAP(I).GE.0.) THEN |
---|
| 1466 | ! |
---|
| 1467 | ! IN CASE OF EVAPORATION, USE THE INFERRED QSURF TO DEDUCE Q2M |
---|
| 1468 | ! |
---|
| 1469 | !WRF Q2M(I) = QSURF(I) * (1. - FH2(I) / FH(I)) & |
---|
| 1470 | !WRF & + Q1(I) * FH2(I) / FH(I) |
---|
| 1471 | !WRF ELSE |
---|
| 1472 | ! |
---|
| 1473 | ! FOR DEW FORMATION SITUATION, USE SATURATED Q AT TSKIN |
---|
| 1474 | ! |
---|
| 1475 | !jfe QSS(I) = 1000. * FPVS(TSKIN(I)) |
---|
| 1476 | !WRF qss(I) = fpvs(tskin(I)) |
---|
| 1477 | !WRF QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
| 1478 | !WRF Q2M(I) = QSS(I) * (1. - FH2(I) / FH(I)) & |
---|
| 1479 | !WRF & + Q1(I) * FH2(I) / FH(I) |
---|
| 1480 | !WRF ENDIF |
---|
| 1481 | !jfe QSS(I) = 1000. * FPVS(T2M(I)) |
---|
| 1482 | !WRF QSS(I) = fpvs(t2m(I)) |
---|
| 1483 | ! QSS(I) = 1000. * T2MO(I) |
---|
| 1484 | !WRF QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
| 1485 | !WRF Q2M(I) = MIN(Q2M(I),QSS(I)) |
---|
| 1486 | ENDDO |
---|
| 1487 | !! |
---|
| 1488 | ! DO I = 1, IM |
---|
| 1489 | ! RNET(I) = -SLWD(I) - SIGMA * TSKIN(I) **4 |
---|
| 1490 | ! ENDDO |
---|
| 1491 | !! |
---|
| 1492 | ! |
---|
| 1493 | !WRF do i=1,im |
---|
| 1494 | !WRF tem = 1.0 / rho(i) |
---|
| 1495 | !WRF hflx(i) = hflx(i) * tem * cpinv |
---|
| 1496 | !WRF evap(i) = evap(i) * tem * hvapi |
---|
| 1497 | !WRF enddo |
---|
| 1498 | |
---|
| 1499 | |
---|
| 1500 | ! |
---|
| 1501 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 1502 | !C RBAL = -SLWD-SIGMA*TSKIN**4+GFLUX |
---|
| 1503 | !C & -EVAP - HFLX |
---|
| 1504 | !##DG PRINT 6000,HFLX,EVAP,GFLUX, |
---|
| 1505 | !##DG& STC(1), STC(2),TSKIN,RNET,SLWD |
---|
| 1506 | !##DG PRINT *, ' T1 =', T1 |
---|
| 1507 | 6000 FORMAT(8(F8.2,',')) |
---|
| 1508 | !C PRINT *, ' EP, ETP,T2M(I) =', EP, ETP,T2M(I) |
---|
| 1509 | !C PRINT *, ' FH, FH2 =', FH, FH2 |
---|
| 1510 | !C PRINT *, ' PH, PH2 =', PH, PH2 |
---|
| 1511 | !C PRINT *, ' CH, RCH =', CH, RCH |
---|
| 1512 | !C PRINT *, ' TERM1, TERM2 =', TERM1, TERM2 |
---|
| 1513 | !C PRINT *, ' RS(I), PLANTR =', RS(I), PLANTR |
---|
| 1514 | !##DG ENDIF |
---|
| 1515 | |
---|
| 1516 | RETURN |
---|
| 1517 | END SUBROUTINE PROGTM |
---|
| 1518 | ! |
---|
| 1519 | ! PROGT2 IS THE SECOND PART OF THE SOIL MODEL THAT IS EXECUTED |
---|
| 1520 | ! AFTER PRECIPITATION FOR THE TIME STEP HAS BEEN CALCULATED |
---|
| 1521 | ! |
---|
| 1522 | !FPP$ NOCONCUR R |
---|
| 1523 | !FPP$ EXPAND(FUNCDF,FUNCKT,THSAT) |
---|
| 1524 | SUBROUTINE PROGT2(IM,KM,RHSCNPY, & |
---|
| 1525 | & RHSMC,AI,BI,CI,SMC,SLIMSK, & |
---|
| 1526 | & CANOPY,PRECIP,RUNOFF,SNOWMT, & |
---|
| 1527 | & ZSOIL,SOILTYP,SIGMAF,DELT,me) |
---|
| 1528 | !c |
---|
| 1529 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
| 1530 | implicit none |
---|
| 1531 | integer km, IM, me |
---|
| 1532 | real(kind=kind_phys) delt |
---|
| 1533 | real(kind=kind_phys) RHSCNPY(IM), RHSMC(IM,KM), AI(IM,KM), & |
---|
| 1534 | & BI(IM,KM), CI(IM,KM), SMC(IM,KM), & |
---|
| 1535 | & SLIMSK(IM), CANOPY(IM), PRECIP(IM), & |
---|
| 1536 | & RUNOFF(IM), SNOWMT(IM), ZSOIL(IM,KM), & |
---|
| 1537 | & SIGMAF(IM) |
---|
| 1538 | INTEGER SOILTYP(IM) |
---|
| 1539 | ! |
---|
| 1540 | integer k, lond, i |
---|
| 1541 | real(kind=kind_phys) CNPY(IM), PRCP(IM), TSAT(IM), & |
---|
| 1542 | & INF(IM), INFMAX(IM), SMSOIL(IM,KM) |
---|
| 1543 | ! |
---|
| 1544 | real(kind=kind_phys) cc, ctfil1, ctfil2, delt2, & |
---|
| 1545 | & drip, rffact, rhoh2o, & |
---|
| 1546 | !WRF & rzero, scanop, tdif, thsat, KSAT |
---|
| 1547 | & rzero, scanop, tdif, KSAT |
---|
| 1548 | ! |
---|
| 1549 | LOGICAL FLAG(IM) |
---|
| 1550 | !c |
---|
| 1551 | PARAMETER (SCANOP=.5, RHOH2O=1000.) |
---|
| 1552 | PARAMETER (CTFIL1=.5, CTFIL2=1.-CTFIL1) |
---|
| 1553 | ! PARAMETER (CTFIL1=1., CTFIL2=1.-CTFIL1) |
---|
| 1554 | PARAMETER (RFFACT=.15) |
---|
| 1555 | ! |
---|
| 1556 | !##DG LATD = 44 |
---|
| 1557 | LOND = 353 |
---|
| 1558 | DELT2 = DELT * 2. |
---|
| 1559 | ! |
---|
| 1560 | ! PRECIPITATION RATE IS NEEDED IN UNIT OF KG M-2 S-1 |
---|
| 1561 | ! |
---|
| 1562 | DO I=1,IM |
---|
| 1563 | PRCP(I) = RHOH2O * (PRECIP(I)+SNOWMT(I)) / DELT |
---|
| 1564 | RUNOFF(I) = 0. |
---|
| 1565 | CNPY(I) = CANOPY(I) |
---|
| 1566 | ENDDO |
---|
| 1567 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 1568 | !##DG PRINT *, ' BEFORE RUNOFF CAL, RHSMC =', RHSMC(1) |
---|
| 1569 | !##DG ENDIF |
---|
| 1570 | ! |
---|
| 1571 | ! UPDATE CANOPY WATER CONTENT |
---|
| 1572 | ! |
---|
| 1573 | DO I=1,IM |
---|
| 1574 | IF(SLIMSK(I).EQ.1.) THEN |
---|
| 1575 | RHSCNPY(I) = RHSCNPY(I) + SIGMAF(I) * PRCP(I) |
---|
| 1576 | CANOPY(I) = CANOPY(I) + DELT * RHSCNPY(I) |
---|
| 1577 | CANOPY(I) = MAX(CANOPY(I),0._kind_phys) |
---|
| 1578 | PRCP(I) = PRCP(I) * (1. - SIGMAF(I)) |
---|
| 1579 | IF(CANOPY(I).GT.SCANOP) THEN |
---|
| 1580 | DRIP = CANOPY(I) - SCANOP |
---|
| 1581 | CANOPY(I) = SCANOP |
---|
| 1582 | PRCP(I) = PRCP(I) + DRIP / DELT |
---|
| 1583 | ENDIF |
---|
| 1584 | ! |
---|
| 1585 | ! CALCULATE INFILTRATION RATE |
---|
| 1586 | ! |
---|
| 1587 | INF(I) = PRCP(I) |
---|
| 1588 | TSAT(I) = THSAT(SOILTYP(I)) |
---|
| 1589 | ! DSAT = FUNCDF(TSAT(I),SOILTYP(I)) |
---|
| 1590 | ! KSAT = FUNCKT(TSAT(I),SOILTYP(I)) |
---|
| 1591 | ! INFMAX(I) = -DSAT * (TSAT(I) - SMC(I,1)) |
---|
| 1592 | ! & / (.5 * ZSOIL(I,1)) & |
---|
| 1593 | ! & + KSAT |
---|
| 1594 | INFMAX(I) = (-ZSOIL(I,1)) * & |
---|
| 1595 | & ((TSAT(I) - SMC(I,1)) / DELT - RHSMC(I,1)) & |
---|
| 1596 | & * RHOH2O |
---|
| 1597 | INFMAX(I) = MAX(RFFACT*INFMAX(I),0._kind_phys) |
---|
| 1598 | ! IF(SMC(I,1).GE.TSAT(I)) INFMAX(I) = KSAT |
---|
| 1599 | ! IF(SMC(I,1).GE.TSAT(I)) INFMAX(I) = ZSOIL(I,1) * RHSMC(I,1) |
---|
| 1600 | IF(INF(I).GT.INFMAX(I)) THEN |
---|
| 1601 | RUNOFF(I) = INF(I) - INFMAX(I) |
---|
| 1602 | INF(I) = INFMAX(I) |
---|
| 1603 | ENDIF |
---|
| 1604 | INF(I) = INF(I) / RHOH2O |
---|
| 1605 | RHSMC(I,1) = RHSMC(I,1) - INF(I) / ZSOIL(I,1) |
---|
| 1606 | ENDIF |
---|
| 1607 | ENDDO |
---|
| 1608 | !! |
---|
| 1609 | !##DG IF(LAT.EQ.LATD) THEN |
---|
| 1610 | !##DG PRINT *, ' PRCP(I), INFMAX(I), RUNOFF =', PRCP(I),INFMAX(I),RUNOFF |
---|
| 1611 | !##DG PRINT *, ' SMSOIL =', SMC(1), SMC(2) |
---|
| 1612 | !##DG PRINT *, ' RHSMC =', RHSMC(1) |
---|
| 1613 | !##DG ENDIF |
---|
| 1614 | ! |
---|
| 1615 | ! WE CURRENTLY IGNORE THE EFFECT OF RAIN ON SEA ICE |
---|
| 1616 | ! |
---|
| 1617 | DO I=1,IM |
---|
| 1618 | FLAG(I) = SLIMSK(I).EQ.1. |
---|
| 1619 | ENDDO |
---|
| 1620 | !! |
---|
| 1621 | ! |
---|
| 1622 | ! SOLVE THE TRI-DIAGONAL MATRIX |
---|
| 1623 | ! |
---|
| 1624 | DO K = 1, KM |
---|
| 1625 | DO I=1,IM |
---|
| 1626 | IF(FLAG(I)) THEN |
---|
| 1627 | RHSMC(I,K) = RHSMC(I,K) * DELT2 |
---|
| 1628 | AI(I,K) = AI(I,K) * DELT2 |
---|
| 1629 | BI(I,K) = 1. + BI(I,K) * DELT2 |
---|
| 1630 | CI(I,K) = CI(I,K) * DELT2 |
---|
| 1631 | ENDIF |
---|
| 1632 | ENDDO |
---|
| 1633 | ENDDO |
---|
| 1634 | ! FORWARD ELIMINATION |
---|
| 1635 | DO I=1,IM |
---|
| 1636 | IF(FLAG(I)) THEN |
---|
| 1637 | CI(I,1) = -CI(I,1) / BI(I,1) |
---|
| 1638 | RHSMC(I,1) = RHSMC(I,1) / BI(I,1) |
---|
| 1639 | ENDIF |
---|
| 1640 | ENDDO |
---|
| 1641 | DO K = 2, KM |
---|
| 1642 | DO I=1,IM |
---|
| 1643 | IF(FLAG(I)) THEN |
---|
| 1644 | CC = 1. / (BI(I,K) + AI(I,K) * CI(I,K-1)) |
---|
| 1645 | CI(I,K) = -CI(I,K) * CC |
---|
| 1646 | RHSMC(I,K)=(RHSMC(I,K)-AI(I,K)*RHSMC(I,K-1))*CC |
---|
| 1647 | ENDIF |
---|
| 1648 | ENDDO |
---|
| 1649 | ENDDO |
---|
| 1650 | ! BACKWARD SUBSTITUTTION |
---|
| 1651 | DO I=1,IM |
---|
| 1652 | IF(FLAG(I)) THEN |
---|
| 1653 | CI(I,KM) = RHSMC(I,KM) |
---|
| 1654 | ENDIF |
---|
| 1655 | ENDDO |
---|
| 1656 | !! |
---|
| 1657 | DO K = KM-1, 1 |
---|
| 1658 | DO I=1,IM |
---|
| 1659 | IF(FLAG(I)) THEN |
---|
| 1660 | CI(I,K) = CI(I,K) * CI(I,K+1) + RHSMC(I,K) |
---|
| 1661 | ENDIF |
---|
| 1662 | ENDDO |
---|
| 1663 | ENDDO |
---|
| 1664 | 100 CONTINUE |
---|
| 1665 | ! |
---|
| 1666 | ! UPDATE SOIL MOISTURE |
---|
| 1667 | ! |
---|
| 1668 | DO K = 1, KM |
---|
| 1669 | DO I=1,IM |
---|
| 1670 | IF(FLAG(I)) THEN |
---|
| 1671 | SMSOIL(I,K) = SMC(I,K) + CI(I,K) |
---|
| 1672 | SMSOIL(I,K) = MAX(SMSOIL(I,K),0._kind_phys) |
---|
| 1673 | TDIF = MAX(SMSOIL(I,K) - TSAT(I),0._kind_phys) |
---|
| 1674 | RUNOFF(I) = RUNOFF(I) - & |
---|
| 1675 | & RHOH2O * TDIF * ZSOIL(I,K) / DELT |
---|
| 1676 | SMSOIL(I,K) = SMSOIL(I,K) - TDIF |
---|
| 1677 | ENDIF |
---|
| 1678 | ENDDO |
---|
| 1679 | ENDDO |
---|
| 1680 | DO K = 1, KM |
---|
| 1681 | DO I=1,IM |
---|
| 1682 | IF(FLAG(I)) THEN |
---|
| 1683 | SMC(I,K) = CTFIL1 * SMSOIL(I,K) + CTFIL2 * SMC(I,K) |
---|
| 1684 | ENDIF |
---|
| 1685 | ENDDO |
---|
| 1686 | ENDDO |
---|
| 1687 | ! IF(FLAG(I)) THEN |
---|
| 1688 | ! CANOPY(I) = CTFIL1 * CANOPY(I) + CTFIL2 * CNPY(I) |
---|
| 1689 | ! ENDIF |
---|
| 1690 | ! I = 1 |
---|
| 1691 | ! PRINT *, ' SMC' |
---|
| 1692 | ! PRINT 6000, SMC(1), SMC(2) |
---|
| 1693 | !6000 FORMAT(2(F8.5,',')) |
---|
| 1694 | RETURN |
---|
| 1695 | END SUBROUTINE PROGT2 |
---|
| 1696 | FUNCTION KTSOIL(THETA,KTYPE) |
---|
| 1697 | ! |
---|
| 1698 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
| 1699 | USE module_progtm , ONLY : TSAT, DFKT |
---|
| 1700 | implicit none |
---|
| 1701 | integer ktype,kw |
---|
| 1702 | real(kind=kind_phys) ktsoil, theta, w |
---|
| 1703 | ! |
---|
| 1704 | W = (THETA / TSAT(KTYPE)) * 20. + 1. |
---|
| 1705 | KW = W |
---|
| 1706 | KW = MIN(KW,21) |
---|
| 1707 | KW = MAX(KW,1) |
---|
| 1708 | KTSOIL = DFKT(KW,KTYPE) & |
---|
| 1709 | & + (W - KW) * (DFKT(KW+1,KTYPE) - DFKT(KW,KTYPE)) |
---|
| 1710 | RETURN |
---|
| 1711 | END FUNCTION KTSOIL |
---|
| 1712 | FUNCTION FUNCDF(THETA,KTYPE) |
---|
| 1713 | ! |
---|
| 1714 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
| 1715 | USE module_progtm , ONLY : TSAT, DFK |
---|
| 1716 | implicit none |
---|
| 1717 | integer ktype,kw |
---|
| 1718 | real(kind=kind_phys) funcdf,theta,w |
---|
| 1719 | ! |
---|
| 1720 | W = (THETA / TSAT(KTYPE)) * 20. + 1. |
---|
| 1721 | KW = W |
---|
| 1722 | KW = MIN(KW,21) |
---|
| 1723 | KW = MAX(KW,1) |
---|
| 1724 | FUNCDF = DFK(KW,KTYPE) & |
---|
| 1725 | & + (W - KW) * (DFK(KW+1,KTYPE) - DFK(KW,KTYPE)) |
---|
| 1726 | RETURN |
---|
| 1727 | END FUNCTION FUNCDF |
---|
| 1728 | FUNCTION FUNCKT(THETA,KTYPE) |
---|
| 1729 | ! |
---|
| 1730 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
| 1731 | USE module_progtm , ONLY : TSAT, KTK |
---|
| 1732 | implicit none |
---|
| 1733 | integer ktype,kw |
---|
| 1734 | real(kind=kind_phys) funckt,theta,w |
---|
| 1735 | ! |
---|
| 1736 | W = (THETA / TSAT(KTYPE)) * 20. + 1. |
---|
| 1737 | KW = W |
---|
| 1738 | KW = MIN(KW,21) |
---|
| 1739 | KW = MAX(KW,1) |
---|
| 1740 | FUNCKT = KTK(KW,KTYPE) & |
---|
| 1741 | & + (W - KW) * (KTK(KW+1,KTYPE) - KTK(KW,KTYPE)) |
---|
| 1742 | RETURN |
---|
| 1743 | END FUNCTION FUNCKT |
---|
| 1744 | FUNCTION THSAT(KTYPE) |
---|
| 1745 | ! |
---|
| 1746 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
| 1747 | USE module_progtm , ONLY : TSAT |
---|
| 1748 | implicit none |
---|
| 1749 | integer ktype |
---|
| 1750 | real(kind=kind_phys) thsat |
---|
| 1751 | ! |
---|
| 1752 | THSAT = TSAT(KTYPE) |
---|
| 1753 | RETURN |
---|
| 1754 | END FUNCTION THSAT |
---|
| 1755 | FUNCTION TWLT(KTYPE) |
---|
| 1756 | |
---|
| 1757 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
| 1758 | ! USE module_progtm |
---|
| 1759 | implicit none |
---|
| 1760 | integer ktype |
---|
| 1761 | real(kind=kind_phys) twlt |
---|
| 1762 | ! |
---|
| 1763 | TWLT = .1 |
---|
| 1764 | RETURN |
---|
| 1765 | END FUNCTION TWLT |
---|
| 1766 | |
---|
| 1767 | END MODULE module_sf_gfs |
---|