1 | #if ( RWORDSIZE == 4 ) |
---|
2 | # define VREC vsrec |
---|
3 | # define VSQRT vssqrt |
---|
4 | #else |
---|
5 | # define VREC vrec |
---|
6 | # define VSQRT vsqrt |
---|
7 | #endif |
---|
8 | |
---|
9 | MODULE module_mp_wsm6 |
---|
10 | ! |
---|
11 | ! |
---|
12 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. |
---|
13 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 |
---|
14 | REAL, PARAMETER, PRIVATE :: n0g = 4.e6 |
---|
15 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 |
---|
16 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 |
---|
17 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
18 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
19 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
20 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
21 | REAL, PARAMETER, PRIVATE :: avts = 11.72 |
---|
22 | REAL, PARAMETER, PRIVATE :: bvts = .41 |
---|
23 | REAL, PARAMETER, PRIVATE :: avtg = 330. |
---|
24 | REAL, PARAMETER, PRIVATE :: bvtg = 0.8 |
---|
25 | REAL, PARAMETER, PRIVATE :: deng = 500. |
---|
26 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! t=-90C unlimited |
---|
27 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 |
---|
28 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 |
---|
29 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 |
---|
30 | REAL, PARAMETER, PRIVATE :: betai = .6 |
---|
31 | REAL, PARAMETER, PRIVATE :: xn0 = 1.e-2 |
---|
32 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 |
---|
33 | REAL, PARAMETER, PRIVATE :: di0 = 12.9e-6 |
---|
34 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 |
---|
35 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent n0s |
---|
36 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
37 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. |
---|
38 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 |
---|
39 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 |
---|
40 | REAL, PARAMETER, PRIVATE :: t40c = 233.16 |
---|
41 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 |
---|
42 | REAL, PARAMETER, PRIVATE :: dens = 100.0 |
---|
43 | REAL, PARAMETER, PRIVATE :: qs0 = 6.e-4 ! pgaut |
---|
44 | REAL, SAVE :: & |
---|
45 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr,& |
---|
46 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
---|
47 | bvtr6,g6pbr, & |
---|
48 | precr1,precr2,xm0,xmmax,roqimax,bvts1, & |
---|
49 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
---|
50 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r,& |
---|
51 | pidn0s,xlv1,pacrc, & |
---|
52 | bvtg1,bvtg2,bvtg3,bvtg4,g1pbg, & |
---|
53 | g3pbg,g4pbg,g5pbgo2,pvtg,pacrg, & |
---|
54 | precg1,precg2,pidn0g, & |
---|
55 | rslopermax,rslopesmax,rslopegmax, & |
---|
56 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
57 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
58 | rsloper3max,rslopes3max,rslopeg3max |
---|
59 | CONTAINS |
---|
60 | !=================================================================== |
---|
61 | ! |
---|
62 | SUBROUTINE wsm6(th, q, qc, qr, qi, qs, qg & |
---|
63 | ,den, pii, p, delz & |
---|
64 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
65 | ,ep1, ep2, qmin & |
---|
66 | ,XLS, XLV0, XLF0, den0, denr & |
---|
67 | ,cliq,cice,psat & |
---|
68 | ,rain, rainncv & |
---|
69 | ,snow, snowncv & |
---|
70 | ,graupel, graupelncv & |
---|
71 | ,sr & |
---|
72 | ,ids,ide, jds,jde, kds,kde & |
---|
73 | ,ims,ime, jms,jme, kms,kme & |
---|
74 | ,its,ite, jts,jte, kts,kte & |
---|
75 | ) |
---|
76 | !------------------------------------------------------------------- |
---|
77 | IMPLICIT NONE |
---|
78 | !------------------------------------------------------------------- |
---|
79 | ! |
---|
80 | ! This code is a 6-class GRAUPEL phase microphyiscs scheme (WSM6) of the WRF |
---|
81 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
---|
82 | ! number concentration is a function of temperature, and seperate assumption |
---|
83 | ! is developed, in which ice crystal number concentration is a function |
---|
84 | ! of ice amount. A theoretical background of the ice-microphysics and related |
---|
85 | ! processes in the WSMMPs are described in Hong et al. (2004). |
---|
86 | ! All production terms in the WSM6 scheme are described in Hong and Lim (2006). |
---|
87 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
88 | ! |
---|
89 | ! WSM6 cloud scheme |
---|
90 | ! |
---|
91 | ! Coded by Song-You Hong and Jeong-Ock Jade Lim (Yonsei Univ.) |
---|
92 | ! Summer 2003 |
---|
93 | ! |
---|
94 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
---|
95 | ! Summer 2004 |
---|
96 | ! |
---|
97 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
98 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
99 | ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan |
---|
100 | ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor. |
---|
101 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
---|
102 | ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci. |
---|
103 | ! |
---|
104 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
105 | ims,ime, jms,jme, kms,kme , & |
---|
106 | its,ite, jts,jte, kts,kte |
---|
107 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
108 | INTENT(INOUT) :: & |
---|
109 | th, & |
---|
110 | q, & |
---|
111 | qc, & |
---|
112 | qi, & |
---|
113 | qr, & |
---|
114 | qs, & |
---|
115 | qg |
---|
116 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
117 | INTENT(IN ) :: & |
---|
118 | den, & |
---|
119 | pii, & |
---|
120 | p, & |
---|
121 | delz |
---|
122 | REAL, INTENT(IN ) :: delt, & |
---|
123 | g, & |
---|
124 | rd, & |
---|
125 | rv, & |
---|
126 | t0c, & |
---|
127 | den0, & |
---|
128 | cpd, & |
---|
129 | cpv, & |
---|
130 | ep1, & |
---|
131 | ep2, & |
---|
132 | qmin, & |
---|
133 | XLS, & |
---|
134 | XLV0, & |
---|
135 | XLF0, & |
---|
136 | cliq, & |
---|
137 | cice, & |
---|
138 | psat, & |
---|
139 | denr |
---|
140 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
141 | INTENT(INOUT) :: rain, & |
---|
142 | rainncv, & |
---|
143 | sr |
---|
144 | |
---|
145 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
146 | INTENT(INOUT) :: snow, & |
---|
147 | snowncv |
---|
148 | |
---|
149 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
150 | INTENT(INOUT) :: graupel, & |
---|
151 | graupelncv |
---|
152 | ! LOCAL VAR |
---|
153 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
154 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci |
---|
155 | REAL, DIMENSION( its:ite , kts:kte, 3 ) :: qrs |
---|
156 | INTEGER :: i,j,k |
---|
157 | !------------------------------------------------------------------- |
---|
158 | DO j=jts,jte |
---|
159 | DO k=kts,kte |
---|
160 | DO i=its,ite |
---|
161 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
162 | qci(i,k,1) = qc(i,k,j) |
---|
163 | qci(i,k,2) = qi(i,k,j) |
---|
164 | qrs(i,k,1) = qr(i,k,j) |
---|
165 | qrs(i,k,2) = qs(i,k,j) |
---|
166 | qrs(i,k,3) = qg(i,k,j) |
---|
167 | ENDDO |
---|
168 | ENDDO |
---|
169 | |
---|
170 | ! Sending array starting locations of optional variables may cause |
---|
171 | ! troubles, so we explicitly change the call. |
---|
172 | |
---|
173 | CALL wsm62D(t, q(ims,kms,j), qci, qrs & |
---|
174 | ,den(ims,kms,j) & |
---|
175 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
176 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
177 | ,ep1, ep2, qmin & |
---|
178 | ,XLS, XLV0, XLF0, den0, denr & |
---|
179 | ,cliq,cice,psat & |
---|
180 | ,j & |
---|
181 | ,rain(ims,j),rainncv(ims,j) & |
---|
182 | ,sr(ims,j) & |
---|
183 | ,ids,ide, jds,jde, kds,kde & |
---|
184 | ,ims,ime, jms,jme, kms,kme & |
---|
185 | ,its,ite, jts,jte, kts,kte & |
---|
186 | #if ( EM_CORE == 1 ) |
---|
187 | ,snow(ims,j),snowncv(ims,j) & |
---|
188 | ,graupel(ims,j),graupelncv(ims,j) & |
---|
189 | #endif |
---|
190 | ) |
---|
191 | |
---|
192 | DO K=kts,kte |
---|
193 | DO I=its,ite |
---|
194 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
195 | qc(i,k,j) = qci(i,k,1) |
---|
196 | qi(i,k,j) = qci(i,k,2) |
---|
197 | qr(i,k,j) = qrs(i,k,1) |
---|
198 | qs(i,k,j) = qrs(i,k,2) |
---|
199 | qg(i,k,j) = qrs(i,k,3) |
---|
200 | ENDDO |
---|
201 | ENDDO |
---|
202 | ENDDO |
---|
203 | END SUBROUTINE wsm6 |
---|
204 | !=================================================================== |
---|
205 | ! |
---|
206 | SUBROUTINE wsm62D(t, q, qci, qrs, den, p, delz & |
---|
207 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
208 | ,ep1, ep2, qmin & |
---|
209 | ,XLS, XLV0, XLF0, den0, denr & |
---|
210 | ,cliq,cice,psat & |
---|
211 | ,lat & |
---|
212 | ,rain,rainncv & |
---|
213 | ,sr & |
---|
214 | ,ids,ide, jds,jde, kds,kde & |
---|
215 | ,ims,ime, jms,jme, kms,kme & |
---|
216 | ,its,ite, jts,jte, kts,kte & |
---|
217 | ,snow,snowncv & |
---|
218 | ,graupel,graupelncv & |
---|
219 | ) |
---|
220 | !------------------------------------------------------------------- |
---|
221 | IMPLICIT NONE |
---|
222 | !------------------------------------------------------------------- |
---|
223 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
224 | ims,ime, jms,jme, kms,kme , & |
---|
225 | its,ite, jts,jte, kts,kte, & |
---|
226 | lat |
---|
227 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
228 | INTENT(INOUT) :: & |
---|
229 | t |
---|
230 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
---|
231 | INTENT(INOUT) :: & |
---|
232 | qci |
---|
233 | REAL, DIMENSION( its:ite , kts:kte, 3 ), & |
---|
234 | INTENT(INOUT) :: & |
---|
235 | qrs |
---|
236 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
237 | INTENT(INOUT) :: & |
---|
238 | q |
---|
239 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
240 | INTENT(IN ) :: & |
---|
241 | den, & |
---|
242 | p, & |
---|
243 | delz |
---|
244 | REAL, INTENT(IN ) :: delt, & |
---|
245 | g, & |
---|
246 | cpd, & |
---|
247 | cpv, & |
---|
248 | t0c, & |
---|
249 | den0, & |
---|
250 | rd, & |
---|
251 | rv, & |
---|
252 | ep1, & |
---|
253 | ep2, & |
---|
254 | qmin, & |
---|
255 | XLS, & |
---|
256 | XLV0, & |
---|
257 | XLF0, & |
---|
258 | cliq, & |
---|
259 | cice, & |
---|
260 | psat, & |
---|
261 | denr |
---|
262 | REAL, DIMENSION( ims:ime ), & |
---|
263 | INTENT(INOUT) :: rain, & |
---|
264 | rainncv, & |
---|
265 | sr |
---|
266 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
267 | INTENT(INOUT) :: snow, & |
---|
268 | snowncv |
---|
269 | |
---|
270 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
271 | INTENT(INOUT) :: graupel, & |
---|
272 | graupelncv |
---|
273 | ! LOCAL VAR |
---|
274 | REAL, DIMENSION( its:ite , kts:kte , 3) :: & |
---|
275 | rh, qs, rslope, rslope2, rslope3, rslopeb, & |
---|
276 | falk, fall, work1 |
---|
277 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
278 | worka |
---|
279 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
280 | falkc, work1c, work2c, fallc |
---|
281 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
282 | prevp, psdep, pgdep, praut, psaut, pgaut, & |
---|
283 | pracw, psacw, pgacw, pgacr, pgacs, psaci, pgmlt, praci, & |
---|
284 | piacr, pracs, psacr, pgaci, pseml, pgeml |
---|
285 | REAL, DIMENSION( its:ite , kts:kte) :: qsum |
---|
286 | REAL, DIMENSION( its:ite , kts:kte ) :: paacw |
---|
287 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
288 | pigen, pidep, pcond, xl, cpm, work2, psmlt, psevp, denfac, & |
---|
289 | xni, pgevp,n0sfac |
---|
290 | ! variables for optimization |
---|
291 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
292 | REAL :: temp |
---|
293 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
---|
294 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
295 | REAL :: pi, & |
---|
296 | cpmcal, xlcal, lamdar, lamdas, lamdag, diffus, & |
---|
297 | viscos, xka, venfac, conden, diffac, & |
---|
298 | x, y, z, a, b, c, d, e, & |
---|
299 | qdt, holdrr, holdrs, holdrg, supcol, supcolt, pvt, & |
---|
300 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
---|
301 | qimax, diameter, xni0, roqi0, & |
---|
302 | fallsum, fallsum_qsi, fallsum_qg, & |
---|
303 | vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi, & |
---|
304 | xlwork2, factor, source, value, & |
---|
305 | xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, delta3 |
---|
306 | REAL :: vt2ave |
---|
307 | REAL :: holdc, holdci |
---|
308 | INTEGER :: i, j, k, mstepmax, & |
---|
309 | iprt, latd, lond, loop, loops, ifsat, n |
---|
310 | ! Temporaries used for inlining fpvs function |
---|
311 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
312 | ! |
---|
313 | !================================================================= |
---|
314 | ! compute internal functions |
---|
315 | ! |
---|
316 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
317 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
318 | !---------------------------------------------------------------- |
---|
319 | ! size distributions: (x=mixing ratio, y=air density): |
---|
320 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
321 | ! |
---|
322 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
323 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
324 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
325 | lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 |
---|
326 | ! |
---|
327 | !---------------------------------------------------------------- |
---|
328 | ! diffus: diffusion coefficient of the water vapor |
---|
329 | ! viscos: kinematic viscosity(m2s-1) |
---|
330 | ! |
---|
331 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
332 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
333 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
334 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
335 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
336 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
337 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
338 | ! |
---|
339 | pi = 4. * atan(1.) |
---|
340 | ! |
---|
341 | ! |
---|
342 | !---------------------------------------------------------------- |
---|
343 | ! paddint 0 for negative values generated by dynamics |
---|
344 | ! |
---|
345 | do k = kts, kte |
---|
346 | do i = its, ite |
---|
347 | qci(i,k,1) = max(qci(i,k,1),0.0) |
---|
348 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
---|
349 | qci(i,k,2) = max(qci(i,k,2),0.0) |
---|
350 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
---|
351 | qrs(i,k,3) = max(qrs(i,k,3),0.0) |
---|
352 | enddo |
---|
353 | enddo |
---|
354 | ! |
---|
355 | !---------------------------------------------------------------- |
---|
356 | ! latent heat for phase changes and heat capacity. neglect the |
---|
357 | ! changes during microphysical process calculation |
---|
358 | ! emanuel(1994) |
---|
359 | ! |
---|
360 | do k = kts, kte |
---|
361 | do i = its, ite |
---|
362 | cpm(i,k) = cpmcal(q(i,k)) |
---|
363 | xl(i,k) = xlcal(t(i,k)) |
---|
364 | enddo |
---|
365 | enddo |
---|
366 | ! |
---|
367 | !---------------------------------------------------------------- |
---|
368 | ! compute the minor time steps. |
---|
369 | ! |
---|
370 | loops = max(nint(delt/dtcldcr),1) |
---|
371 | dtcld = delt/loops |
---|
372 | if(delt.le.dtcldcr) dtcld = delt |
---|
373 | ! |
---|
374 | do loop = 1,loops |
---|
375 | ! |
---|
376 | !---------------------------------------------------------------- |
---|
377 | ! initialize the large scale variables |
---|
378 | ! |
---|
379 | do i = its, ite |
---|
380 | mstep(i) = 1 |
---|
381 | flgcld(i) = .true. |
---|
382 | enddo |
---|
383 | ! |
---|
384 | ! do k = kts, kte |
---|
385 | ! do i = its, ite |
---|
386 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
---|
387 | ! enddo |
---|
388 | ! enddo |
---|
389 | do k = kts, kte |
---|
390 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
391 | do i = its, ite |
---|
392 | tvec1(i) = tvec1(i)*den0 |
---|
393 | enddo |
---|
394 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
395 | enddo |
---|
396 | ! |
---|
397 | ! Inline expansion for fpvs |
---|
398 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
399 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
400 | hsub = xls |
---|
401 | hvap = xlv0 |
---|
402 | cvap = cpv |
---|
403 | ttp=t0c+0.01 |
---|
404 | dldt=cvap-cliq |
---|
405 | xa=-dldt/rv |
---|
406 | xb=xa+hvap/(rv*ttp) |
---|
407 | dldti=cvap-cice |
---|
408 | xai=-dldti/rv |
---|
409 | xbi=xai+hsub/(rv*ttp) |
---|
410 | do k = kts, kte |
---|
411 | do i = its, ite |
---|
412 | tr=ttp/t(i,k) |
---|
413 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
414 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
415 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
416 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
417 | tr=ttp/t(i,k) |
---|
418 | if(t(i,k).lt.ttp) then |
---|
419 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
420 | else |
---|
421 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
422 | endif |
---|
423 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
424 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
425 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
---|
426 | enddo |
---|
427 | enddo |
---|
428 | ! |
---|
429 | !---------------------------------------------------------------- |
---|
430 | ! initialize the variables for microphysical physics |
---|
431 | ! |
---|
432 | ! |
---|
433 | do k = kts, kte |
---|
434 | do i = its, ite |
---|
435 | prevp(i,k) = 0. |
---|
436 | psdep(i,k) = 0. |
---|
437 | pgdep(i,k) = 0. |
---|
438 | praut(i,k) = 0. |
---|
439 | psaut(i,k) = 0. |
---|
440 | pgaut(i,k) = 0. |
---|
441 | pracw(i,k) = 0. |
---|
442 | praci(i,k) = 0. |
---|
443 | piacr(i,k) = 0. |
---|
444 | psaci(i,k) = 0. |
---|
445 | psacw(i,k) = 0. |
---|
446 | pracs(i,k) = 0. |
---|
447 | psacr(i,k) = 0. |
---|
448 | pgacw(i,k) = 0. |
---|
449 | paacw(i,k) = 0. |
---|
450 | pgaci(i,k) = 0. |
---|
451 | pgacr(i,k) = 0. |
---|
452 | pgacs(i,k) = 0. |
---|
453 | pigen(i,k) = 0. |
---|
454 | pidep(i,k) = 0. |
---|
455 | pcond(i,k) = 0. |
---|
456 | psmlt(i,k) = 0. |
---|
457 | pgmlt(i,k) = 0. |
---|
458 | pseml(i,k) = 0. |
---|
459 | pgeml(i,k) = 0. |
---|
460 | psevp(i,k) = 0. |
---|
461 | pgevp(i,k) = 0. |
---|
462 | falk(i,k,1) = 0. |
---|
463 | falk(i,k,2) = 0. |
---|
464 | falk(i,k,3) = 0. |
---|
465 | fall(i,k,1) = 0. |
---|
466 | fall(i,k,2) = 0. |
---|
467 | fall(i,k,3) = 0. |
---|
468 | fallc(i,k) = 0. |
---|
469 | falkc(i,k) = 0. |
---|
470 | xni(i,k) = 1.e3 |
---|
471 | enddo |
---|
472 | enddo |
---|
473 | ! |
---|
474 | !---------------------------------------------------------------- |
---|
475 | ! compute the fallout term: |
---|
476 | ! first, vertical terminal velosity for minor loops |
---|
477 | ! |
---|
478 | do k = kts, kte |
---|
479 | do i = its, ite |
---|
480 | supcol = t0c-t(i,k) |
---|
481 | !--------------------------------------------------------------- |
---|
482 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
483 | !--------------------------------------------------------------- |
---|
484 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
485 | if(qrs(i,k,1).le.qcrmin)then |
---|
486 | rslope(i,k,1) = rslopermax |
---|
487 | rslopeb(i,k,1) = rsloperbmax |
---|
488 | rslope2(i,k,1) = rsloper2max |
---|
489 | rslope3(i,k,1) = rsloper3max |
---|
490 | else |
---|
491 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
---|
492 | rslopeb(i,k,1) = rslope(i,k,1)**bvtr |
---|
493 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
494 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
495 | endif |
---|
496 | if(qrs(i,k,2).le.qcrmin)then |
---|
497 | rslope(i,k,2) = rslopesmax |
---|
498 | rslopeb(i,k,2) = rslopesbmax |
---|
499 | rslope2(i,k,2) = rslopes2max |
---|
500 | rslope3(i,k,2) = rslopes3max |
---|
501 | else |
---|
502 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
503 | rslopeb(i,k,2) = rslope(i,k,2)**bvts |
---|
504 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
505 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
506 | endif |
---|
507 | if(qrs(i,k,3).le.qcrmin)then |
---|
508 | rslope(i,k,3) = rslopegmax |
---|
509 | rslopeb(i,k,3) = rslopegbmax |
---|
510 | rslope2(i,k,3) = rslopeg2max |
---|
511 | rslope3(i,k,3) = rslopeg3max |
---|
512 | else |
---|
513 | rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k)) |
---|
514 | rslopeb(i,k,3) = rslope(i,k,3)**bvtg |
---|
515 | rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3) |
---|
516 | rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3) |
---|
517 | endif |
---|
518 | !------------------------------------------------------------- |
---|
519 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
520 | !------------------------------------------------------------- |
---|
521 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
522 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
523 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
524 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
525 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
526 | enddo |
---|
527 | enddo |
---|
528 | ! |
---|
529 | mstepmax = 1 |
---|
530 | numdt = 1 |
---|
531 | do k = kte, kts, -1 |
---|
532 | do i = its, ite |
---|
533 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k) |
---|
534 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k) |
---|
535 | work1(i,k,3) = pvtg*rslopeb(i,k,3)*denfac(i,k)/delz(i,k) |
---|
536 | qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15) |
---|
537 | IF ( qsum(i,k) .gt. 1.e-15 ) THEN |
---|
538 | worka(i,k) = (work1(i,k,2)*qrs(i,k,2) + work1(i,k,3)*qrs(i,k,3))/qsum(i,k) |
---|
539 | ELSE |
---|
540 | worka(i,k) = 0. |
---|
541 | ENDIF |
---|
542 | numdt(i) = max(nint(max(work1(i,k,1),worka(i,k)) & |
---|
543 | *dtcld+.5),1) |
---|
544 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
545 | enddo |
---|
546 | enddo |
---|
547 | do i = its, ite |
---|
548 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
549 | enddo |
---|
550 | ! |
---|
551 | do n = 1, mstepmax |
---|
552 | k = kte |
---|
553 | do i = its, ite |
---|
554 | if(n.le.mstep(i)) then |
---|
555 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
556 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*worka(i,k)/mstep(i) |
---|
557 | falk(i,k,3) = den(i,k)*qrs(i,k,3)*worka(i,k)/mstep(i) |
---|
558 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
559 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
560 | fall(i,k,3) = fall(i,k,3)+falk(i,k,3) |
---|
561 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
---|
562 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k),0.) |
---|
563 | qrs(i,k,3) = max(qrs(i,k,3)-falk(i,k,3)*dtcld/den(i,k),0.) |
---|
564 | endif |
---|
565 | enddo |
---|
566 | do k = kte-1, kts, -1 |
---|
567 | do i = its, ite |
---|
568 | if(n.le.mstep(i)) then |
---|
569 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
570 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*worka(i,k)/mstep(i) |
---|
571 | falk(i,k,3) = den(i,k)*qrs(i,k,3)*worka(i,k)/mstep(i) |
---|
572 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
573 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
574 | fall(i,k,3) = fall(i,k,3)+falk(i,k,3) |
---|
575 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
576 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
577 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
---|
578 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
579 | qrs(i,k,3) = max(qrs(i,k,3)-(falk(i,k,3)-falk(i,k+1,3) & |
---|
580 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
581 | endif |
---|
582 | enddo |
---|
583 | enddo |
---|
584 | do k = kte, kts, -1 |
---|
585 | do i = its, ite |
---|
586 | if(n.le.mstep(i).and.t(i,k).gt.t0c) then |
---|
587 | !--------------------------------------------------------------- |
---|
588 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
---|
589 | ! (T>T0: S->R) |
---|
590 | !--------------------------------------------------------------- |
---|
591 | xlf = xlf0 |
---|
592 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
593 | if(qrs(i,k,2).gt.0.) then |
---|
594 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
595 | psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
---|
596 | *n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
---|
597 | +precs2*work2(i,k)*coeres) |
---|
598 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i), & |
---|
599 | -qrs(i,k,2)/mstep(i)),0.) |
---|
600 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
---|
601 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
---|
602 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
---|
603 | endif |
---|
604 | !--------------------------------------------------------------- |
---|
605 | ! pgmlt: melting of graupel [HL A23] [LFO 47] |
---|
606 | ! (T>T0: G->R) |
---|
607 | !--------------------------------------------------------------- |
---|
608 | if(qrs(i,k,3).gt.0.) then |
---|
609 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
610 | pgmlt(i,k) = xka(t(i,k),den(i,k))/xlf & |
---|
611 | *(t0c-t(i,k))*(precg1*rslope2(i,k,3) & |
---|
612 | +precg2*work2(i,k)*coeres) |
---|
613 | pgmlt(i,k) = min(max(pgmlt(i,k)*dtcld/mstep(i), & |
---|
614 | -qrs(i,k,3)/mstep(i)),0.) |
---|
615 | qrs(i,k,3) = qrs(i,k,3) + pgmlt(i,k) |
---|
616 | qrs(i,k,1) = qrs(i,k,1) - pgmlt(i,k) |
---|
617 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pgmlt(i,k) |
---|
618 | endif |
---|
619 | endif |
---|
620 | enddo |
---|
621 | enddo |
---|
622 | enddo |
---|
623 | !--------------------------------------------------------------- |
---|
624 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
625 | !--------------------------------------------------------------- |
---|
626 | mstepmax = 1 |
---|
627 | mstep = 1 |
---|
628 | numdt = 1 |
---|
629 | do k = kte, kts, -1 |
---|
630 | do i = its, ite |
---|
631 | if(qci(i,k,2).le.0.) then |
---|
632 | work2c(i,k) = 0. |
---|
633 | else |
---|
634 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
635 | ! diameter = min(dicon * sqrt(xmi),dimax) |
---|
636 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
---|
637 | work1c(i,k) = 1.49e4*diameter**1.31 |
---|
638 | work2c(i,k) = work1c(i,k)/delz(i,k) |
---|
639 | endif |
---|
640 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
641 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
642 | enddo |
---|
643 | enddo |
---|
644 | do i = its, ite |
---|
645 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
646 | enddo |
---|
647 | ! |
---|
648 | do n = 1, mstepmax |
---|
649 | k = kte |
---|
650 | do i = its, ite |
---|
651 | if(n.le.mstep(i)) then |
---|
652 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
---|
653 | holdc = falkc(i,k) |
---|
654 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
655 | holdci = qci(i,k,2) |
---|
656 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k),0.) |
---|
657 | endif |
---|
658 | enddo |
---|
659 | do k = kte-1, kts, -1 |
---|
660 | do i = its, ite |
---|
661 | if(n.le.mstep(i)) then |
---|
662 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
---|
663 | holdc = falkc(i,k) |
---|
664 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
665 | holdci = qci(i,k,2) |
---|
666 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
---|
667 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
668 | endif |
---|
669 | enddo |
---|
670 | enddo |
---|
671 | enddo |
---|
672 | ! |
---|
673 | !---------------------------------------------------------------- |
---|
674 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
675 | ! |
---|
676 | do i = its, ite |
---|
677 | fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)+fallc(i,kts) |
---|
678 | fallsum_qsi = fall(i,kts,2)+fallc(i,kts) |
---|
679 | fallsum_qg = fall(i,kts,3) |
---|
680 | rainncv(i) = 0. |
---|
681 | if(fallsum.gt.0.) then |
---|
682 | rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000. |
---|
683 | rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i) |
---|
684 | endif |
---|
685 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
686 | snowncv(i) = 0. |
---|
687 | if(fallsum_qsi.gt.0.) then |
---|
688 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
---|
689 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
690 | endif |
---|
691 | ENDIF |
---|
692 | IF ( PRESENT (graupelncv) .AND. PRESENT (graupel)) THEN |
---|
693 | graupelncv(i) = 0. |
---|
694 | if(fallsum_qg.gt.0.) then |
---|
695 | graupelncv(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. |
---|
696 | graupel(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. + graupel(i) |
---|
697 | endif |
---|
698 | ENDIF |
---|
699 | sr(i) = 0. |
---|
700 | if(fallsum.gt.0.)sr(i)=(fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + & |
---|
701 | fallsum_qg*delz(i,kts)/denr*dtcld*1000.)/(rainncv(i)+1.e-12) |
---|
702 | enddo |
---|
703 | ! |
---|
704 | !--------------------------------------------------------------- |
---|
705 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
---|
706 | ! (T>T0: I->C) |
---|
707 | !--------------------------------------------------------------- |
---|
708 | do k = kts, kte |
---|
709 | do i = its, ite |
---|
710 | supcol = t0c-t(i,k) |
---|
711 | xlf = xls-xl(i,k) |
---|
712 | if(supcol.lt.0.) xlf = xlf0 |
---|
713 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
---|
714 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
---|
715 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
---|
716 | qci(i,k,2) = 0. |
---|
717 | endif |
---|
718 | !--------------------------------------------------------------- |
---|
719 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
---|
720 | ! (T<-40C: C->I) |
---|
721 | !--------------------------------------------------------------- |
---|
722 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
---|
723 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
---|
724 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
---|
725 | qci(i,k,1) = 0. |
---|
726 | endif |
---|
727 | !--------------------------------------------------------------- |
---|
728 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
---|
729 | ! (T0>T>-40C: C->I) |
---|
730 | !--------------------------------------------------------------- |
---|
731 | if(supcol.gt.0..and.qci(i,k,1).gt.qmin) then |
---|
732 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
---|
733 | ! *den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
---|
734 | supcolt=min(supcol,50.) |
---|
735 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
---|
736 | *den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
---|
737 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
---|
738 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
---|
739 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
---|
740 | endif |
---|
741 | !--------------------------------------------------------------- |
---|
742 | ! pgfrz: freezing of rain water [HL A20] [LFO 45] |
---|
743 | ! (T<T0, R->G) |
---|
744 | !--------------------------------------------------------------- |
---|
745 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
---|
746 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k) & |
---|
747 | ! *(exp(pfrz2*supcol)-1.)*rslope3(i,k,1)**2 & |
---|
748 | ! *rslope(i,k,1)*dtcld,qrs(i,k,1)) |
---|
749 | temp = rslope3(i,k,1) |
---|
750 | temp = temp*temp*rslope(i,k,1) |
---|
751 | supcolt=min(supcol,50.) |
---|
752 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k) & |
---|
753 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
---|
754 | qrs(i,k,1)) |
---|
755 | qrs(i,k,3) = qrs(i,k,3) + pfrzdtr |
---|
756 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
---|
757 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
---|
758 | endif |
---|
759 | enddo |
---|
760 | enddo |
---|
761 | ! |
---|
762 | ! |
---|
763 | !---------------------------------------------------------------- |
---|
764 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
765 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
766 | ! work1: the thermodynamic term in the denominator associated with |
---|
767 | ! heat conduction and vapor diffusion |
---|
768 | ! (ry88, y93, h85) |
---|
769 | ! work2: parameter associated with the ventilation effects(y93) |
---|
770 | ! |
---|
771 | do k = kts, kte |
---|
772 | do i = its, ite |
---|
773 | if(qrs(i,k,1).le.qcrmin)then |
---|
774 | rslope(i,k,1) = rslopermax |
---|
775 | rslopeb(i,k,1) = rsloperbmax |
---|
776 | rslope2(i,k,1) = rsloper2max |
---|
777 | rslope3(i,k,1) = rsloper3max |
---|
778 | else |
---|
779 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
---|
780 | rslopeb(i,k,1) = rslope(i,k,1)**bvtr |
---|
781 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
782 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
783 | endif |
---|
784 | if(qrs(i,k,2).le.qcrmin)then |
---|
785 | rslope(i,k,2) = rslopesmax |
---|
786 | rslopeb(i,k,2) = rslopesbmax |
---|
787 | rslope2(i,k,2) = rslopes2max |
---|
788 | rslope3(i,k,2) = rslopes3max |
---|
789 | else |
---|
790 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
791 | rslopeb(i,k,2) = rslope(i,k,2)**bvts |
---|
792 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
793 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
794 | endif |
---|
795 | if(qrs(i,k,3).le.qcrmin)then |
---|
796 | rslope(i,k,3) = rslopegmax |
---|
797 | rslopeb(i,k,3) = rslopegbmax |
---|
798 | rslope2(i,k,3) = rslopeg2max |
---|
799 | rslope3(i,k,3) = rslopeg3max |
---|
800 | else |
---|
801 | rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k)) |
---|
802 | rslopeb(i,k,3) = rslope(i,k,3)**bvtg |
---|
803 | rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3) |
---|
804 | rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3) |
---|
805 | endif |
---|
806 | enddo |
---|
807 | enddo |
---|
808 | ! |
---|
809 | do k = kts, kte |
---|
810 | do i = its, ite |
---|
811 | work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
---|
812 | work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
---|
813 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
814 | enddo |
---|
815 | enddo |
---|
816 | ! |
---|
817 | !=============================================================== |
---|
818 | ! |
---|
819 | ! warm rain processes |
---|
820 | ! |
---|
821 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
822 | ! |
---|
823 | !=============================================================== |
---|
824 | ! |
---|
825 | do k = kts, kte |
---|
826 | do i = its, ite |
---|
827 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
---|
828 | satdt = supsat/dtcld |
---|
829 | !--------------------------------------------------------------- |
---|
830 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
831 | ! (C->R) |
---|
832 | !--------------------------------------------------------------- |
---|
833 | if(qci(i,k,1).gt.qc0) then |
---|
834 | praut(i,k) = qck1*qci(i,k,1)**(7./3.) |
---|
835 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
---|
836 | endif |
---|
837 | !--------------------------------------------------------------- |
---|
838 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
---|
839 | ! (C->R) |
---|
840 | !--------------------------------------------------------------- |
---|
841 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
842 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
---|
843 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
844 | endif |
---|
845 | !--------------------------------------------------------------- |
---|
846 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
847 | ! (V->R or R->V) |
---|
848 | !--------------------------------------------------------------- |
---|
849 | if(qrs(i,k,1).gt.0.) then |
---|
850 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
---|
851 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
---|
852 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
---|
853 | if(prevp(i,k).lt.0.) then |
---|
854 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
---|
855 | prevp(i,k) = max(prevp(i,k),satdt/2) |
---|
856 | else |
---|
857 | prevp(i,k) = min(prevp(i,k),satdt/2) |
---|
858 | endif |
---|
859 | endif |
---|
860 | enddo |
---|
861 | enddo |
---|
862 | ! |
---|
863 | !=============================================================== |
---|
864 | ! |
---|
865 | ! cold rain processes |
---|
866 | ! |
---|
867 | ! - follows the revised ice microphysics processes in HDC |
---|
868 | ! - the processes same as in RH83 and RH84 and LFO behave |
---|
869 | ! following ice crystal hapits defined in HDC, inclduing |
---|
870 | ! intercept parameter for snow (n0s), ice crystal number |
---|
871 | ! concentration (ni), ice nuclei number concentration |
---|
872 | ! (n0i), ice diameter (d) |
---|
873 | ! |
---|
874 | !=============================================================== |
---|
875 | ! |
---|
876 | do k = kts, kte |
---|
877 | do i = its, ite |
---|
878 | supcol = t0c-t(i,k) |
---|
879 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
---|
880 | satdt = supsat/dtcld |
---|
881 | ifsat = 0 |
---|
882 | !------------------------------------------------------------- |
---|
883 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
884 | !------------------------------------------------------------- |
---|
885 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
886 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
887 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
888 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
889 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
890 | eacrs = exp(0.07*(-supcol)) |
---|
891 | ! |
---|
892 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
893 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
894 | vt2i = 1.49e4*diameter**1.31 |
---|
895 | vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k) |
---|
896 | vt2s=pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
897 | vt2g=pvtg*rslopeb(i,k,3)*denfac(i,k) |
---|
898 | qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15) |
---|
899 | if(qsum(i,k) .gt. 1.e-15) then |
---|
900 | vt2ave=(vt2s*qrs(i,k,2)+vt2g*qrs(i,k,3))/(qsum(i,k)) |
---|
901 | else |
---|
902 | vt2ave=0. |
---|
903 | endif |
---|
904 | if(supcol.gt.0.and.qci(i,k,2).gt.qmin) then |
---|
905 | if(qrs(i,k,1).gt.qcrmin) then |
---|
906 | !------------------------------------------------------------- |
---|
907 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
---|
908 | ! (T<T0: I->R) |
---|
909 | !------------------------------------------------------------- |
---|
910 | acrfac = 2.*rslope3(i,k,1)+2.*diameter*rslope2(i,k,1) & |
---|
911 | +diameter**2*rslope(i,k,1) |
---|
912 | praci(i,k) = pi*qci(i,k,2)*n0r*abs(vt2r-vt2i)*acrfac/4. |
---|
913 | praci(i,k) = min(praci(i,k),qci(i,k,2)/dtcld) |
---|
914 | !------------------------------------------------------------- |
---|
915 | ! piacr: Accretion of rain by cloud ice [HL A19] [LFO 26] |
---|
916 | ! (T<T0: R->S or R->G) |
---|
917 | !------------------------------------------------------------- |
---|
918 | piacr(i,k) = pi**2*avtr*n0r*denr*xni(i,k)*denfac(i,k) & |
---|
919 | *g6pbr*rslope3(i,k,1)*rslope3(i,k,1) & |
---|
920 | *rslopeb(i,k,1)/24./den(i,k) |
---|
921 | piacr(i,k) = min(piacr(i,k),qrs(i,k,1)/dtcld) |
---|
922 | endif |
---|
923 | !------------------------------------------------------------- |
---|
924 | ! psaci: Accretion of cloud ice by snow [HDC 10] |
---|
925 | ! (T<T0: I->S) |
---|
926 | !------------------------------------------------------------- |
---|
927 | if(qrs(i,k,2).gt.qcrmin) then |
---|
928 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
---|
929 | +diameter**2*rslope(i,k,2) |
---|
930 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
---|
931 | *abs(vt2ave-vt2i)*acrfac/4. |
---|
932 | psaci(i,k) = min(psaci(i,k),qci(i,k,2)/dtcld) |
---|
933 | endif |
---|
934 | !------------------------------------------------------------- |
---|
935 | ! pgaci: Accretion of cloud ice by graupel [HL A17] [LFO 41] |
---|
936 | ! (T<T0: I->G) |
---|
937 | !------------------------------------------------------------- |
---|
938 | if(qrs(i,k,3).gt.qcrmin) then |
---|
939 | egi = exp(0.07*(-supcol)) |
---|
940 | acrfac = 2.*rslope3(i,k,3)+2.*diameter*rslope2(i,k,3) & |
---|
941 | +diameter**2*rslope(i,k,3) |
---|
942 | pgaci(i,k) = pi*egi*qci(i,k,2)*n0g*abs(vt2ave-vt2i)*acrfac/4. |
---|
943 | pgaci(i,k) = min(pgaci(i,k),qci(i,k,2)/dtcld) |
---|
944 | endif |
---|
945 | endif |
---|
946 | !------------------------------------------------------------- |
---|
947 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
---|
948 | ! (T<T0: C->S, and T>=T0: C->R) |
---|
949 | !------------------------------------------------------------- |
---|
950 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
951 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
---|
952 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
---|
953 | ,qci(i,k,1)/dtcld) |
---|
954 | endif |
---|
955 | !------------------------------------------------------------- |
---|
956 | ! pgacw: Accretion of cloud water by graupel [HL A6] [LFO 40] |
---|
957 | ! (T<T0: C->G, and T>=T0: C->R) |
---|
958 | !------------------------------------------------------------- |
---|
959 | if(qrs(i,k,3).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
960 | pgacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3) & |
---|
961 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
962 | endif |
---|
963 | !------------------------------------------------------------- |
---|
964 | ! paacw: Accretion of cloud water by averaged snow/graupel |
---|
965 | ! (T<T0: C->G or S, and T>=T0: C->R) |
---|
966 | !------------------------------------------------------------- |
---|
967 | if(qrs(i,k,2).gt.qcrmin.and.qrs(i,k,3).gt.qcrmin) then |
---|
968 | paacw(i,k) = (qrs(i,k,2)*psacw(i,k)+qrs(i,k,3)*pgacw(i,k))/(qsum(i,k)) |
---|
969 | endif |
---|
970 | !------------------------------------------------------------- |
---|
971 | ! pracs: Accretion of snow by rain [HL A11] [LFO 27] |
---|
972 | ! (T<T0: S->G) |
---|
973 | !------------------------------------------------------------- |
---|
974 | if(qrs(i,k,2).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then |
---|
975 | if(supcol.gt.0) then |
---|
976 | acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2)*rslope(i,k,1) & |
---|
977 | +2.*rslope3(i,k,2)*rslope2(i,k,2)*rslope2(i,k,1) & |
---|
978 | +.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope3(i,k,1) |
---|
979 | pracs(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2r-vt2ave) & |
---|
980 | *(dens/den(i,k))*acrfac |
---|
981 | pracs(i,k) = min(pracs(i,k),qrs(i,k,2)/dtcld) |
---|
982 | endif |
---|
983 | !------------------------------------------------------------- |
---|
984 | ! psacr: Accretion of rain by snow [HL A10] [LFO 28] |
---|
985 | ! (T<T0:R->S or R->G) (T>=T0: enhance melting of snow) |
---|
986 | !------------------------------------------------------------- |
---|
987 | acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,2) & |
---|
988 | +2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,2) & |
---|
989 | +.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,2) |
---|
990 | psacr(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & |
---|
991 | *(denr/den(i,k))*acrfac |
---|
992 | psacr(i,k) = min(psacr(i,k),qrs(i,k,1)/dtcld) |
---|
993 | endif |
---|
994 | !------------------------------------------------------------- |
---|
995 | ! pgacr: Accretion of rain by graupel [HL A12] [LFO 42] |
---|
996 | ! (T<T0: R->G) (T>=T0: enhance melting of graupel) |
---|
997 | !------------------------------------------------------------- |
---|
998 | if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then |
---|
999 | acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,3) & |
---|
1000 | +2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,3) & |
---|
1001 | +.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,3) |
---|
1002 | pgacr(i,k) = pi**2*n0r*n0g*abs(vt2ave-vt2r)*(denr/den(i,k)) & |
---|
1003 | *acrfac |
---|
1004 | pgacr(i,k) = min(pgacr(i,k),qrs(i,k,1)/dtcld) |
---|
1005 | endif |
---|
1006 | ! |
---|
1007 | !------------------------------------------------------------- |
---|
1008 | ! pgacs: Accretion of snow by graupel [HL A13] [LFO 29] |
---|
1009 | ! (S->G): This process is eliminated in V3.0 with the |
---|
1010 | ! new combined snow/graupel fall speeds |
---|
1011 | !------------------------------------------------------------- |
---|
1012 | ! if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,2).gt.qcrmin) then |
---|
1013 | ! acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2)*rslope(i,k,3) & |
---|
1014 | ! +2.*rslope3(i,k,2)*rslope2(i,k,2)*rslope2(i,k,3) & |
---|
1015 | ! +.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope3(i,k,3) |
---|
1016 | ! if(supcol.gt.0) then |
---|
1017 | ! egs = exp(-0.09*supcol) |
---|
1018 | ! else |
---|
1019 | ! egs = 1. |
---|
1020 | ! endif |
---|
1021 | ! pgacs(i,k) = pi**2*egs*n0s*n0sfac(i,k)*n0g*abs(vt2ave-vt2ave) & |
---|
1022 | ! *(dens/den(i,k))*acrfac |
---|
1023 | pgacs(i,k) = 0. |
---|
1024 | ! pgacs(i,k) = min(pgacs(i,k),qrs(i,k,2)/dtcld) |
---|
1025 | ! endif |
---|
1026 | if(supcol.le.0) then |
---|
1027 | xlf = xlf0 |
---|
1028 | !------------------------------------------------------------- |
---|
1029 | ! pseml: Enhanced melting of snow by accretion of water [HL A34] |
---|
1030 | ! (T>=T0: S->R) |
---|
1031 | !------------------------------------------------------------- |
---|
1032 | if(qrs(i,k,2).gt.0.) & |
---|
1033 | pseml(i,k) = min(max(cliq*supcol*(paacw(i,k)+psacr(i,k)) & |
---|
1034 | /xlf,-qrs(i,k,2)/dtcld),0.) |
---|
1035 | !------------------------------------------------------------- |
---|
1036 | ! pgeml: Enhanced melting of graupel by accretion of water [HL A24] [RH84 A21-A22] |
---|
1037 | ! (T>=T0: G->R) |
---|
1038 | !------------------------------------------------------------- |
---|
1039 | if(qrs(i,k,3).gt.0.) & |
---|
1040 | pgeml(i,k) = min(max(cliq*supcol*(paacw(i,k)+pgacr(i,k)) & |
---|
1041 | /xlf,-qrs(i,k,3)/dtcld),0.) |
---|
1042 | endif |
---|
1043 | if(supcol.gt.0) then |
---|
1044 | !------------------------------------------------------------- |
---|
1045 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
1046 | ! (T<T0: V->I or I->V) |
---|
1047 | !------------------------------------------------------------- |
---|
1048 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
---|
1049 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
---|
1050 | supice = satdt-prevp(i,k) |
---|
1051 | if(pidep(i,k).lt.0.) then |
---|
1052 | pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
---|
1053 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
---|
1054 | else |
---|
1055 | pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
---|
1056 | endif |
---|
1057 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
1058 | endif |
---|
1059 | !------------------------------------------------------------- |
---|
1060 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
1061 | ! (T<T0: V->S or S->V) |
---|
1062 | !------------------------------------------------------------- |
---|
1063 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
---|
1064 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
1065 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1 & |
---|
1066 | *rslope2(i,k,2)+precs2*work2(i,k) & |
---|
1067 | *coeres)/work1(i,k,2) |
---|
1068 | supice = satdt-prevp(i,k)-pidep(i,k) |
---|
1069 | if(psdep(i,k).lt.0.) then |
---|
1070 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
---|
1071 | psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
---|
1072 | else |
---|
1073 | psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
---|
1074 | endif |
---|
1075 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
---|
1076 | ifsat = 1 |
---|
1077 | endif |
---|
1078 | !------------------------------------------------------------- |
---|
1079 | ! pgdep: deposition/sublimation rate of graupel [HL A21] [LFO 46] |
---|
1080 | ! (T<T0: V->G or G->V) |
---|
1081 | !------------------------------------------------------------- |
---|
1082 | if(qrs(i,k,3).gt.0..and.ifsat.ne.1) then |
---|
1083 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
1084 | pgdep(i,k) = (rh(i,k,2)-1.)*(precg1*rslope2(i,k,3) & |
---|
1085 | +precg2*work2(i,k)*coeres)/work1(i,k,2) |
---|
1086 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
---|
1087 | if(pgdep(i,k).lt.0.) then |
---|
1088 | pgdep(i,k) = max(pgdep(i,k),-qrs(i,k,3)/dtcld) |
---|
1089 | pgdep(i,k) = max(max(pgdep(i,k),satdt/2),supice) |
---|
1090 | else |
---|
1091 | pgdep(i,k) = min(min(pgdep(i,k),satdt/2),supice) |
---|
1092 | endif |
---|
1093 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)+pgdep(i,k)).ge. & |
---|
1094 | abs(satdt)) ifsat = 1 |
---|
1095 | endif |
---|
1096 | !------------------------------------------------------------- |
---|
1097 | ! pigen: generation(nucleation) of ice from vapor [HL 50] [HDC 7-8] |
---|
1098 | ! (T<T0: V->I) |
---|
1099 | !------------------------------------------------------------- |
---|
1100 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
1101 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k)-pgdep(i,k) |
---|
1102 | xni0 = 1.e3*exp(0.1*supcol) |
---|
1103 | roqi0 = 4.92e-11*xni0**1.33 |
---|
1104 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.)) & |
---|
1105 | /dtcld) |
---|
1106 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
---|
1107 | endif |
---|
1108 | ! |
---|
1109 | !------------------------------------------------------------- |
---|
1110 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
1111 | ! (T<T0: I->S) |
---|
1112 | !------------------------------------------------------------- |
---|
1113 | if(qci(i,k,2).gt.0.) then |
---|
1114 | qimax = roqimax/den(i,k) |
---|
1115 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
---|
1116 | endif |
---|
1117 | ! |
---|
1118 | !------------------------------------------------------------- |
---|
1119 | ! pgaut: conversion(aggregation) of snow to graupel [HL A4] [LFO 37] |
---|
1120 | ! (T<T0: S->G) |
---|
1121 | !------------------------------------------------------------- |
---|
1122 | if(qrs(i,k,2).gt.0.) then |
---|
1123 | alpha2 = 1.e-3*exp(0.09*(-supcol)) |
---|
1124 | pgaut(i,k) = min(max(0.,alpha2*(qrs(i,k,2)-qs0)) & |
---|
1125 | ,qrs(i,k,2)/dtcld) |
---|
1126 | endif |
---|
1127 | endif |
---|
1128 | ! |
---|
1129 | !------------------------------------------------------------- |
---|
1130 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
---|
1131 | ! (T>=T0: S->V) |
---|
1132 | !------------------------------------------------------------- |
---|
1133 | if(supcol.lt.0.) then |
---|
1134 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) then |
---|
1135 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
1136 | psevp(i,k) = (rh(i,k,1)-1.)*n0sfac(i,k)*(precs1 & |
---|
1137 | *rslope2(i,k,2)+precs2*work2(i,k) & |
---|
1138 | *coeres)/work1(i,k,1) |
---|
1139 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
---|
1140 | endif |
---|
1141 | !------------------------------------------------------------- |
---|
1142 | ! pgevp: Evaporation of melting graupel [HL A25] [RH84 A19] |
---|
1143 | ! (T>=T0: G->V) |
---|
1144 | !------------------------------------------------------------- |
---|
1145 | if(qrs(i,k,3).gt.0..and.rh(i,k,1).lt.1.) then |
---|
1146 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
1147 | pgevp(i,k) = (rh(i,k,1)-1.)*(precg1*rslope2(i,k,3) & |
---|
1148 | +precg2*work2(i,k)*coeres)/work1(i,k,1) |
---|
1149 | pgevp(i,k) = min(max(pgevp(i,k),-qrs(i,k,3)/dtcld),0.) |
---|
1150 | endif |
---|
1151 | endif |
---|
1152 | enddo |
---|
1153 | enddo |
---|
1154 | ! |
---|
1155 | ! |
---|
1156 | !---------------------------------------------------------------- |
---|
1157 | ! check mass conservation of generation terms and feedback to the |
---|
1158 | ! large scale |
---|
1159 | ! |
---|
1160 | do k = kts, kte |
---|
1161 | do i = its, ite |
---|
1162 | ! |
---|
1163 | delta2=0. |
---|
1164 | delta3=0. |
---|
1165 | if(qrs(i,k,1).lt.1.e-4.and.qrs(i,k,2).lt.1.e-4) delta2=1. |
---|
1166 | if(qrs(i,k,1).lt.1.e-4) delta3=1. |
---|
1167 | if(t(i,k).le.t0c) then |
---|
1168 | ! |
---|
1169 | ! cloud water |
---|
1170 | ! |
---|
1171 | value = max(qmin,qci(i,k,1)) |
---|
1172 | source = (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))*dtcld |
---|
1173 | if (source.gt.value) then |
---|
1174 | factor = value/source |
---|
1175 | praut(i,k) = praut(i,k)*factor |
---|
1176 | pracw(i,k) = pracw(i,k)*factor |
---|
1177 | paacw(i,k) = paacw(i,k)*factor |
---|
1178 | endif |
---|
1179 | ! |
---|
1180 | ! cloud ice |
---|
1181 | ! |
---|
1182 | value = max(qmin,qci(i,k,2)) |
---|
1183 | source = (psaut(i,k)-pigen(i,k)-pidep(i,k)+praci(i,k) & |
---|
1184 | +psaci(i,k)+pgaci(i,k))*dtcld |
---|
1185 | if (source.gt.value) then |
---|
1186 | factor = value/source |
---|
1187 | psaut(i,k) = psaut(i,k)*factor |
---|
1188 | pigen(i,k) = pigen(i,k)*factor |
---|
1189 | pidep(i,k) = pidep(i,k)*factor |
---|
1190 | praci(i,k) = praci(i,k)*factor |
---|
1191 | psaci(i,k) = psaci(i,k)*factor |
---|
1192 | pgaci(i,k) = pgaci(i,k)*factor |
---|
1193 | endif |
---|
1194 | ! |
---|
1195 | ! rain |
---|
1196 | ! |
---|
1197 | value = max(qmin,qrs(i,k,1)) |
---|
1198 | source = (-praut(i,k)-prevp(i,k)-pracw(i,k)+piacr(i,k) & |
---|
1199 | +psacr(i,k)+pgacr(i,k))*dtcld |
---|
1200 | if (source.gt.value) then |
---|
1201 | factor = value/source |
---|
1202 | praut(i,k) = praut(i,k)*factor |
---|
1203 | prevp(i,k) = prevp(i,k)*factor |
---|
1204 | pracw(i,k) = pracw(i,k)*factor |
---|
1205 | piacr(i,k) = piacr(i,k)*factor |
---|
1206 | psacr(i,k) = psacr(i,k)*factor |
---|
1207 | pgacr(i,k) = pgacr(i,k)*factor |
---|
1208 | endif |
---|
1209 | ! |
---|
1210 | ! snow |
---|
1211 | ! |
---|
1212 | value = max(qmin,qrs(i,k,2)) |
---|
1213 | source = -(psdep(i,k)+psaut(i,k)-pgaut(i,k)+paacw(i,k) & |
---|
1214 | +piacr(i,k)*delta3+praci(i,k)*delta3 & |
---|
1215 | -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2 & |
---|
1216 | +psaci(i,k)-pgacs(i,k) )*dtcld |
---|
1217 | if (source.gt.value) then |
---|
1218 | factor = value/source |
---|
1219 | psdep(i,k) = psdep(i,k)*factor |
---|
1220 | psaut(i,k) = psaut(i,k)*factor |
---|
1221 | pgaut(i,k) = pgaut(i,k)*factor |
---|
1222 | paacw(i,k) = paacw(i,k)*factor |
---|
1223 | piacr(i,k) = piacr(i,k)*factor |
---|
1224 | praci(i,k) = praci(i,k)*factor |
---|
1225 | psaci(i,k) = psaci(i,k)*factor |
---|
1226 | pracs(i,k) = pracs(i,k)*factor |
---|
1227 | psacr(i,k) = psacr(i,k)*factor |
---|
1228 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1229 | endif |
---|
1230 | ! |
---|
1231 | ! graupel |
---|
1232 | ! |
---|
1233 | value = max(qmin,qrs(i,k,3)) |
---|
1234 | source = -(pgdep(i,k)+pgaut(i,k) & |
---|
1235 | +piacr(i,k)*(1.-delta3)+praci(i,k)*(1.-delta3) & |
---|
1236 | +psacr(i,k)*(1.-delta2)+pracs(i,k)*(1.-delta2) & |
---|
1237 | +pgaci(i,k)+paacw(i,k)+pgacr(i,k)+pgacs(i,k))*dtcld |
---|
1238 | if (source.gt.value) then |
---|
1239 | factor = value/source |
---|
1240 | pgdep(i,k) = pgdep(i,k)*factor |
---|
1241 | pgaut(i,k) = pgaut(i,k)*factor |
---|
1242 | piacr(i,k) = piacr(i,k)*factor |
---|
1243 | praci(i,k) = praci(i,k)*factor |
---|
1244 | psacr(i,k) = psacr(i,k)*factor |
---|
1245 | pracs(i,k) = pracs(i,k)*factor |
---|
1246 | paacw(i,k) = paacw(i,k)*factor |
---|
1247 | pgaci(i,k) = pgaci(i,k)*factor |
---|
1248 | pgacr(i,k) = pgacr(i,k)*factor |
---|
1249 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1250 | endif |
---|
1251 | ! |
---|
1252 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pgdep(i,k)+pigen(i,k) & |
---|
1253 | +pidep(i,k)) |
---|
1254 | ! update |
---|
1255 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
1256 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1257 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
---|
1258 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1259 | +prevp(i,k)-piacr(i,k)-pgacr(i,k) & |
---|
1260 | -psacr(i,k))*dtcld,0.) |
---|
1261 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+praci(i,k) & |
---|
1262 | +psaci(i,k)+pgaci(i,k)-pigen(i,k)-pidep(i,k)) & |
---|
1263 | *dtcld,0.) |
---|
1264 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k)+paacw(i,k) & |
---|
1265 | -pgaut(i,k)+piacr(i,k)*delta3 & |
---|
1266 | +praci(i,k)*delta3+psaci(i,k)-pgacs(i,k) & |
---|
1267 | -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2) & |
---|
1268 | *dtcld,0.) |
---|
1269 | qrs(i,k,3) = max(qrs(i,k,3)+(pgdep(i,k)+pgaut(i,k) & |
---|
1270 | +piacr(i,k)*(1.-delta3) & |
---|
1271 | +praci(i,k)*(1.-delta3)+psacr(i,k)*(1.-delta2)& |
---|
1272 | +pracs(i,k)*(1.-delta2)+pgaci(i,k)+paacw(i,k) & |
---|
1273 | +pgacr(i,k)+pgacs(i,k))*dtcld,0.) |
---|
1274 | xlf = xls-xl(i,k) |
---|
1275 | xlwork2 = -xls*(psdep(i,k)+pgdep(i,k)+pidep(i,k)+pigen(i,k)) & |
---|
1276 | -xl(i,k)*prevp(i,k)-xlf*(piacr(i,k)+paacw(i,k) & |
---|
1277 | +paacw(i,k)+pgacr(i,k)+psacr(i,k)) |
---|
1278 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
1279 | else |
---|
1280 | ! |
---|
1281 | ! cloud water |
---|
1282 | ! |
---|
1283 | value = max(qmin,qci(i,k,1)) |
---|
1284 | source=(praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))*dtcld |
---|
1285 | if (source.gt.value) then |
---|
1286 | factor = value/source |
---|
1287 | praut(i,k) = praut(i,k)*factor |
---|
1288 | pracw(i,k) = pracw(i,k)*factor |
---|
1289 | paacw(i,k) = paacw(i,k)*factor |
---|
1290 | endif |
---|
1291 | ! |
---|
1292 | ! rain |
---|
1293 | ! |
---|
1294 | value = max(qmin,qrs(i,k,1)) |
---|
1295 | source = (-paacw(i,k)-praut(i,k)+pseml(i,k)+pgeml(i,k) & |
---|
1296 | -pracw(i,k)-paacw(i,k)-prevp(i,k))*dtcld |
---|
1297 | if (source.gt.value) then |
---|
1298 | factor = value/source |
---|
1299 | praut(i,k) = praut(i,k)*factor |
---|
1300 | prevp(i,k) = prevp(i,k)*factor |
---|
1301 | pracw(i,k) = pracw(i,k)*factor |
---|
1302 | paacw(i,k) = paacw(i,k)*factor |
---|
1303 | pseml(i,k) = pseml(i,k)*factor |
---|
1304 | pgeml(i,k) = pgeml(i,k)*factor |
---|
1305 | endif |
---|
1306 | ! |
---|
1307 | ! snow |
---|
1308 | ! |
---|
1309 | value = max(qcrmin,qrs(i,k,2)) |
---|
1310 | source=(pgacs(i,k)-pseml(i,k)-psevp(i,k))*dtcld |
---|
1311 | if (source.gt.value) then |
---|
1312 | factor = value/source |
---|
1313 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1314 | psevp(i,k) = psevp(i,k)*factor |
---|
1315 | pseml(i,k) = pseml(i,k)*factor |
---|
1316 | endif |
---|
1317 | ! |
---|
1318 | ! graupel |
---|
1319 | ! |
---|
1320 | value = max(qcrmin,qrs(i,k,3)) |
---|
1321 | source=-(pgacs(i,k)+pgevp(i,k)+pgeml(i,k))*dtcld |
---|
1322 | if (source.gt.value) then |
---|
1323 | factor = value/source |
---|
1324 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1325 | pgevp(i,k) = pgevp(i,k)*factor |
---|
1326 | pgeml(i,k) = pgeml(i,k)*factor |
---|
1327 | endif |
---|
1328 | work2(i,k)=-(prevp(i,k)+psevp(i,k)+pgevp(i,k)) |
---|
1329 | ! update |
---|
1330 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
1331 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1332 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
---|
1333 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1334 | +prevp(i,k)+paacw(i,k)+paacw(i,k)-pseml(i,k) & |
---|
1335 | -pgeml(i,k))*dtcld,0.) |
---|
1336 | qrs(i,k,2) = max(qrs(i,k,2)+(psevp(i,k)-pgacs(i,k) & |
---|
1337 | +pseml(i,k))*dtcld,0.) |
---|
1338 | qrs(i,k,3) = max(qrs(i,k,3)+(pgacs(i,k)+pgevp(i,k) & |
---|
1339 | +pgeml(i,k))*dtcld,0.) |
---|
1340 | xlf = xls-xl(i,k) |
---|
1341 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)+pgevp(i,k)) & |
---|
1342 | -xlf*(pseml(i,k)+pgeml(i,k)) |
---|
1343 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
1344 | endif |
---|
1345 | enddo |
---|
1346 | enddo |
---|
1347 | ! |
---|
1348 | ! Inline expansion for fpvs |
---|
1349 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1350 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1351 | hsub = xls |
---|
1352 | hvap = xlv0 |
---|
1353 | cvap = cpv |
---|
1354 | ttp=t0c+0.01 |
---|
1355 | dldt=cvap-cliq |
---|
1356 | xa=-dldt/rv |
---|
1357 | xb=xa+hvap/(rv*ttp) |
---|
1358 | dldti=cvap-cice |
---|
1359 | xai=-dldti/rv |
---|
1360 | xbi=xai+hsub/(rv*ttp) |
---|
1361 | do k = kts, kte |
---|
1362 | do i = its, ite |
---|
1363 | tr=ttp/t(i,k) |
---|
1364 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1365 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
1366 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1367 | tr=ttp/t(i,k) |
---|
1368 | if(t(i,k).lt.ttp) then |
---|
1369 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
1370 | else |
---|
1371 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1372 | endif |
---|
1373 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
1374 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
1375 | enddo |
---|
1376 | enddo |
---|
1377 | ! |
---|
1378 | !---------------------------------------------------------------- |
---|
1379 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
1380 | ! if there exists additional water vapor condensated/if |
---|
1381 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
1382 | ! |
---|
1383 | do k = kts, kte |
---|
1384 | do i = its, ite |
---|
1385 | work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
---|
1386 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
---|
1387 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
---|
1388 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
---|
1389 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
---|
1390 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
---|
1391 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
---|
1392 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
1393 | enddo |
---|
1394 | enddo |
---|
1395 | ! |
---|
1396 | ! |
---|
1397 | !---------------------------------------------------------------- |
---|
1398 | ! padding for small values |
---|
1399 | ! |
---|
1400 | do k = kts, kte |
---|
1401 | do i = its, ite |
---|
1402 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
---|
1403 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
---|
1404 | enddo |
---|
1405 | enddo |
---|
1406 | enddo ! big loops |
---|
1407 | END SUBROUTINE wsm62d |
---|
1408 | ! ................................................................... |
---|
1409 | REAL FUNCTION rgmma(x) |
---|
1410 | !------------------------------------------------------------------- |
---|
1411 | IMPLICIT NONE |
---|
1412 | !------------------------------------------------------------------- |
---|
1413 | ! rgmma function: use infinite product form |
---|
1414 | REAL :: euler |
---|
1415 | PARAMETER (euler=0.577215664901532) |
---|
1416 | REAL :: x, y |
---|
1417 | INTEGER :: i |
---|
1418 | if(x.eq.1.)then |
---|
1419 | rgmma=0. |
---|
1420 | else |
---|
1421 | rgmma=x*exp(euler*x) |
---|
1422 | do i=1,10000 |
---|
1423 | y=float(i) |
---|
1424 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
1425 | enddo |
---|
1426 | rgmma=1./rgmma |
---|
1427 | endif |
---|
1428 | END FUNCTION rgmma |
---|
1429 | ! |
---|
1430 | !-------------------------------------------------------------------------- |
---|
1431 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
1432 | !-------------------------------------------------------------------------- |
---|
1433 | IMPLICIT NONE |
---|
1434 | !-------------------------------------------------------------------------- |
---|
1435 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
1436 | xai,xbi,ttp,tr |
---|
1437 | INTEGER ice |
---|
1438 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1439 | ttp=t0c+0.01 |
---|
1440 | dldt=cvap-cliq |
---|
1441 | xa=-dldt/rv |
---|
1442 | xb=xa+hvap/(rv*ttp) |
---|
1443 | dldti=cvap-cice |
---|
1444 | xai=-dldti/rv |
---|
1445 | xbi=xai+hsub/(rv*ttp) |
---|
1446 | tr=ttp/t |
---|
1447 | if(t.lt.ttp.and.ice.eq.1) then |
---|
1448 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
1449 | else |
---|
1450 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
1451 | endif |
---|
1452 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1453 | END FUNCTION fpvs |
---|
1454 | !------------------------------------------------------------------- |
---|
1455 | SUBROUTINE wsm6init(den0,denr,dens,cl,cpv,allowed_to_read) |
---|
1456 | !------------------------------------------------------------------- |
---|
1457 | IMPLICIT NONE |
---|
1458 | !------------------------------------------------------------------- |
---|
1459 | !.... constants which may not be tunable |
---|
1460 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
---|
1461 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
1462 | REAL :: pi |
---|
1463 | ! |
---|
1464 | pi = 4.*atan(1.) |
---|
1465 | xlv1 = cl-cpv |
---|
1466 | ! |
---|
1467 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
1468 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
1469 | ! |
---|
1470 | bvtr1 = 1.+bvtr |
---|
1471 | bvtr2 = 2.5+.5*bvtr |
---|
1472 | bvtr3 = 3.+bvtr |
---|
1473 | bvtr4 = 4.+bvtr |
---|
1474 | bvtr6 = 6.+bvtr |
---|
1475 | g1pbr = rgmma(bvtr1) |
---|
1476 | g3pbr = rgmma(bvtr3) |
---|
1477 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
1478 | g6pbr = rgmma(bvtr6) |
---|
1479 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
---|
1480 | pvtr = avtr*g4pbr/6. |
---|
1481 | eacrr = 1.0 |
---|
1482 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
1483 | precr1 = 2.*pi*n0r*.78 |
---|
1484 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
---|
1485 | xm0 = (di0/dicon)**2 |
---|
1486 | xmmax = (dimax/dicon)**2 |
---|
1487 | roqimax = 2.08e22*dimax**8 |
---|
1488 | ! |
---|
1489 | bvts1 = 1.+bvts |
---|
1490 | bvts2 = 2.5+.5*bvts |
---|
1491 | bvts3 = 3.+bvts |
---|
1492 | bvts4 = 4.+bvts |
---|
1493 | g1pbs = rgmma(bvts1) !.8875 |
---|
1494 | g3pbs = rgmma(bvts3) |
---|
1495 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
1496 | g5pbso2 = rgmma(bvts2) |
---|
1497 | pvts = avts*g4pbs/6. |
---|
1498 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
1499 | precs1 = 4.*n0s*.65 |
---|
1500 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
1501 | pidn0r = pi*denr*n0r |
---|
1502 | pidn0s = pi*dens*n0s |
---|
1503 | ! |
---|
1504 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
---|
1505 | ! |
---|
1506 | bvtg1 = 1.+bvtg |
---|
1507 | bvtg2 = 2.5+.5*bvtg |
---|
1508 | bvtg3 = 3.+bvtg |
---|
1509 | bvtg4 = 4.+bvtg |
---|
1510 | g1pbg = rgmma(bvtg1) |
---|
1511 | g3pbg = rgmma(bvtg3) |
---|
1512 | g4pbg = rgmma(bvtg4) |
---|
1513 | pacrg = pi*n0g*avtg*g3pbg*.25 |
---|
1514 | g5pbgo2 = rgmma(bvtg2) |
---|
1515 | pvtg = avtg*g4pbg/6. |
---|
1516 | precg1 = 2.*pi*n0g*.78 |
---|
1517 | precg2 = 2.*pi*n0g*.31*avtg**.5*g5pbgo2 |
---|
1518 | pidn0g = pi*deng*n0g |
---|
1519 | ! |
---|
1520 | rslopermax = 1./lamdarmax |
---|
1521 | rslopesmax = 1./lamdasmax |
---|
1522 | rslopegmax = 1./lamdagmax |
---|
1523 | rsloperbmax = rslopermax ** bvtr |
---|
1524 | rslopesbmax = rslopesmax ** bvts |
---|
1525 | rslopegbmax = rslopegmax ** bvtg |
---|
1526 | rsloper2max = rslopermax * rslopermax |
---|
1527 | rslopes2max = rslopesmax * rslopesmax |
---|
1528 | rslopeg2max = rslopegmax * rslopegmax |
---|
1529 | rsloper3max = rsloper2max * rslopermax |
---|
1530 | rslopes3max = rslopes2max * rslopesmax |
---|
1531 | rslopeg3max = rslopeg2max * rslopegmax |
---|
1532 | ! |
---|
1533 | END SUBROUTINE wsm6init |
---|
1534 | END MODULE module_mp_wsm6 |
---|