1 | #if ( RWORDSIZE == 4 ) |
---|
2 | # define VREC vsrec |
---|
3 | # define VSQRT vssqrt |
---|
4 | #else |
---|
5 | # define VREC vrec |
---|
6 | # define VSQRT vsqrt |
---|
7 | #endif |
---|
8 | |
---|
9 | MODULE module_mp_wsm3 |
---|
10 | ! |
---|
11 | ! |
---|
12 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. |
---|
13 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 |
---|
14 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 |
---|
15 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 |
---|
16 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
17 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
18 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
19 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
20 | REAL, PARAMETER, PRIVATE :: avts = 11.72 |
---|
21 | REAL, PARAMETER, PRIVATE :: bvts = .41 |
---|
22 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! t=-90C unlimited |
---|
23 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 |
---|
24 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 |
---|
25 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 |
---|
26 | REAL, PARAMETER, PRIVATE :: betai = .6 |
---|
27 | REAL, PARAMETER, PRIVATE :: xn0 = 1.e-2 |
---|
28 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 |
---|
29 | REAL, PARAMETER, PRIVATE :: di0 = 12.9e-6 |
---|
30 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 |
---|
31 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent n0s |
---|
32 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
33 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 |
---|
34 | REAL, SAVE :: & |
---|
35 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr,& |
---|
36 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
---|
37 | precr1,precr2,xm0,xmmax,roqimax,bvts1, & |
---|
38 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
---|
39 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r,& |
---|
40 | pidn0s,xlv1, & |
---|
41 | rslopermax,rslopesmax,rslopegmax, & |
---|
42 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
43 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
44 | rsloper3max,rslopes3max,rslopeg3max |
---|
45 | ! |
---|
46 | ! Specifies code-inlining of fpvs function in WSM32D below. JM 20040507 |
---|
47 | ! |
---|
48 | CONTAINS |
---|
49 | !=================================================================== |
---|
50 | ! |
---|
51 | SUBROUTINE wsm3(th, q, qci, qrs & |
---|
52 | , w, den, pii, p, delz & |
---|
53 | , delt,g, cpd, cpv, rd, rv, t0c & |
---|
54 | , ep1, ep2, qmin & |
---|
55 | , XLS, XLV0, XLF0, den0, denr & |
---|
56 | , cliq,cice,psat & |
---|
57 | , rain, rainncv & |
---|
58 | ,snow, snowncv & |
---|
59 | ,sr & |
---|
60 | , ids,ide, jds,jde, kds,kde & |
---|
61 | , ims,ime, jms,jme, kms,kme & |
---|
62 | , its,ite, jts,jte, kts,kte & |
---|
63 | ) |
---|
64 | !------------------------------------------------------------------- |
---|
65 | IMPLICIT NONE |
---|
66 | !------------------------------------------------------------------- |
---|
67 | ! |
---|
68 | ! |
---|
69 | ! This code is a 3-class simple ice microphyiscs scheme (WSM3) of the WRF |
---|
70 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
---|
71 | ! number concentration is a function of temperature, and seperate assumption |
---|
72 | ! is developed, in which ice crystal number concentration is a function |
---|
73 | ! of ice amount. A theoretical background of the ice-microphysics and related |
---|
74 | ! processes in the WSMMPs are described in Hong et al. (2004). |
---|
75 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
---|
76 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
77 | ! |
---|
78 | ! WSM3 cloud scheme |
---|
79 | ! |
---|
80 | ! Coded by Song-You Hong (Yonsei Univ.) |
---|
81 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
---|
82 | ! Summer 2002 |
---|
83 | ! |
---|
84 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
---|
85 | ! Summer 2003 |
---|
86 | ! |
---|
87 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
88 | ! Dudhia (D89, 1989) J. Atmos. Sci. |
---|
89 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
90 | ! |
---|
91 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
92 | ims,ime, jms,jme, kms,kme , & |
---|
93 | its,ite, jts,jte, kts,kte |
---|
94 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
95 | INTENT(INOUT) :: & |
---|
96 | th, & |
---|
97 | q, & |
---|
98 | qci, & |
---|
99 | qrs |
---|
100 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
101 | INTENT(IN ) :: w, & |
---|
102 | den, & |
---|
103 | pii, & |
---|
104 | p, & |
---|
105 | delz |
---|
106 | REAL, INTENT(IN ) :: delt, & |
---|
107 | g, & |
---|
108 | rd, & |
---|
109 | rv, & |
---|
110 | t0c, & |
---|
111 | den0, & |
---|
112 | cpd, & |
---|
113 | cpv, & |
---|
114 | ep1, & |
---|
115 | ep2, & |
---|
116 | qmin, & |
---|
117 | XLS, & |
---|
118 | XLV0, & |
---|
119 | XLF0, & |
---|
120 | cliq, & |
---|
121 | cice, & |
---|
122 | psat, & |
---|
123 | denr |
---|
124 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
125 | INTENT(INOUT) :: rain, & |
---|
126 | rainncv, & |
---|
127 | sr |
---|
128 | |
---|
129 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
130 | INTENT(INOUT) :: snow, & |
---|
131 | snowncv |
---|
132 | |
---|
133 | ! LOCAL VAR |
---|
134 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
135 | INTEGER :: i,j,k |
---|
136 | !------------------------------------------------------------------- |
---|
137 | DO j=jts,jte |
---|
138 | DO k=kts,kte |
---|
139 | DO i=its,ite |
---|
140 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
141 | ENDDO |
---|
142 | ENDDO |
---|
143 | CALL wsm32D(t, q(ims,kms,j), qci(ims,kms,j) & |
---|
144 | ,qrs(ims,kms,j),w(ims,kms,j), den(ims,kms,j) & |
---|
145 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
146 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
147 | ,ep1, ep2, qmin & |
---|
148 | ,XLS, XLV0, XLF0, den0, denr & |
---|
149 | ,cliq,cice,psat & |
---|
150 | ,j & |
---|
151 | ,rain(ims,j), rainncv(ims,j) & |
---|
152 | ,sr(ims,j) & |
---|
153 | ,ids,ide, jds,jde, kds,kde & |
---|
154 | ,ims,ime, jms,jme, kms,kme & |
---|
155 | ,its,ite, jts,jte, kts,kte & |
---|
156 | ,snow(ims,j),snowncv(ims,j) & |
---|
157 | ) |
---|
158 | DO K=kts,kte |
---|
159 | DO I=its,ite |
---|
160 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
161 | ENDDO |
---|
162 | ENDDO |
---|
163 | ENDDO |
---|
164 | END SUBROUTINE wsm3 |
---|
165 | !=================================================================== |
---|
166 | ! |
---|
167 | SUBROUTINE wsm32D(t, q, qci, qrs,w, den, p, delz & |
---|
168 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
169 | ,ep1, ep2, qmin & |
---|
170 | ,XLS, XLV0, XLF0, den0, denr & |
---|
171 | ,cliq,cice,psat & |
---|
172 | ,lat & |
---|
173 | ,rain, rainncv & |
---|
174 | ,sr & |
---|
175 | ,ids,ide, jds,jde, kds,kde & |
---|
176 | ,ims,ime, jms,jme, kms,kme & |
---|
177 | ,its,ite, jts,jte, kts,kte & |
---|
178 | ,snow,snowncv & |
---|
179 | ) |
---|
180 | !------------------------------------------------------------------- |
---|
181 | IMPLICIT NONE |
---|
182 | !------------------------------------------------------------------- |
---|
183 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
184 | ims,ime, jms,jme, kms,kme , & |
---|
185 | its,ite, jts,jte, kts,kte, & |
---|
186 | lat |
---|
187 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
188 | INTENT(INOUT) :: & |
---|
189 | t |
---|
190 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
191 | INTENT(INOUT) :: & |
---|
192 | q, & |
---|
193 | qci, & |
---|
194 | qrs |
---|
195 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
196 | INTENT(IN ) :: w, & |
---|
197 | den, & |
---|
198 | p, & |
---|
199 | delz |
---|
200 | REAL, INTENT(IN ) :: delt, & |
---|
201 | g, & |
---|
202 | cpd, & |
---|
203 | cpv, & |
---|
204 | t0c, & |
---|
205 | den0, & |
---|
206 | rd, & |
---|
207 | rv, & |
---|
208 | ep1, & |
---|
209 | ep2, & |
---|
210 | qmin, & |
---|
211 | XLS, & |
---|
212 | XLV0, & |
---|
213 | XLF0, & |
---|
214 | cliq, & |
---|
215 | cice, & |
---|
216 | psat, & |
---|
217 | denr |
---|
218 | REAL, DIMENSION( ims:ime ), & |
---|
219 | INTENT(INOUT) :: rain, & |
---|
220 | rainncv, & |
---|
221 | sr |
---|
222 | |
---|
223 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
224 | INTENT(INOUT) :: snow, & |
---|
225 | snowncv |
---|
226 | ! LOCAL VAR |
---|
227 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
228 | rh, qs, denfac, rslope, rslope2, rslope3, rslopeb, & |
---|
229 | pgen, paut, pacr, pisd, pres, pcon, fall, falk, & |
---|
230 | xl, cpm, work1, work2, xni, qs0, n0sfac |
---|
231 | INTEGER, DIMENSION( its:ite ) :: kwork1, kwork2 |
---|
232 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
233 | falkc, work1c, work2c, fallc |
---|
234 | ! variables for optimization |
---|
235 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
236 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
---|
237 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
238 | REAL :: pi, & |
---|
239 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
---|
240 | viscos, xka, venfac, conden, diffac, & |
---|
241 | x, y, z, a, b, c, d, e, & |
---|
242 | fallsum, fallsum_qsi, vt2i,vt2s,acrfac, & |
---|
243 | qdt, pvt, qik, delq, facq, qrsci, frzmlt, & |
---|
244 | snomlt, hold, holdrs, facqci, supcol, coeres, & |
---|
245 | supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & |
---|
246 | qimax, diameter, xni0, roqi0, supice |
---|
247 | REAL :: holdc, holdci |
---|
248 | INTEGER :: i, j, k, mstepmax, & |
---|
249 | iprt, latd, lond, loop, loops, ifsat, kk, n |
---|
250 | ! Temporaries used for inlining fpvs function |
---|
251 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
252 | ! |
---|
253 | !================================================================= |
---|
254 | ! compute internal functions |
---|
255 | ! |
---|
256 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
257 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
258 | !---------------------------------------------------------------- |
---|
259 | ! size distributions: (x=mixing ratio, y=air density): |
---|
260 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
261 | ! |
---|
262 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
263 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
264 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
265 | ! |
---|
266 | !---------------------------------------------------------------- |
---|
267 | ! diffus: diffusion coefficient of the water vapor |
---|
268 | ! viscos: kinematic viscosity(m2s-1) |
---|
269 | ! |
---|
270 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
271 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
272 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
273 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
274 | ! venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) & |
---|
275 | ! /viscos(b,c)**(.5)*(den0/c)**0.25 |
---|
276 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
277 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
278 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
279 | ! |
---|
280 | pi = 4. * atan(1.) |
---|
281 | ! |
---|
282 | !---------------------------------------------------------------- |
---|
283 | ! paddint 0 for negative values generated by dynamics |
---|
284 | ! |
---|
285 | do k = kts, kte |
---|
286 | do i = its, ite |
---|
287 | qci(i,k) = max(qci(i,k),0.0) |
---|
288 | qrs(i,k) = max(qrs(i,k),0.0) |
---|
289 | enddo |
---|
290 | enddo |
---|
291 | ! |
---|
292 | !---------------------------------------------------------------- |
---|
293 | ! latent heat for phase changes and heat capacity. neglect the |
---|
294 | ! changes during microphysical process calculation |
---|
295 | ! emanuel(1994) |
---|
296 | ! |
---|
297 | do k = kts, kte |
---|
298 | do i = its, ite |
---|
299 | cpm(i,k) = cpmcal(q(i,k)) |
---|
300 | xl(i,k) = xlcal(t(i,k)) |
---|
301 | enddo |
---|
302 | enddo |
---|
303 | ! |
---|
304 | !---------------------------------------------------------------- |
---|
305 | ! compute the minor time steps. |
---|
306 | ! |
---|
307 | loops = max(nint(delt/dtcldcr),1) |
---|
308 | dtcld = delt/loops |
---|
309 | if(delt.le.dtcldcr) dtcld = delt |
---|
310 | ! |
---|
311 | do loop = 1,loops |
---|
312 | ! |
---|
313 | !---------------------------------------------------------------- |
---|
314 | ! initialize the large scale variables |
---|
315 | ! |
---|
316 | do i = its, ite |
---|
317 | mstep(i) = 1 |
---|
318 | flgcld(i) = .true. |
---|
319 | enddo |
---|
320 | ! |
---|
321 | ! do k = kts, kte |
---|
322 | ! do i = its, ite |
---|
323 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
---|
324 | ! enddo |
---|
325 | ! enddo |
---|
326 | do k = kts, kte |
---|
327 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
328 | do i = its, ite |
---|
329 | tvec1(i) = tvec1(i)*den0 |
---|
330 | enddo |
---|
331 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
332 | enddo |
---|
333 | ! |
---|
334 | ! Inline expansion for fpvs |
---|
335 | ! qs(i,k) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
336 | ! qs0(i,k) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
337 | cvap = cpv |
---|
338 | hvap=xlv0 |
---|
339 | hsub=xls |
---|
340 | ttp=t0c+0.01 |
---|
341 | dldt=cvap-cliq |
---|
342 | xa=-dldt/rv |
---|
343 | xb=xa+hvap/(rv*ttp) |
---|
344 | dldti=cvap-cice |
---|
345 | xai=-dldti/rv |
---|
346 | xbi=xai+hsub/(rv*ttp) |
---|
347 | do k = kts, kte |
---|
348 | do i = its, ite |
---|
349 | ! tr=ttp/t(i,k) |
---|
350 | ! if(t(i,k).lt.ttp) then |
---|
351 | ! qs(i,k) =psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
352 | ! else |
---|
353 | ! qs(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
354 | ! endif |
---|
355 | ! qs0(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
356 | tr=ttp/t(i,k) |
---|
357 | if(t(i,k).lt.ttp) then |
---|
358 | qs(i,k) =psat*(exp(log(tr)*(xai)))*exp(xbi*(1.-tr)) |
---|
359 | else |
---|
360 | qs(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
361 | endif |
---|
362 | qs0(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
363 | qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) |
---|
364 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
365 | qs(i,k) = max(qs(i,k),qmin) |
---|
366 | rh(i,k) = max(q(i,k) / qs(i,k),qmin) |
---|
367 | enddo |
---|
368 | enddo |
---|
369 | ! |
---|
370 | !---------------------------------------------------------------- |
---|
371 | ! initialize the variables for microphysical physics |
---|
372 | ! |
---|
373 | ! |
---|
374 | do k = kts, kte |
---|
375 | do i = its, ite |
---|
376 | pres(i,k) = 0. |
---|
377 | paut(i,k) = 0. |
---|
378 | pacr(i,k) = 0. |
---|
379 | pgen(i,k) = 0. |
---|
380 | pisd(i,k) = 0. |
---|
381 | pcon(i,k) = 0. |
---|
382 | fall(i,k) = 0. |
---|
383 | falk(i,k) = 0. |
---|
384 | fallc(i,k) = 0. |
---|
385 | falkc(i,k) = 0. |
---|
386 | xni(i,k) = 1.e3 |
---|
387 | enddo |
---|
388 | enddo |
---|
389 | ! |
---|
390 | !---------------------------------------------------------------- |
---|
391 | ! compute the fallout term: |
---|
392 | ! first, vertical terminal velosity for minor loops |
---|
393 | !--------------------------------------------------------------- |
---|
394 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
395 | !--------------------------------------------------------------- |
---|
396 | do k = kts, kte |
---|
397 | do i = its, ite |
---|
398 | supcol = t0c-t(i,k) |
---|
399 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
400 | if(t(i,k).ge.t0c) then |
---|
401 | if(qrs(i,k).le.qcrmin)then |
---|
402 | rslope(i,k) = rslopermax |
---|
403 | rslopeb(i,k) = rsloperbmax |
---|
404 | rslope2(i,k) = rsloper2max |
---|
405 | rslope3(i,k) = rsloper3max |
---|
406 | else |
---|
407 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
---|
408 | ! rslopeb(i,k) = rslope(i,k)**bvtr |
---|
409 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
---|
410 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
411 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
412 | endif |
---|
413 | else |
---|
414 | if(qrs(i,k).le.qcrmin)then |
---|
415 | rslope(i,k) = rslopesmax |
---|
416 | rslopeb(i,k) = rslopesbmax |
---|
417 | rslope2(i,k) = rslopes2max |
---|
418 | rslope3(i,k) = rslopes3max |
---|
419 | else |
---|
420 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
421 | ! rslopeb(i,k) = rslope(i,k)**bvts |
---|
422 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
---|
423 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
424 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
425 | endif |
---|
426 | endif |
---|
427 | !------------------------------------------------------------- |
---|
428 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
429 | !------------------------------------------------------------- |
---|
430 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
431 | ! *max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
---|
432 | xni(i,k) = min(max(5.38e7*exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
433 | enddo |
---|
434 | enddo |
---|
435 | ! |
---|
436 | mstepmax = 1 |
---|
437 | numdt = 1 |
---|
438 | do k = kte, kts, -1 |
---|
439 | do i = its, ite |
---|
440 | if(t(i,k).lt.t0c) then |
---|
441 | pvt = pvts |
---|
442 | else |
---|
443 | pvt = pvtr |
---|
444 | endif |
---|
445 | work1(i,k) = pvt*rslopeb(i,k)*denfac(i,k) |
---|
446 | work2(i,k) = work1(i,k)/delz(i,k) |
---|
447 | numdt(i) = max(nint(work2(i,k)*dtcld+.5),1) |
---|
448 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
449 | enddo |
---|
450 | enddo |
---|
451 | do i = its, ite |
---|
452 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
453 | enddo |
---|
454 | ! |
---|
455 | do n = 1, mstepmax |
---|
456 | k = kte |
---|
457 | do i = its, ite |
---|
458 | if(n.le.mstep(i)) then |
---|
459 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
---|
460 | hold = falk(i,k) |
---|
461 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
462 | holdrs = qrs(i,k) |
---|
463 | qrs(i,k) = max(qrs(i,k)-falk(i,k)*dtcld/den(i,k),0.) |
---|
464 | endif |
---|
465 | enddo |
---|
466 | do k = kte-1, kts, -1 |
---|
467 | do i = its, ite |
---|
468 | if(n.le.mstep(i)) then |
---|
469 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
---|
470 | hold = falk(i,k) |
---|
471 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
472 | holdrs = qrs(i,k) |
---|
473 | qrs(i,k) = max(qrs(i,k)-(falk(i,k) & |
---|
474 | -falk(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
475 | endif |
---|
476 | enddo |
---|
477 | enddo |
---|
478 | enddo |
---|
479 | !--------------------------------------------------------------- |
---|
480 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
481 | !--------------------------------------------------------------- |
---|
482 | mstepmax = 1 |
---|
483 | mstep = 1 |
---|
484 | numdt = 1 |
---|
485 | do k = kte, kts, -1 |
---|
486 | do i = its, ite |
---|
487 | if(t(i,k).lt.t0c.and.qci(i,k).gt.0.) then |
---|
488 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
489 | ! diameter = dicon * sqrt(xmi) |
---|
490 | ! work1c(i,k) = 1.49e4*diameter**1.31 |
---|
491 | diameter = max(dicon * sqrt(xmi), 1.e-25) |
---|
492 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
493 | else |
---|
494 | work1c(i,k) = 0. |
---|
495 | endif |
---|
496 | if(qci(i,k).le.0.) then |
---|
497 | work2c(i,k) = 0. |
---|
498 | else |
---|
499 | work2c(i,k) = work1c(i,k)/delz(i,k) |
---|
500 | endif |
---|
501 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
502 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
503 | enddo |
---|
504 | enddo |
---|
505 | do i = its, ite |
---|
506 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
507 | enddo |
---|
508 | ! |
---|
509 | do n = 1, mstepmax |
---|
510 | k = kte |
---|
511 | do i = its, ite |
---|
512 | if (n.le.mstep(i)) then |
---|
513 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
---|
514 | holdc = falkc(i,k) |
---|
515 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
516 | holdci = qci(i,k) |
---|
517 | qci(i,k) = max(qci(i,k)-falkc(i,k)*dtcld/den(i,k),0.) |
---|
518 | endif |
---|
519 | enddo |
---|
520 | do k = kte-1, kts, -1 |
---|
521 | do i = its, ite |
---|
522 | if (n.le.mstep(i)) then |
---|
523 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
---|
524 | holdc = falkc(i,k) |
---|
525 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
526 | holdci = qci(i,k) |
---|
527 | qci(i,k) = max(qci(i,k)-(falkc(i,k) & |
---|
528 | -falkc(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
529 | endif |
---|
530 | enddo |
---|
531 | enddo |
---|
532 | enddo |
---|
533 | ! |
---|
534 | !---------------------------------------------------------------- |
---|
535 | ! compute the freezing/melting term. [D89 B16-B17] |
---|
536 | ! freezing occurs one layer above the melting level |
---|
537 | ! |
---|
538 | do i = its, ite |
---|
539 | mstep(i) = 0 |
---|
540 | enddo |
---|
541 | do k = kts, kte |
---|
542 | do i = its, ite |
---|
543 | if(t(i,k).ge.t0c) then |
---|
544 | mstep(i) = k |
---|
545 | endif |
---|
546 | enddo |
---|
547 | enddo |
---|
548 | ! |
---|
549 | do i = its, ite |
---|
550 | kwork2(i) = mstep(i) |
---|
551 | kwork1(i) = mstep(i) |
---|
552 | if(mstep(i).ne.0) then |
---|
553 | if (w(i,mstep(i)).gt.0.) then |
---|
554 | kwork1(i) = mstep(i) + 1 |
---|
555 | endif |
---|
556 | endif |
---|
557 | enddo |
---|
558 | ! |
---|
559 | do i = its, ite |
---|
560 | k = kwork1(i) |
---|
561 | kk = kwork2(i) |
---|
562 | if(k*kk.ge.1) then |
---|
563 | qrsci = qrs(i,k) + qci(i,k) |
---|
564 | if(qrsci.gt.0..or.fall(i,kk).gt.0.) then |
---|
565 | frzmlt = min(max(-w(i,k)*qrsci/delz(i,k),-qrsci/dtcld), & |
---|
566 | qrsci/dtcld) |
---|
567 | snomlt = min(max(fall(i,kk)/den(i,kk),-qrs(i,k)/dtcld), & |
---|
568 | qrs(i,k)/dtcld) |
---|
569 | if(k.eq.kk) then |
---|
570 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld |
---|
571 | else |
---|
572 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*frzmlt*dtcld |
---|
573 | t(i,kk) = t(i,kk) - xlf0/cpm(i,kk)*snomlt*dtcld |
---|
574 | endif |
---|
575 | endif |
---|
576 | endif |
---|
577 | enddo |
---|
578 | ! |
---|
579 | !---------------------------------------------------------------- |
---|
580 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
581 | ! |
---|
582 | do i = its, ite |
---|
583 | fallsum = fall(i,1) |
---|
584 | fallsum_qsi = 0. |
---|
585 | if((t0c-t(i,1)).gt.0) then |
---|
586 | fallsum = fallsum+fallc(i,1) |
---|
587 | fallsum_qsi = fall(i,1)+fallc(i,1) |
---|
588 | endif |
---|
589 | rainncv(i) = 0. |
---|
590 | if(fallsum.gt.0.) then |
---|
591 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
---|
592 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. & |
---|
593 | + rain(i) |
---|
594 | endif |
---|
595 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
596 | snowncv(i) = 0. |
---|
597 | if(fallsum_qsi.gt.0.) then |
---|
598 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
---|
599 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
600 | endif |
---|
601 | ENDIF |
---|
602 | sr(i) = 0. |
---|
603 | if(fallsum.gt.0.)sr(i)=fallsum_qsi*delz(i,kts)/denr*dtcld*1000./(rainncv(i)+1.e-12) |
---|
604 | enddo |
---|
605 | ! |
---|
606 | !---------------------------------------------------------------- |
---|
607 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
608 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
609 | ! work1: the thermodynamic term in the denominator associated with |
---|
610 | ! heat conduction and vapor diffusion |
---|
611 | ! (ry88, y93, h85) |
---|
612 | ! work2: parameter associated with the ventilation effects(y93) |
---|
613 | ! |
---|
614 | do k = kts, kte |
---|
615 | do i = its, ite |
---|
616 | if(t(i,k).ge.t0c) then |
---|
617 | if(qrs(i,k).le.qcrmin)then |
---|
618 | rslope(i,k) = rslopermax |
---|
619 | rslopeb(i,k) = rsloperbmax |
---|
620 | rslope2(i,k) = rsloper2max |
---|
621 | rslope3(i,k) = rsloper3max |
---|
622 | else |
---|
623 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
---|
624 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
---|
625 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
626 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
627 | endif |
---|
628 | else |
---|
629 | if(qrs(i,k).le.qcrmin)then |
---|
630 | rslope(i,k) = rslopesmax |
---|
631 | rslopeb(i,k) = rslopesbmax |
---|
632 | rslope2(i,k) = rslopes2max |
---|
633 | rslope3(i,k) = rslopes3max |
---|
634 | else |
---|
635 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
636 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
---|
637 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
638 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
639 | endif |
---|
640 | endif |
---|
641 | enddo |
---|
642 | enddo |
---|
643 | ! |
---|
644 | do k = kts, kte |
---|
645 | do i = its, ite |
---|
646 | if(t(i,k).ge.t0c) then |
---|
647 | work1(i,k) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
648 | else |
---|
649 | work1(i,k) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
650 | endif |
---|
651 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
652 | enddo |
---|
653 | enddo |
---|
654 | ! |
---|
655 | do k = kts, kte |
---|
656 | do i = its, ite |
---|
657 | supsat = max(q(i,k),qmin)-qs(i,k) |
---|
658 | satdt = supsat/dtcld |
---|
659 | if(t(i,k).ge.t0c) then |
---|
660 | ! |
---|
661 | !=============================================================== |
---|
662 | ! |
---|
663 | ! warm rain processes |
---|
664 | ! |
---|
665 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
666 | ! |
---|
667 | !=============================================================== |
---|
668 | !--------------------------------------------------------------- |
---|
669 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
670 | ! (C->R) |
---|
671 | !--------------------------------------------------------------- |
---|
672 | if(qci(i,k).gt.qc0) then |
---|
673 | ! paut(i,k) = qck1*qci(i,k)**(7./3.) |
---|
674 | paut(i,k) = qck1*exp(log(qci(i,k))*((7./3.))) |
---|
675 | paut(i,k) = min(paut(i,k),qci(i,k)/dtcld) |
---|
676 | endif |
---|
677 | !--------------------------------------------------------------- |
---|
678 | ! pracw: accretion of cloud water by rain [HL A40] [D89 B15] |
---|
679 | ! (C->R) |
---|
680 | !--------------------------------------------------------------- |
---|
681 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
682 | pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & |
---|
683 | *qci(i,k)*denfac(i,k),qci(i,k)/dtcld) |
---|
684 | endif |
---|
685 | !--------------------------------------------------------------- |
---|
686 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
687 | ! (V->R or R->V) |
---|
688 | !--------------------------------------------------------------- |
---|
689 | if(qrs(i,k).gt.0.) then |
---|
690 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
691 | pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & |
---|
692 | +precr2*work2(i,k)*coeres)/work1(i,k) |
---|
693 | if(pres(i,k).lt.0.) then |
---|
694 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
695 | pres(i,k) = max(pres(i,k),satdt/2) |
---|
696 | else |
---|
697 | pres(i,k) = min(pres(i,k),satdt/2) |
---|
698 | endif |
---|
699 | endif |
---|
700 | else |
---|
701 | ! |
---|
702 | !=============================================================== |
---|
703 | ! |
---|
704 | ! cold rain processes |
---|
705 | ! |
---|
706 | ! - follows the revised ice microphysics processes in HDC |
---|
707 | ! - the processes same as in RH83 and LFO behave |
---|
708 | ! following ice crystal hapits defined in HDC, inclduing |
---|
709 | ! intercept parameter for snow (n0s), ice crystal number |
---|
710 | ! concentration (ni), ice nuclei number concentration |
---|
711 | ! (n0i), ice diameter (d) |
---|
712 | ! |
---|
713 | !=============================================================== |
---|
714 | ! |
---|
715 | supcol = t0c-t(i,k) |
---|
716 | ifsat = 0 |
---|
717 | !------------------------------------------------------------- |
---|
718 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
719 | !------------------------------------------------------------- |
---|
720 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
721 | ! *max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
---|
722 | xni(i,k) = min(max(5.38e7*exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
723 | eacrs = exp(0.07*(-supcol)) |
---|
724 | ! |
---|
725 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
726 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
727 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
728 | vt2i = 1.49e4*diameter**1.31 |
---|
729 | vt2s = pvts*rslopeb(i,k)*denfac(i,k) |
---|
730 | !------------------------------------------------------------- |
---|
731 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
---|
732 | ! (T<T0: I->R) |
---|
733 | !------------------------------------------------------------- |
---|
734 | acrfac = 2.*rslope3(i,k)+2.*diameter*rslope2(i,k) & |
---|
735 | +diameter**2*rslope(i,k) |
---|
736 | pacr(i,k) = min(pi*qci(i,k)*eacrs*n0s*n0sfac(i,k) & |
---|
737 | *abs(vt2s-vt2i)*acrfac/4.,qci(i,k)/dtcld) |
---|
738 | endif |
---|
739 | !------------------------------------------------------------- |
---|
740 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
741 | ! (T<T0: V->I or I->V) |
---|
742 | !------------------------------------------------------------- |
---|
743 | if(qci(i,k).gt.0.) then |
---|
744 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
745 | diameter = dicon * sqrt(xmi) |
---|
746 | pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.)/work1(i,k) |
---|
747 | if(pisd(i,k).lt.0.) then |
---|
748 | pisd(i,k) = max(pisd(i,k),satdt/2) |
---|
749 | pisd(i,k) = max(pisd(i,k),-qci(i,k)/dtcld) |
---|
750 | else |
---|
751 | pisd(i,k) = min(pisd(i,k),satdt/2) |
---|
752 | endif |
---|
753 | if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
754 | endif |
---|
755 | !------------------------------------------------------------- |
---|
756 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
757 | ! (V->S or S->V) |
---|
758 | !------------------------------------------------------------- |
---|
759 | if(qrs(i,k).gt.0..and.ifsat.ne.1) then |
---|
760 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
761 | pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & |
---|
762 | +precs2*work2(i,k)*coeres)/work1(i,k) |
---|
763 | supice = satdt-pisd(i,k) |
---|
764 | if(pres(i,k).lt.0.) then |
---|
765 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
766 | pres(i,k) = max(max(pres(i,k),satdt/2),supice) |
---|
767 | else |
---|
768 | pres(i,k) = min(min(pres(i,k),satdt/2),supice) |
---|
769 | endif |
---|
770 | if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
771 | endif |
---|
772 | !------------------------------------------------------------- |
---|
773 | ! pigen: generation(nucleation) of ice from vapor [HDC 7-8] |
---|
774 | ! (T<T0: V->I) |
---|
775 | !------------------------------------------------------------- |
---|
776 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
777 | supice = satdt-pisd(i,k)-pres(i,k) |
---|
778 | xni0 = 1.e3*exp(0.1*supcol) |
---|
779 | ! roqi0 = 4.92e-11*xni0**1.33 |
---|
780 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
781 | pgen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k),0.))/dtcld) |
---|
782 | pgen(i,k) = min(min(pgen(i,k),satdt),supice) |
---|
783 | endif |
---|
784 | !------------------------------------------------------------- |
---|
785 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
786 | ! (T<T0: I->S) |
---|
787 | !------------------------------------------------------------- |
---|
788 | if(qci(i,k).gt.0.) then |
---|
789 | qimax = roqimax/den(i,k) |
---|
790 | paut(i,k) = max(0.,(qci(i,k)-qimax)/dtcld) |
---|
791 | endif |
---|
792 | endif |
---|
793 | enddo |
---|
794 | enddo |
---|
795 | ! |
---|
796 | !---------------------------------------------------------------- |
---|
797 | ! check mass conservation of generation terms and feedback to the |
---|
798 | ! large scale |
---|
799 | ! |
---|
800 | do k = kts, kte |
---|
801 | do i = its, ite |
---|
802 | qciik = max(qmin,qci(i,k)) |
---|
803 | delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld |
---|
804 | if(delqci.ge.qciik) then |
---|
805 | facqci = qciik/delqci |
---|
806 | paut(i,k) = paut(i,k)*facqci |
---|
807 | pacr(i,k) = pacr(i,k)*facqci |
---|
808 | pgen(i,k) = pgen(i,k)*facqci |
---|
809 | pisd(i,k) = pisd(i,k)*facqci |
---|
810 | endif |
---|
811 | qik = max(qmin,q(i,k)) |
---|
812 | delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld |
---|
813 | if(delq.ge.qik) then |
---|
814 | facq = qik/delq |
---|
815 | pres(i,k) = pres(i,k)*facq |
---|
816 | pgen(i,k) = pgen(i,k)*facq |
---|
817 | pisd(i,k) = pisd(i,k)*facq |
---|
818 | endif |
---|
819 | work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) |
---|
820 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
821 | qci(i,k) = max(qci(i,k)-(paut(i,k)+pacr(i,k)-pgen(i,k) & |
---|
822 | -pisd(i,k))*dtcld,0.) |
---|
823 | qrs(i,k) = max(qrs(i,k)+(paut(i,k)+pacr(i,k) & |
---|
824 | +pres(i,k))*dtcld,0.) |
---|
825 | if(t(i,k).lt.t0c) then |
---|
826 | t(i,k) = t(i,k)-xls*work2(i,k)/cpm(i,k)*dtcld |
---|
827 | else |
---|
828 | t(i,k) = t(i,k)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld |
---|
829 | endif |
---|
830 | enddo |
---|
831 | enddo |
---|
832 | ! |
---|
833 | cvap = cpv |
---|
834 | hvap = xlv0 |
---|
835 | hsub = xls |
---|
836 | ttp=t0c+0.01 |
---|
837 | dldt=cvap-cliq |
---|
838 | xa=-dldt/rv |
---|
839 | xb=xa+hvap/(rv*ttp) |
---|
840 | dldti=cvap-cice |
---|
841 | xai=-dldti/rv |
---|
842 | xbi=xai+hsub/(rv*ttp) |
---|
843 | do k = kts, kte |
---|
844 | do i = its, ite |
---|
845 | tr=ttp/t(i,k) |
---|
846 | ! qs(i,k)=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
847 | qs(i,k)=psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
848 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
849 | qs(i,k) = max(qs(i,k),qmin) |
---|
850 | denfac(i,k) = sqrt(den0/den(i,k)) |
---|
851 | enddo |
---|
852 | enddo |
---|
853 | ! |
---|
854 | !---------------------------------------------------------------- |
---|
855 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
856 | ! if there exists additional water vapor condensated/if |
---|
857 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
858 | ! |
---|
859 | do k = kts, kte |
---|
860 | do i = its, ite |
---|
861 | work1(i,k) = conden(t(i,k),q(i,k),qs(i,k),xl(i,k),cpm(i,k)) |
---|
862 | work2(i,k) = qci(i,k)+work1(i,k) |
---|
863 | pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k),0.))/dtcld |
---|
864 | if(qci(i,k).gt.0..and.work1(i,k).lt.0.and.t(i,k).gt.t0c) & |
---|
865 | pcon(i,k) = max(work1(i,k),-qci(i,k))/dtcld |
---|
866 | q(i,k) = q(i,k)-pcon(i,k)*dtcld |
---|
867 | qci(i,k) = max(qci(i,k)+pcon(i,k)*dtcld,0.) |
---|
868 | t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
869 | enddo |
---|
870 | enddo |
---|
871 | ! |
---|
872 | !---------------------------------------------------------------- |
---|
873 | ! padding for small values |
---|
874 | ! |
---|
875 | do k = kts, kte |
---|
876 | do i = its, ite |
---|
877 | if(qci(i,k).le.qmin) qci(i,k) = 0.0 |
---|
878 | enddo |
---|
879 | enddo |
---|
880 | ! |
---|
881 | enddo ! big loops |
---|
882 | END SUBROUTINE wsm32D |
---|
883 | ! ................................................................... |
---|
884 | REAL FUNCTION rgmma(x) |
---|
885 | !------------------------------------------------------------------- |
---|
886 | IMPLICIT NONE |
---|
887 | !------------------------------------------------------------------- |
---|
888 | ! rgmma function: use infinite product form |
---|
889 | REAL :: euler |
---|
890 | PARAMETER (euler=0.577215664901532) |
---|
891 | REAL :: x, y |
---|
892 | INTEGER :: i |
---|
893 | if(x.eq.1.)then |
---|
894 | rgmma=0. |
---|
895 | else |
---|
896 | rgmma=x*exp(euler*x) |
---|
897 | do i=1,10000 |
---|
898 | y=float(i) |
---|
899 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
900 | enddo |
---|
901 | rgmma=1./rgmma |
---|
902 | endif |
---|
903 | END FUNCTION rgmma |
---|
904 | ! |
---|
905 | !-------------------------------------------------------------------------- |
---|
906 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
907 | !-------------------------------------------------------------------------- |
---|
908 | IMPLICIT NONE |
---|
909 | !-------------------------------------------------------------------------- |
---|
910 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
911 | xai,xbi,ttp,tr |
---|
912 | INTEGER ice |
---|
913 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
914 | ttp=t0c+0.01 |
---|
915 | dldt=cvap-cliq |
---|
916 | xa=-dldt/rv |
---|
917 | xb=xa+hvap/(rv*ttp) |
---|
918 | dldti=cvap-cice |
---|
919 | xai=-dldti/rv |
---|
920 | xbi=xai+hsub/(rv*ttp) |
---|
921 | tr=ttp/t |
---|
922 | if(t.lt.ttp.and.ice.eq.1) then |
---|
923 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
924 | else |
---|
925 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
926 | endif |
---|
927 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
928 | END FUNCTION fpvs |
---|
929 | !------------------------------------------------------------------- |
---|
930 | SUBROUTINE wsm3init(den0,denr,dens,cl,cpv,allowed_to_read) |
---|
931 | !------------------------------------------------------------------- |
---|
932 | IMPLICIT NONE |
---|
933 | !------------------------------------------------------------------- |
---|
934 | !.... constants which may not be tunable |
---|
935 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
---|
936 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
937 | REAL :: pi |
---|
938 | ! |
---|
939 | pi = 4.*atan(1.) |
---|
940 | xlv1 = cl-cpv |
---|
941 | ! |
---|
942 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
943 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
944 | ! |
---|
945 | bvtr1 = 1.+bvtr |
---|
946 | bvtr2 = 2.5+.5*bvtr |
---|
947 | bvtr3 = 3.+bvtr |
---|
948 | bvtr4 = 4.+bvtr |
---|
949 | g1pbr = rgmma(bvtr1) |
---|
950 | g3pbr = rgmma(bvtr3) |
---|
951 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
952 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
---|
953 | pvtr = avtr*g4pbr/6. |
---|
954 | eacrr = 1.0 |
---|
955 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
956 | precr1 = 2.*pi*n0r*.78 |
---|
957 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
---|
958 | xm0 = (di0/dicon)**2 |
---|
959 | xmmax = (dimax/dicon)**2 |
---|
960 | roqimax = 2.08e22*dimax**8 |
---|
961 | ! |
---|
962 | bvts1 = 1.+bvts |
---|
963 | bvts2 = 2.5+.5*bvts |
---|
964 | bvts3 = 3.+bvts |
---|
965 | bvts4 = 4.+bvts |
---|
966 | g1pbs = rgmma(bvts1) !.8875 |
---|
967 | g3pbs = rgmma(bvts3) |
---|
968 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
969 | g5pbso2 = rgmma(bvts2) |
---|
970 | pvts = avts*g4pbs/6. |
---|
971 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
972 | precs1 = 4.*n0s*.65 |
---|
973 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
974 | pidn0r = pi*denr*n0r |
---|
975 | pidn0s = pi*dens*n0s |
---|
976 | ! |
---|
977 | rslopermax = 1./lamdarmax |
---|
978 | rslopesmax = 1./lamdasmax |
---|
979 | rsloperbmax = rslopermax ** bvtr |
---|
980 | rslopesbmax = rslopesmax ** bvts |
---|
981 | rsloper2max = rslopermax * rslopermax |
---|
982 | rslopes2max = rslopesmax * rslopesmax |
---|
983 | rsloper3max = rsloper2max * rslopermax |
---|
984 | rslopes3max = rslopes2max * rslopesmax |
---|
985 | ! |
---|
986 | END SUBROUTINE wsm3init |
---|
987 | END MODULE module_mp_wsm3 |
---|